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Abstract 

Background:  Acute lymphoblastic leukemia (ALL) contains cytogenetically distinct subtypes that respond differently 
to cytotoxic drugs. Therefore, subtype classification is important and indispensable in ALL diagnosis. In our previ-
ous study, we identified some marker genes in childhood ALL by means of microarray technology and, furthermore, 
detected the relative expression levels of 57 marker genes and built a comparatively convenient and cost-effective 
classifier with a prediction accuracy as high as 94% based on the advanced fragment analysis (AFA) technique.

Methods:  A more convenient improved AFA (iAFA) technique with one-step multiplex RT-PCR and an anti-contami-
nation system was developed to detect 57 marker genes for ALL.

Results:  The iAFA assay is much easier and more convenient to perform than the previous AFA assay and has a 
prediction accuracy of 95.29% in ALL subtypes. The anti-contamination system could effectively prevent the occur-
rence of lab DNA contamination. We also showed that marker gene expression profiles in pediatric ALL revealed 2 
subgroups with different outcomes. Most ALL patients (95.8%) had a good-risk genetic profile, and only 4.2% of ALL 
patients had a poor-risk genetic profile, which predicted an event-free survival (EFS) of 93.6 ± 1.3% vs 18.8 ± 9.8% at 
5 years, respectively (P < 0.001).

Conclusions:  Compared to the previous AFA assay, the iAFA technique is more functional, time-saving and labor-
saving. It could be a valuable clinical tool for the classification and risk stratification of pediatric ALL patients.
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Background
Genomic profiling has revolutionized our understanding 
of cancer and refined the classification of patients into 
clinically relevant subgroups [1]. This is exemplified in 
how risk classification and corresponding chemotherapy 
have improved the outcome for patients with pediat-
ric acute lymphoblastic leukemia (ALL). Refinements in 
treatment protocols rely on accurate classification, and 
improvements in supportive care for ALL have led to a 
cure rate approaching 90% in recent years. However, cer-
tain high-risk pediatric ALL subgroups remain relatively 
intractable to treatment, and many patients who relapse 
face a similarly dismal outcome. Moreover, survivors who 
are low-risk patients suffer long-term sequelae from their 
intensive treatment throughout their lives. Therefore, 
reliable classification and stringent risk assessment have 
become extremely important issues to improve the sur-
vival of patients at high risk and decrease the long-term 
treatment-related side effects in standard-risk patients 
[2–5].

Microarray technology was exploited for the classifica-
tion of leukemia for the first time in 1999 [6]. Since then, 
a substantial series of studies has revealed either novel 
subtypes or biomarkers for pediatric ALL based on high-
throughput technologies [7–12]. In a previous study, we 
constructed a classifier of some marker genes that applies 
to a single independent patient sample and can consist-
ently retain high accuracy with microarray technology 
[13]. Then, we adopted the advanced fragment analysis 
(AFA) technique, which integrates multiplex RT-PCR 
and capillary electrophoresis, to detect 57 marker genes 
effectively and economically. The AFA-based classifier 
also demonstrated high accuracy and was more rapid and 
inexpensive than a previous microarray-based classifier 
[14].

In this study, the efficiency and stability of the AFA 
technique was further improved with one-step multiplex 
RT-PCR and an anti-contamination system. In addition, 
the prognostic significance of marker genes in pediatric 
ALL was also evaluated.

Materials and methods
Patients and treatment protocol
A total of 219 newly diagnosed pediatric ALL patients, 
aged 5  months to 14  years (median, 4  years), were 
enrolled in the Hematology Oncology Center at the Bei-
jing Children’s Hospital of Capital Medical University 
between May 2011 and August 2016. The 160 samples 
of our previous study between August 2007 and Janu-
ary 2014 were analyzed together in this study [14]. The 
clinical characteristics of all patients are described in 
detail in Additional file  1: Table  S1. All patients were 
diagnosed with ALL using a combination of morphology, 

immunology, cytogenetics and molecular biology 
(MICM) classification. They were stratified and treated 
according to the China Children’s Leukemia Group 
(CCLG)-ALL 2008 protocol as previously described [15]. 
Minimal residual disease (MRD) was evaluated at the 
end of the induction of remission (day 33) and before 
consolidation (day 78). This method has been reported 
previously in detail [15, 16]. We defined MRD positive as 
≥ 10−2 at day 33 and ≥ 10−3 at day 78 in this study. Due 
to induction failure or abandoning therapy, only 340 and 
327 cases were available for MRD detection on the 33rd 
and the 78th days, respectively. Informed consent was 
obtained from all parents or legal guardians. The study 
was designed in accordance with the Declaration of Hel-
sinki and was approved by the Beijing Children’s Hospital 
ethics committee prior to its initiation.

Cell sample collection, RNA extraction, and primer design
Bone marrow (BM) samples were collected at the time of 
initial diagnosis (ID) into a tube with anticoagulant eth-
ylenediaminetetraacetic acid. The inclusion criteria were 
sufficient BM cells for total RNA extraction and ≥ 50% 
blast cells in the BM samples. Mononuclear cells were 
isolated by Ficoll gradient centrifugation (MD Pacific, 
Tianjin, China; density: 1.077 g/ml) and cryopreserved in 
a − 80 °C freezer for subsequent experiments. Total RNA 
from the BM samples was extracted within 2 weeks using 
TRIzol reagent (Invitrogen, Paisley, UK) according to the 
manufacturer’s instructions. The concentration and qual-
ity of RNA were determined by absorbance measure-
ments at 260 nm and 280 nm.

A previous study demonstrated that the primers we 
designed can effectively amplify all the marker genes. In 
addition to B2M, PSMC4 and GUSB used as the endog-
enous reference genes for normalization and calculation 
of fold change and 2 internal reference controls, KanR 
and pcDNA3.1(+) serve as quality controls for the RT-
PCR reaction [14]. In this study, the primer sequences of 
57 marker genes and the concentration of each primer is 
presented in Additional file 1: Table S2.

iAFA‑based multiplex assay
We utilized a one-step multiplex RT-PCR assay and an 
anti-contamination system to improve the AFA assay. 
Uracil-DNA glycosylase (UDG) was used in the reac-
tion system to digest the carry-over amplicons and pre-
vent contamination. For each reaction, 50  ng/µl RNA 
from each sample was amplified directly with the fol-
lowing reaction system: 2  µl of RNA sample (50  ng/µl), 
3 µl of RT-PCR primer mix, 2.5 µl of 5 × RT-PCR buffer 
(100  mM Tris–HCl at pH 8.3, 500  mM KCl, 25  mM 
MgCl2), 1  µl of KanR (0.25  ng/µl), 0.5  µl of RT-PCR 
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Enzyme Mix [reverse transcriptase (10 units/µl), hot-
start DNA polymerase (2.5 units/µl), UDG enzyme (0.5 
units/µl)], and 1 µl of CM02; CM02 contains the fluores-
cence-labeled universal forward primer (12  µM), unla-
beled universal reverse primer (12  µM), and dU-NTP 
[dATP, dCTP, dGTP (3.5 mM), dTTP, dUTP (1.75 mM)]. 
All reagents in the reaction were provided by Ningbo 
Health Gene Technologies Ltd. (Ningbo, China).

One-step multiplex RT-PCR reactions were then per-
formed using a Veriti® Thermal Cycler (Applied Biosys-
tems, USA) as follows: 25 °C for 5 min, 50 °C for 30 min, 
95 °C for 15 min, 35 cycles of 94 °C for 30 s, 60 °C for 30 s 
and 72 °C for 1 min, followed by 72 °C for 1 min of addi-
tional extension and holding at 4 °C.

An aliquot (1 µl) of the amplification product for each 
set was prepared for capillary electrophoresis by adding 
31.8  µl of CEQ Sample Loading Solution (AB SCIEX, 
USA) and 0.2  µl of CEQ DNA Size Standard 400 (AB 
SCIEX, USA) in a 96-well CEQ electrophoresis sample 
plate (AB SCIEX, USA). The “Frag-3” separation method 
of the Beckman Coulter GeXP Genetic Analysis system 
(Beckman Coulter, USA) was also used to analyze ampli-
fication products. The relative quantification of each gene 
in a sample was determined using a standard curve as in 
a previous study [14].

Data analysis
The AFA data for 160 children with ALL was published 
in our previous study [14]. The iAFA assay dataset con-
sisted of 219 patients with 7 main subtypes: 12 patients 
with E2A-PBX1, 56 with TEL-AML1, 9 with BCR-ABL1, 
71 hyperdiploid, 16 T-ALL, and 5 with MLL rearrange-
ment. The remaining 50 B-ALL cases had not yet been 
detected for any fusion gene or chromosomal abnormal-
ity and were classified as “Others” for the time being.

Some missing values in the dataset were labeled as zero 
according to the principle of the iAFA assays that genes 
with very low expression did not exhibit signals. We also 
utilized the rank values instead of the true signal for each 
gene to construct the classifier. A decision tree (C5.0) 
classifier with optimal parameters was adopted to classify 
the seven subtypes of samples. C5.0 is implemented with 
“C50”, which is one of the most popular R packages for 
machine learning (http://www.r-proje​ct.org/).

Statistical analysis
In the study, March 28, 2018, was used as the end of the 
collection of the patients’ treatment outcomes. Event-free 
survival (EFS) was defined as time to ALL relapse, second 
malignant neoplasms (SMNs) or death, with censoring at 
last contact.

Stepwise logistic regression was used to select marker 
genes that can predict the prognosis of ALL patients in 
this study. First, several candidate models were selected 
according to the corrected Akaike’s information criterion 
(AICc) and Bayesian information criterion (BIC) values. 
The lower the AICc and BIC values, the better the model. 
Then, fivefold cross-validation was used to determine the 
optimal model, and the model with the lowest misclassi-
fication rate in the validation set was considered the final 
prediction model. Finally, the patients were classified into 
two groups, the good-risk (GR) group and the poor-risk 
(PR) group, by the prediction model. The Kaplan–Meier 
method and log-rank test were used to estimate and 
compare the survival curves of the two groups. Com-
parisons between the clinical characteristics, early treat-
ment responses and prognoses of the two groups were 
performed using the Chi square test or Fisher’s exact test, 
where appropriate. A P value of less than or equal to 0.05 
was considered significant. All analyses were performed 
using SAS 9.4 and SPSS 16.0 for Microsoft Windows 
software.

Results
iAFA assay optimization for pediatric ALL subtypes
The iAFA assay was carried out using our previous 
method, and the 57 marker genes were randomly divided 
into 3 panels, with each panel containing 18 to 20 genes 
[14]. The concentration of each primer was optimized 
using our previous method, and NEDD4 (in panel 3) did 
not reach moderate height, although we had raised its 
primer concentration. Therefore, 56 marker genes were 
used for subsequent assays.

In the iAFA assay, a UDG enzyme-based anti-contamina-
tion system was implemented. Compared to the previous 
assay, the iAFA assay was also supplemented with dUTP, 
which can incorporate dUTP into all RT-PCR amplicons 
after amplifying the target RNA sequence under certain 
conditions (“Materials and methods”). Such processing was 
the foundation of eliminating carryover contamination. To 
digest the dUTP-incorporated RT-PCR products, UDG 
treatment was performed before the reaction at 25  °C, 
whereas the template RNA, which does not contain dUTP, 
could not be digested under this step. In addition, the UDG 
enzyme is heat-sensitive and fully deactivates in the next 
step at 50 °C. Therefore, it did not affect the newly ampli-
fied RT-PCR products. The schematic diagram of the iAFA 
multiplex assay is illustrated in detail (Fig.  1). The UDG 
enzyme not only eliminated the carryover contamination 
dUTP-incorporated amplification products but failed to 
influence the amplification of marker genes. The stability 
and efficiency of amplification improved significantly.

http://www.r-project.org/
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Because the amplification efficiency of dUTP is slightly 
lower than that of dTTP in the reaction, we searched 
for the appropriate concentration of dUTP to ensure its 
amplification efficiency and anti-contamination effects. 
A gradient test of dUTP: dTTP (0:3; 1:3; 2:3; 3:3) was 
implemented, as shown in Fig. 2. There were no signifi-
cant differences among the four gradient concentra-
tions of dUTP. The results demonstrated that different 
doses of dUTP had little influence on the efficiency of 
amplification in this reaction when the space differ-
ence of the instrument was excluded. Consequently, 
dUTP:dTTP = 3:3 was selected for the subsequent assays.

The dose of the UDG enzyme also needed to be deter-
mined. In PCR, aerosol droplets are the most common 
and serious contamination source. We selected the dUTP-
incorporated amplification products, which were diluted 
107-fold, instead of the RNA template in the 10 µl reaction 
system as simulated carryover contamination. Meanwhile, 
the decontamination ability of the UDG enzyme (0  U, 
0.125 U, 0.25 U and 0.375 U UDG enzyme) was evaluated 
(Fig. 3). Our results indicate that 0.25 U UDG enzyme was 
sufficient to eliminate dUTP-incorporated carryover con-
tamination in the reaction system (Fig. 3c).

Development and independent validation of the classifier 
with iAFA samples
The C5.0 machine-learning method was used to train a 
classification model. We did not yet know whether the 
classifier was robust across different assays, so we first 
constructed the C5.0 model with tuning parameters 
based on our previously published 160 AFA data [14] 
and validated it with 219 independent iAFA samples. We 
investigated the classification performance through three 
measures: accuracy, sensitivity and specificity. The results 
of the 219 validated samples are shown in Additional 
file 1: Table S3. This classifier had an overall accuracy of 
91.13%, indicating that it has strong robustness in differ-
ent assays.

Then, the 219 iAFA samples were further divided into 
two groups using stratified random sampling: 111 cases 
were used as the training set, and the remaining 108 cases 
were used as the testing set. The analytical process was as 
follows: (i) the procedure was repeated for 10 runs, and the 
accuracy, sensitivity and specificity were computed for each 
run; and (ii) the average accuracy, sensitivity and specificity 
over the runs were computed, as presented in Table 1.

The average prediction accuracy of the classifier was 
95.29% in a completely independent set of 108 samples. 
In addition, we observed that the prediction accuracy 

Fig. 1  Schematic outline of the iAFA multiplex assay. a Schematic of the iAFA multiplex assay protocol, along with the approximate time required 
for each step. The assay integrated one-step multiplex RT-PCR and capillary electrophoresis to produce a time-saving and labor-saving method. b 
The UDG enzyme-based elimination of carryover contaminants by specifically cutting the 5′ side of the dUTP-incorporated amplicon DNA while 
having no effect on RNA templates. During the multiplex RT-PCR reaction, the possible contaminants were degraded into small fragments, and the 
UDG enzyme was inactivated at approximately 50 °C, ensuring that only the RNA template was amplified
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for the “Others” and “Hyperdiploid” subtypes was lower 
compared with other subtypes. These data are consistent 
with the fact that these two subtypes are heterogeneous 
subgroups and should have identifiable genetic abnor-
malities. The classifier achieved a 98.28% average accu-
racy without those samples. These findings indicated that 
the classifier performed well for the iAFA data.

Marker gene selection for prognostic value
We also investigated the prognostic significance of the 
marker genes. An increase in the number of marker 
genes causes the AICc to decrease gradually. However, 
with 10 marker genes, the AICc hardly decreases and 
slightly increases with 13 marker genes. On the other 
hand, the BIC decreases from the start and increases 
when the number of marker genes is 4 (Fig. 4). This indi-
cates that the goodness of fit of the model may become 
worse as the number of marker genes increases.

According to the AICc and BIC, we chose 10 candidate 
models from 4 to 13 marker genes. Logistic analysis with 
fivefold cross validation showed that the model with 10 
marker genes had the lowest misclassification rate in the 
validation set (Table 2) and was therefore considered the 
optimal prediction model. The parameter estimation of 
the model is shown in Additional file 1: Table S4.

The prognostic significance of 10 marker genes in pediatric 
ALL
Because of the small number of iAFA samples and the 
short follow-up time, the previous 160 AFA data were 
analyzed along with 219 iAFA data, and 27 patients had a 
dismal prognosis (Additional file 1: Table S5). Except for 
one child whose prognostic information was unable to 
be tracked, 378 patients were divided into 2 genetic risk 
groups: the good-risk (GR) group and the poor-risk (PR) 
group. Respectively, these 2 genetic risk groups consisted 

Fig. 2  Different concentrations of dUTP had similar expression levels of marker genes in pediatric ALL. There was no significant disparity in 
the efficiency of amplification among the three panels. Hence, we chose only Panel 2 to determine the concentration of dUTP. a–d represent 
dUTP:dTTP = 0:3; 1:3; 2:3 and 3:3, respectively. a 3.5 mM dTTP; b 0.875 mM dUTP and 2.625 mM dTTP; c 1.4 mM dUTP and 2.1 mM dTTP; d 1.75 mM 
dUTP and 1.75 mM dTTP
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of 95.8% and 4.2% of the cases and were associated with 
significantly different EFS rates at 5 years, 93.6 ± 1.3% vs 
18.8 ± 9.8% (Fig.  5a), and different OS rates at 5  years, 
94.7 ± 1.2% vs 25.0 ± 10.8% (Fig. 5b).

The predictive value of 10 marker genes was tested 
using a receiver operating characteristic (ROC) curve. 
The area under the curve (AUC) was 0.8191 (P < 0.001), 
which was better than that of our current clinical risk 

Fig. 3  Decontamination ability of different doses of the UDG enzyme. The total dose of the UDG enzyme is 0 U, 0.125 U, 0.25 U and 0.375 U in a–d, 
respectively

Table 1  Prediction results for the independent 108-case testing set of iAFA samples

TP true positive, FP false positive, TN true negative, FN false negative

Accuracy = (TP + TN)/(TP + FN + TN + FP); Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP)

Average accuracy: 95.29%

Subtype TP FP TN FN Accuracy (%) Sensitivity (%) Specificity (%)

BCR-ABL1 1.7 2.3 101.7 2.3 95.74 42.50 97.79

E2A-PBX1 6 0.3 101.7 0 99.72 100.00 99.71

Hyperdiploid 30.1 7.5 65.5 4.9 88.52 86.00 89.73

MLL rearrangement 1.3 0.3 105.7 0.7 99.07 65.00 99.72

Others 15.8 4.7 78.3 9.2 87.13 63.20 94.34

T-ALL 7.9 1.1 98.9 0.1 98.89 98.75 98.90

TEL-AML1 27.4 1.6 78.4 0.6 97.96 91.33 98.00
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stratification (0.7040, Fig.  6). We also investigated the 
association of the 10 marker gene expression profiles with 
common clinical characteristics. There was no difference 
only in gender within the marker gene expression-based 
risk group (P > 0.05). As we expected, the expression of 
these 10 marker genes was significantly associated with 
adverse clinical risk factors, such as age, white blood cell 
count in peripheral blood at diagnosis, immunopheno-
type, chromosome abnormalities in B-ALL, prednisone 
response, our current clinical risk stratification, treat-
ment outcome and MRD at day 33 and day 78 (Table 3). 
These results indicated that these 10 marker genes have a 
strong prognostic significance.

Discussion
Pediatric ALL comprises multiple entities with distinct 
genetic alterations, clinical characteristics, treatment 
protocols and prognosis features [17–19]. Accurate 

diagnostic classification and risk stratification are criti-
cal for the administration of the appropriate therapy and 
avoiding unnecessary treatment-related complications in 
patients.

One-step multiplex RT-PCR assay and UDG enzyme-
based anti-contamination system were used to improve 
amplification assays, which have been widely applied to 
the identification of a variety of viruses in recent years 
[20–25]. We opted to combine the above two pragmatic 
approaches with the original AFA technique to deliver 
a simpler and more rapid iAFA technology that could 
be readily adopted into routine clinical practice for ALL 
classification.

The iAFA technique saves 1  h over the whole opera-
tion process compared with the previous AFA assay. A 
one-step multiplex RT-PCR assay is easier to operate 
with high sensitivity [20]. Contamination usually occurs 
by opening the reaction tubes, leading to aerosol drop-
lets of different sizes that contain high concentrations 
of amplicons [26]. The UDG enzyme digests carryover 
contamination via the following two steps: (i) incorporat-
ing dUTP in all amplification products (by substituting 
dUTP for dTTP); and (ii) treating all subsequent, fully 
preassembled starting reactions with the UDG enzyme, 
followed by thermal inactivation of the UDG enzyme. 
The enzyme cleaves the uracil base from the phospho-
diester backbone of uracil-containing DNA but has no 
effect on natural (i.e., thymine-containing) DNA or RNA 
templates [27]. In this assay, the UDG enzyme process 
was performed before reaction at 25 °C to eliminate car-
ryover contamination and then deactivated at 50 °C due 
to its heat-sensitive characteristics.

In this study, a new classifier based on iAFA data has 
been developed that can classify pediatric ALL patients 
into the most common 7 subtypes. The prediction accu-
racy for the “Others” and “Hyperdiploid” subtypes was 
lower compared with other subtypes. This phenomenon 
coincides with results from previous ALL studies in 
which these two subtypes are heterogeneous subgroups 

Fig. 4  Relationship between the number of marker genes and the 
AICc & BIC. The corrected Akaike’s information criterion (AICc) and 
the Bayesian information criterion (BIC) are information-based criteria 
that assess model fit

Table 2  Error rate of each candidate prediction model

No. Marker genes Error rate

4 ITM2A COL6A3 PTPRK RBMS1 11.64

5 ITM2A COL6A3 PTPRK RBMS1 IMP-3 10.58

6 ITM2A COL6A3 PTPRK RBMS1 IMP-3 ALOX5 11.11

7 ITM2A COL6A3 PTPRK RBMS1 IMP-3 ALOX5 CD69 10.85

8 ITM2A COL6A3 PTPRK RBMS1 IMP-3 ALOX5 CD69 STCH 10.85

9 ITM2A COL6A3 PTPRK RBMS1 IMP-3 ALOX5 CD69 STCH FNDC3A 10.85

10 ITM2A COL6A3 PTPRK RBMS1 IMP-3 ALOX5 CD69 STCH FNDC3A PROM1 10.32

11 ITM2A COL6A3 PTPRK RBMS1 IMP-3 ALOX5 CD69 STCH FNDC3A PROM1 MARCKS 10.58

12 ITM2A COL6A3 PTPRK RBMS1 IMP-3 ALOX5 CD69 STCH FNDC3A PROM1 MARCKS ITGA6 10.58

13 ITM2A COL6A3 PTPRK RBMS1 IMP-3 ALOX5 CD69 STCH FNDC3A PROM1 MARCKS ITGA6 FRMD4B 10.85
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and should have subtle identifiable genetic abnormali-
ties [8, 28]. There are strengths and limitations to our 
study compared with other attempts to develop or refine 
risk classification. First, this classifier is similar to one 
we previously constructed, and it can also take a single 
sample and make a prediction based solely on the relative 

expression ranks among the marker genes without con-
sulting the signal distribution of other parallel-processed 
samples. This characteristic is not only suitable for deal-
ing with brand new clinical ALL samples but also applies 
to analyzing a large number of samples for scientific 
research. Second, our classifier is thus far a relatively 
rapid, classifiable method using the gene expression pro-
file of pediatric ALL, which fulfills precisely the urgent 
need for clinical classification and reasonable treatment. 
However, one potential limitation to our work is that only 
the most common 7 subtypes with current clinical rel-
evance are covered, and not all novel recurrent cytoge-
netic abnormalities of pediatric ALL were observed in 
our cases, especially some relatively rare but significant 
genetic alterations such as IKZF1 deletions, intrachro-
mosomal amplification of chromosome 21 (iAMP21), 
low hypodiploidy (30–39 chromosomes), JAK2 muta-
tions, fusion genes involving ZNF384, CRLF2 rearrange-
ments, and the MEF2D-BCL9 fusion gene [18, 29–33]. 
Further work is required to enlarge the sample size and 
build a comprehensive classifier.

The AUC of the ROC curve of our current clinical 
risk stratification was only 0.7040 in this study, perhaps 
not ideal because individual treatment was carried out 
according to CCLG-2008 risk stratification. High-risk 
children may not appear with a dismal prognosis, includ-
ing ALL relapse, SMNs and death. However, the diag-
nostic efficacy of clinical risk stratification remains to 
be further improved. As expected, the 10 marker gene 
expression profile was able to predict treatment outcome 
more precisely than current clinical risk stratification. 

Fig. 5  The prognostic significance of 10 marker genes in 378 pediatric ALL patients. a Event-free survival. b Overall survival

Fig. 6  Comparison of the prognostic predictive value of risk 
stratification in 378 children with ALL. The AUC for clinical risk 
stratification and gene expression-based risk stratification were 
0.7040 and 0.8191, respectively
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This 10 marker gene expression-based risk stratifica-
tion defines a large (95.8%) subset of patients who have 
an excellent outcome (5-year EFS rates exceeding 90%). 
Only 4.2% of patients were classified as PR based on the 
marker gene expression profile. The EFS of PR patients 
was less than 20%, significantly inferior to GR patients. 
Further improvements in the treatment of pediatric 
ALL cannot be measured only in terms of relapse rate 
and death toll [29]. Instead, reducing the frequency and 
severity of long-term toxicities without adversely affect-
ing cure rates is becoming the major focus of treatment 
[34]. Hence, future treatment strategies for most patients 
with an excellent outcome should focus on deintensi-
fication to avoid side effects. For extremely high-risk 
children, more intensified treatment, hematopoietic 
stem-cell transplantation, and molecular-targeted ther-
apy may improve their prognosis [35]. Further work is 
required to follow-up on all the patients, validate the new 
risk stratification on a completely independent cohort of 
patients and optimize the therapeutic regimen.

Conclusion
In conclusion, we integrated a one-step multiplex RT-
PCR assay and an UDG enzyme-based anti-contamina-
tion system into the original AFA technique. It serves as 
a convenient and reliable classification and risk stratifica-
tion. It may add a new layer to current diagnostic classifi-
cation and could offer a reliable platform for patients who 
lack access to current state-of-the-art diagnostic work-
up. Future refinements need to include additional sig-
natures for prognostically important subsets of patients 
with ALL.

Additional file

Additional file 1: Table S1. Clinical features of pediatric ALL cases for 
bone marrow samples. Table S2. Primers of the marker genes in the 
improved AFA multiplex assay. Table S3. Prediction results for 219 iAFA 
samples. Table S4. Parameter estimation of the optimal prediction model. 
Table S5. Twenty-seven children in the previous 160 ALL cases with 
dismal prognosis.

Abbreviations
AFA: advanced fragment analysis; AICc: corrected Akaike’s information 
criterion; ALL: acute lymphoblastic leukemia; AUC​: area under the curve; BIC: 
Bayesian information criterion; BM: bone marrow; CCLG: China Children’s Leu-
kemia Group; EFS: event-free survival; GR: good-risk; iAFA: improved advanced 
fragment analysis; ID: initial diagnosis; MRD: minimal residual disease; OS: 
overall survival; PR: poor-risk; SMNs: second malignant neoplasms; UDG: uracil-
DNA glycosylase.

Table 3  Comparison of  common clinical characteristics 
according to  the  10 marker gene expression-based risk 
groups

a  Event: ALL relapse, second malignant neoplasms (SMNs) or death

Variable/category Gene expression-based risk 
group

χ2 P value

GR group n (%) PR group n (%)

Total number of 
patients

362 (95.8) 16 (4.2)

Age (year)

 ≥ 10 41 (11.3) 2 (12.5) 6.75 0.031

 1–10 316 (87.3) 12 (75.0)

 < 1 5 (1.4) 2 (12.5)

Gender

 Male 229 (63.3) 9 (56.2) 0.32 0.570

 Female 133 (36.7) 7 (43.8)

WBC (× 109/l)

 ≥ 50 × 109/l 72 (19.9) 12 (75.0) 23.83 < 0.001

 < 50 × 109/l 290 (80.1) 4 (25.0)

Immunophenotype

 T-ALL 29 (8.0) 7 (43.8) 18.76 < 0.001

 B-ALL 333 (92.0) 9 (56.2)

Chromosome abnormalities in B-ALL

 BCR-ABL1 20 (6.0) 6 (66.7) 31.22 < 0.001

 E2A-PBX1 27 (8.1) 0

 TEL-AML1 109 (32.7) 0

 MLL rearrange-
ments

8 (2.4) 2 (22.2)

 Hyperdiploid > 50 107 (32.1) 0

 Other B-ALL 62 (18.6) 1 (11.1)

Prednisone response

 Good 351 (97.0) 11 (68.8) 23.53 < 0.001

 Poor 11 (3.0) 5 (31.2)

MRD at day 33

 Positive 12 (3.6) 3 (27.3) 9.04 0.003

 Negative 317 (96.4) 8 (72.7)

 Not evaluated 33 5

MRD at day 78

 Positive 7 (2.2) 2 (22.2) 6.69 0.010

 Negative 311 (97.8) 7 (77.8)

 Not evaluated 44 7

Clinical risk group

 Standard risk 87 (24.0) 0 30.83 < 0.001

 Intermediate risk 230 (63.5) 4 (25.0)

 High risk 45 (12.4) 12 (75.0)

Outcome

 Eventa 36 (9.9) 13 (81.3) 62.88 < 0.001

 Remission 326 (90.1) 3 (18.7)

https://doi.org/10.1186/s12935-019-0825-y
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