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Abstract 

Background:  Triple negative breast cancer (TNBC) is a specific subtype of breast cancer with a poor prognosis due 
to its aggressive biological behaviour and lack of therapeutic targets. We aimed to explore some novel genes and 
pathways related to TNBC prognosis through bioinformatics methods as well as potential initiation and progression 
mechanisms.

Methods:  Breast cancer mRNA data were obtained from The Cancer Genome Atlas database (TCGA). Differential 
expression analysis of cancer and adjacent cancer, as well as, triple negative breast cancer and non-triple negative 
breast cancer were performed using R software. The key genes related to the pathogenesis were identified by func-
tional and pathway enrichment analysis and protein–protein interaction network analysis. Based on univariate and 
multivariate Cox proportional hazards model analyses, a gene signature was established to predict overall survival. 
Receiver operating characteristic curve was used to evaluate the prognostic performance of our model.

Results:  Based on mRNA expression profiling of breast cancer patients from the TCGA database, 755 differentially 
expressed overlapping mRNAs were detected between TNBC/non-TNBC samples and normal tissue. We found eight 
hub genes associated with the cell cycle pathway highly expressed in TNBC. Additionally, a novel six-gene (TMEM252, 
PRB2, SMCO1, IVL, SMR3B and COL9A3) signature from the 755 differentially expressed mRNAs was constructed and 
significantly associated with prognosis as an independent prognostic signature. TNBC patients with high-risk scores 
based on the expression of the 6-mRNAs had significantly shorter survival times compared to patients with low-risk 
scores (P < 0.0001).

Conclusions:  The eight hub genes we identified might be tightly correlated with TNBC pathogenesis. The 6-mRNA 
signature established might act as an independent biomarker with a potentially good performance in predicting 
overall survival.
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Background
Triple-negative breast cancer (TNBC) is defined as a 
subtype of aggressive breast cancer, accounting for 
10–20% of all breast cancer cases [1]. TNBC subjects 
lack expression of the estrogen receptor (ER) and 
progesterone receptor (PR) and does not amplify the 
human epidermal growth factor receptor 2 (HER2) 
[2]. TNBC is more commonly diagnosed among young 
women and is more prone to relapse and visceral 
metastasis, compared with other breast cancer sub-
types [3–5]. Due to the absence of molecular targets, 
patients diagnosed with TNBC cannot receive endo-
crine or HER2 targeted therapy [6], increasing the dif-
ficulty of treatment for them [7]. Chemotherapy is still 
the main adjuvant treatment option for patients with 
TNBC [8]. TNBC remains a disease associated with 
poor prognosis and limited treatment options because 
many tumours are resistant to chemotherapy and rap-
idly relapse or metastasize after adjuvant therapy [9]. 
The identification of uniform targets can help achieve 
more effective and less toxic treatment. Hence, it is 
imperative and urgent to explore new therapeutic tar-
gets for TNBC [10].

Recently, many biomarkers have been developed for 
breast cancer. For example, CD82, a potential diag-
nostic biomarker for breast cancer [11]. Furthermore, 
seven lncRNAs (MAGI2-AS3, GGTA1P, NAP1L2, 
CRABP2, SYNPO2, MKI67, and COL4A6) detected 
to be associated with TNBC prognosis, can be prom-
ising biomarkers [12]. Advancements in microarray 
and high throughput sequencing technologies have 
provided efficient tools to help in developing more 
reliable biomarkers for diagnosis, survival and progno-
sis [13, 14]. However, the predictive power of a single 
gene biomarker may be insufficient. Emerging stud-
ies have found that gene signatures, including several 
genes, may be better alternatives [15]. To the best of 
our knowledge, the studies about multi-gene prognos-
tic signatures in TNBC are very few, and the functions 
and mechanisms of mRNAs in TNBC remain to be 
further explored. Thus, it is necessary to identify more 
sensitive and efficient mRNA signatures for TNBC 
prognosis.

In this study, we first identified differentially 
expressed genes (DEGs), using 1109 BC samples and 
113 matched non-cancerous samples from The Cancer 
Genome Atlas (TCGA). We identified ten hub genes 
associated with the cell cycle by functional enrich-
ment analysis, protein–protein interaction (PPI) net-
work and survival analysis. In addition, we developed 
a novel six-gene signature that could effectively predict 
TNBC survival.

Methods
Collection of clinical specimen data from the TCGA 
and GEO databases
The mRNA expression profiles and corresponding clini-
cal information of breast cancer patients were down-
loaded from the Cancer Genome Atlas (TCGA) and 
gene expression omnibus (GEO) databases. We collected 
1109 samples with gene expression data, containing 1109 
BC tumour tissues samples and 113 normal tissue sam-
ples from TCGA database. After removing patients with 
incomplete information, we were left with117 TNBC 
samples and 970 non-TNBC samples. We collected 
270 samples with 58 normal breast tissue samples and 
212 TNBC tissue samples from the GEO dataset of the 
NCBI GEO database (GSE31519, GSE9574, GSE20194, 
GSE20271, GSE45255, and GSE15852).

Identification of differentially expressed genes
First, we merged the RNA-sequencing (RNA-seq) data-
set files into a matrix file using the Perl language merge 
script. The gene name was converted from an Ensembl id 
to a gene symbol via the Ensembl database. Finally, the 
“edgeR” and “heatmap”R package were used to screen 
for differential genes between 117 TNBC and 970 other 
breast cancer patient subtypes and to map volcanoes.  
| log FC | > 1.0 and P < 0.05 were considered as the thresh-
old value.

Functional and pathway enrichment analysis
Gene Ontology (GO) analysis and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analysis of DEGs were performed using Database for 
Annotation, Visualization and Integration Discovery, 
DAVID version 6.8 [16]. P < 0.05 was chosen as the cut-
off criterion. GO is a set of unified vocabulary to describe 
molecular functions (MF), biological processes (BP) and 
cellular components (CC) of biology, whereas KEGG 
analysis was performed to aid understanding of the sig-
nalling pathways involving DEGs.

PPI network construction and modules selection
A PPI network of differential genes was constructed, 
using STRING version 10.5 to evaluate information on 
protein–protein interactions [17]. Using the Molecu-
lar Complex Detection (MCODE) plug-in in Cytoscape 
3.7.0, a visualization tool for integrating many molecular 
states such as expression level and interaction informa-
tion into a unified conceptual framework [18], the PPI 
network module with densely connected regions was 
obtained (Degree cut-off > 15) [19].
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Survival analysis
Clinical characteristic information for breast cancer was 
downloaded from TCGA. After removing samples with 
incomplete clinical overlapping DEG data, samples from 
117 TNBC patients were used for further analysis. Uni-
variate and multivariate Cox model analyses were used 
to identify candidate genes that were significantly associ-
ated with overall survival (OS). Based on the expression 
level and coefficient (β) of each gene, calculated by mul-
tivariate Cox proportional hazards regression analysis, a 
novel reliable prognostic gene signature was established. 
These TNBC patient samples were further divided into 
low- or high-risk groups based on the median risk score 
as the cut-off point. Kaplan–Meier curves were used to 
assess the prognostic value of the risk score. In addi-
tion, a time-dependent receiver operating characteristic 
(ROC) curve analysis, using the R package “survivalROC” 
was constructed to assess the predictive accuracy of the 
gene signature for time-dependent cancer death [20]. 

The area under the curve (AUC) was calculated to evalu-
ate the predictive ability of the gene signature for clinical 
outcomes.

Results
Identification of differentially expressed genes in TNBC
We used the “EDGR” and “Volcano” packages in the 
R software to identify differentially expressed genes 
between 1109 breast cancer tissue samples and 113 nor-
mal tissue samples from TCGA database (|logFC| ≥ 2 and 
adjusted P < 0.05), and screened out2816 up-regulated 
and 1095 down-regulated genes (Fig. 1a). We further ana-
lysed the DEGs between 117 TNBC and 970 non-TNBC 
breast cancer samples (|logFC| > 1 and adjusted P < 0.05), 
and identified a total of 1557 up-regulated genes and 2972 
down-regulated genes (Fig. 1b). In addition, we used the 
Venn diagram web-tool (http://bioin​forma​tics.psb.ugent​
.be/webto​ols/Venn/) to cross the two sets of differential 
genes and found 755 overlapped DEGs (Additional file 1: 

Fig. 1  Identification of differentially expressed genes (DEGs) and Venn diagram of DEGs in triple-negative breast cancer (TNBC). Volcano plot 
of all genes a between 1109 breast cancer tissue samples and 113 normal tissue samples, and b between 117 TNBC and 970 non-TNBC breast 
cancer samples from TCGA database. Red dots represent upregulated genes, and green dots represent downregulated genes. c Venn diagram for 
overlapping upregulated genes and downregulated genes in the two sets. T: Tumour; N: normal

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Table S1), including 590 up-regulated genes (Fig. 1c) and 
165 down-regulated genes (Fig. 1d).

GO term and KEGG pathway enrichment analysis of DEGs
GO function and KEGG pathway enrichment analysis 
were performed using DAVID to expound the biological 
functions of 755 DEGs (Additional file 2: Table S2). The 
BP results indicated that DEGs were mainly significantly 
enriched in mitotic nuclear division, sister chromatid 
cohesion, cell division (Fig. 2a). MF analysis showed that 
DEGs were significantly enriched in microtubule motor, 
chemokine and structural molecule activities (Fig.  2b). 
CC analysis showed that the DEGs were mainly enriched 
in the extracellular region, chromosome centromeric 
region and kinetochore (Fig.  2c). In addition, the most 
enriched KEGG pathways were PPAR signalling, AMPK 
signalling and oocyte meiosis pathways (Fig. 2d).

A cell cycle related module selection by PPI Network 
analysis
Protein interactions among overlapping DEGs were 
predicted with STRING tools. A total of 148 nodes and 
477 edges were displayed in the PPI network (Fig.  3) 
with PPI-enrichment P value < 1.0e−16. A PPI network 
for DEG subsets with a combined score > 0.9 was con-
structed to determine the candidate hub genes. Based 
on the PPI network of the subsets, a module with 
an MCODE score of 42 and 45 nodes was identified 

(Fig.  4a), and functional enrichment analyses showed 
that the genes in this module were mainly associated 
with the cell cycle and mitosis (Fig.  4b and Table  1). 
BP analysis showed that these genes were significantly 
enriched in microtubule-based movement, mitotic sis-
ter chromatid segregation, mitotic metaphase plate 
congression, cell division, and mitotic cytokinesis. For 
CC analysis, these genes were significantly enriched in 
the condensed nuclear chromosome outer kinetochore, 
kinetochore, and spindle midzone. MF analysis showed 
the genes were significantly enriched in ATP bind-
ing, microtubule motor activity, single-stranded DNA 
binding, and DNA replication origin binding. In addi-
tion, the results of KEGG pathway enrichment analysis 
suggested that the pathways were enriched as follows: 
cell cycle, progesterone-mediated oocyte maturation, 
and oocyte meiosis. As a result, the eight genes corre-
lated with cell cycle were selected as hub genes, which 
were CCNA2, CCNB2, CDC20, BUB1, TTK, CENPF, 
CENPA and CENPE (Table  2). Their expression levels 
were validated in 117 TNBC samples and 113 normal 
controls with breast cancer mRNA data from TCGA. 
As shown in Fig. 5, the eight mRNAs were significantly 
increased in TNBC compared with 113 normal control 
tissues (P < 0.001). We validated on the GEO database 
that the eight mRNA were also significantly increased 
compared with normal control tissues in TNBC 
(P < 0.001) (Additional file 3: Fig. S1).

Fig. 2  Top 10 functional enrichment analyses of the overlapping DEGs. a GO: Gene ontology; BP: biological process. b MF: molecular function. c CC: 
cellular component. d KEGG: Kyoto Encyclopedia of Genes and Genomes
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Using Cox proportional hazards regression model, we 
analysed the genes in the module, but no significant gene 
signature was established to predict overall survival.

Construction of a six‑mRNA signature for survival 
prediction
A total of 16 out of 755 DEGs were significantly corre-
lated with survival time (P < 0.05) and identified by the 
univariate Cox proportional hazards regression model 
(Additional file  2: Table  S3). Additionally, a prognos-
tic gene signature, composed of six genes, was devel-
oped after using the multivariate Cox proportional 
hazards regression model. The genes include trans-
membrane protein 252 (TMEM252), collagen type IX 

alpha 3 chain (COL9A3), proline rich protein BstNI 
subfamily 2 (PRB2), single-pass membrane protein 
with coiled-coil domains 1 (SMCO1), involucrin (IVL), 
and submaxillary gland androgen regulated protein 3B 
(SMR3B) (Table 3). Patients were divided into low- and 
high-risk groups by the median risk score (1.070) (risk 
score = expression of SMR3B × 1.2141 + expression of 
TMEM252 × 1.6187 + expression of PRB2 × 1.4416 +  
expression of PRB2 × 2.0147 + expression of SMCO1 ×  
1.1471 + expression of COL9A3 × − 0.6101). The six-
gene-based risk score distribution was presented in 
Fig.  6a. A highly significant difference in overall sur-
vival (OS) was detected between high- and low-risk 
groups (P < 0.0001) as shown in Fig.  6b. Moreover, the 

Fig. 3  PPI network of DEGs. DEGs, differentially expressed genes; PPI: protein–protein interaction
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survival rate of the high-risk group was significantly 
much lower than for the low-risk group as depicted 
by Kaplan–Meier analysis in Fig.  6c (P < 0.0001). Time 
dependent ROC curve revealed that the prognostic 
signature presented a good performance in survival 
prediction, as shown in Fig.  6d and that the AUC was 
0.929for 3  years OS and 0.902 for 5  years. Expression 
levels of the six genes in low- and high-risk groups are 
shown in Fig. 6e.

6‑mRNA signature act as an independent prognostic 
indicator
Using univariate and multivariate Cox regression analy-
ses, we investigated whether the prognostic values of the 
six mRNA were independent of clinicopathological fac-
tors. Univariate Cox regression model showed that the 
risk score, race, TNM stage, N status, M status, tumour 
status, and radiation were significantly related to the 
patients’ overall survival in patients with TNBC (Table 4). 

Fig. 4  The module identified in the PPI network of the DEGs. a A significant module selected from the PPI network. b Functional and pathway 
enrichment analysis of the DEGs in the module
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In addition, multivariate Cox analysis indicated that the 
risk score and N stage still had remarkable independent 
prognostic values, with P = 0.005 and 0.025, respectively 
(Table  4). These results indicate that the 6-mRNA risk 
score was an independent prognostic indicator that can 
effectively predict the prognosis of TNBC patients.

Discussion
TNBC is characterized as a complex and aggressive dis-
ease with poor survival rates compared with other sub-
types. Only 30% to 45% of TNBC patients achieve a 
complete pathological response and survival rates similar 
to other breast cancer subtypes [21]. The poor prognosis 

of patients diagnosed with TNBC is mainly due to a lack 
of effective targets for treatment. Therefore, there is an 
urgent need for more effective therapeutic targets to 
improve TNBC prognosis.

Misregulation of the cell cycle is a hallmark of cancer 
[22], disorders in mechanisms of cell cycle monitoring 
and proliferation cause tumour cell growth and tumour 
cell-specific phenomena. However, it remains unclear if 
misregulation of periodic mRNAs bears significance in 
TNBC patient pathogenesis. In this study, a total of 755 
DEGs involved in TNBC were screened out from TCGA 
database, including 590 up-regulated and 165 down-
regulated genes. We then built related PPI networks of 
these DEGs and identified a significant module related 
to cell cycle, including several key DEGs in the regula-
tory network of TNBC patients. Subsequently, we identi-
fied eight periodic core genes (CCNA2, CCNB2, CDC20, 
BUB1, TTK, CENPF, CENPA, and CENPE) in the PPI 
network with higher capacity for PPIs. Coincidentally, 
all of them were up-regulated genes in TNBC (Fig.  5). 
CCNA2 (CyclinA2) and CCNB2 (CyclinB2) are members 
of the cyclin family of proteins that play key roles in the 
progression of G2/M transition, and have been reported 
to be the risk factors for resistance and recurrence [23–
25]. Importantly, CCNA2, CCNB2, CDC20, BUB1, TTK, 
CENPA, and CENPE have been reported to be poten-
tial therapeutic targets for TNBC [26–29], and TTK 
inhibitors are currently being evaluated as anticancer 

Table 1  Functional and pathway enrichment analysis of the DEGs in module

BP: Biological process; CC: cellular component; DEGs: differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; MF: 
molecular function

Category Term Description Count P-value

BP term GO:0007018 Microtubule-based movement 6 9.15E−07

BP term GO:0000070 Mitotic sister chromatid segregation 4 1.81E−05

BP term GO:0007080 Mitotic metaphase plate congression 4 5.69E−05

BP term GO:0051301 Cell division 4 3.19E−04

BP term GO:0000281 Mitotic cytokinesis 3 0.001

CC term GO:0030496 Midbody 6 2.73E−06

CC term GO:0005871 Kinesin complex 5 8.61E−06

CC term GO:0051233 Spindle midzone 4 1.11E−05

CC term GO:0000942 Condensed nuclear chromosome outer kinetochore 3 2.29E−05

CC term GO:0000776 Kinetochore 4 4.57E−04

MF term GO:0005524 ATP binding 14 4.19E−07

MF term GO:0003777 Microtubule motor activity 5 9.01E−06

MF term GO:0016887 ATPase activity 4 0.001

MF term GO:0003697 Single-stranded DNA binding 3 0.006

MF term GO:0003688 DNA replication origin binding 2 0.020

KEGG pathway cfa04110 Cell cycle 8 4.13E−10

KEGG pathway cfa04914 Progesterone-mediated oocyte maturation 4 4.04E−04

KEGG pathway cfa04114 Oocyte meiosis 4 7.89E−04

Table 2  The eight hub genes correlated with the cell cycle

Gene Full name Degree Regulation

CCNA2 CyclinA2 26 UP

CCNB2 CyclinB2 23 UP

CDC20 Cell division cycle 20 25 UP

BUB1 BUB1 mitotic checkpoint serine 27 UP

TTK TTK protein kinase 15 UP

CENPE Centromere protein E 26 UP

CENPF Centromere protein F 20 UP

CENPA Centromere protein A 21 UP
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Fig. 5  Expression of the eight hub genes correlated with the cell cycle in TNBC (TCGA dataset). Expression values of genes are log2-transformed



Page 9 of 12Lv et al. Cancer Cell Int          (2019) 19:172 

therapeutics in clinical trials. These trends are highly 
consistent with our findings. However, there is no rele-
vant report on CENPF in relation to TNBC; CENPF may 
be related in patient pathogenesis and as a novel potential 
therapeutic TNBC target.

Clinical pathological features (Additional file  2: 
Table  S4) are the proper prognostic references for 
TNBC patients. However, recent studies have demon-
strated that clinical predictors are insufficient to pre-
cisely predict patient disease outcomes. The mRNA 
prognostic biomarker has the robust capacity of pre-
dicting the survival status of cancer patients. For exam-
ple, Papadakis et al. [30] confirmed that mRNA BAG-1 
acts as a biomarker in early breast cancer prognosis, 
Zheng et al. [31] found that CBX2 is a potential prog-
nostic biomarker and therapeutic target for  breast 
cancer.

However, it is insufficient as the single gene marker to 
independently predict patient survival. Because a single 
gene is easily affected by various factors, it is difficult to 
provide a stable and effective prediction effect. There-
fore, we used Cox model analysis to construct a gene 
signature that includes several genes to enhance prog-
nostic prediction efficiency and sensitivity to TNBC. It 
has been widely confirmed that combined genetic mod-
els are superior to previous single gene markers in dis-
ease prediction and diagnoses [32].

In this study, we constructed a six-mRNA 
(TMEM252, PRB2, SMCO1, IVL, SMR3B and 
COL9A3) signature for efficient and sensitive progno-
sis of TNBC patients. A previous study reported that 
COL9A3 potentially contributes to the pathogenesis of 
canine mammary tumours [33]. In another study, using 
RNA-seq to identify diabetic nephropathy, the expres-
sion of TMEM252, increased in diabetic patients rela-
tive to wild-type controls [34], but we have not found 
any relevant studies of TMEM252 in tumours. PRB2 is 
a key factor in regulating ER gene expression. In MCF-7 

cells, PRB2 can interact with ER-beta to interfere with 
ER-beta shuttle between nuclear and cytoplasm [35], 
whereas ER-α gene inactivation is mediated by PRB2 
in ER-negative breast cancer cells [36]. These find-
ings suggest that PRB2 may be considered a promising 
target for TNBC therapy. Only one NCBI article was 
found to study the function of the single-pass mem-
brane protein with coiled-coil domains 1 (SMCO1), 
which may contribute to hepatocyte proliferation and 
have the potential to promote liver repair and regen-
eration [37]. However, we have not found any research 
on SMCO1 in breast cancer; we speculate that it may 
also play an important role in breast cell proliferation. 
Additionally, we are not aware of any specific study on 
SMR3B in tumours, but SMR3B amplification has been 
detected in osteopontin (OPN)-positive hepatocel-
lular carcinoma [38]. Involucrin (IVL), a component 
of keratinocyte crosslinked envelope, is found in the 
cytoplasm and crosslinked with membrane proteins by 
transglutaminase. This gene is mapped to 1q21, among 
calpactin I light chain, trichohyalin, profillaggrin, loric-
rin, and calcyclin. However, to our knowledge, there is 
no research on IVL in TNBC.

As far as we know, this is the first established 6-mRNA 
signature for the prediction of OS time in TNBC, and we 
have demonstrated the independent prognostic value of 
this 6-mRNA signature in TNBC.

Conclusions
In summary, through bioinformatic analysis, we identi-
fied eight hub genes, correlated with cell cycle, that might 
be tightly correlated with TNBC pathogenesis. Besides, 
we constructed a 6-mRNA signature which may act as a 
potential prognostic biomarker in patients with TNBC, 
and the prognostic model presented a good perfor-
mance in OS prediction at 3 and 5 years. These findings 
will provide some guidance for future TNBC prognosis 

Table 3  Prognostic values for the six genes in 117 TNBC patients that make up the prognostic gene signature

HR: Hazard ratio; CI: confidence interval

Gene symbol Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value Coefficient

SMR3B 1.125 (1.031–1.228) 0.0080 1.2141 (1.085–1.359) 0.0007 0.1940

TMEM252 1.452 (1.047–2.014) 0.0255 1.6187 (1.052–2.492) 0.0286 0.4816

PRB2 1.263 (1.020–1.564) 0.0318 1.4416 (1.117–1.860) 0.0049 0.3657

SMCO1 1.848 (1.080–3.162) 0.0249 2.0147 (1.176–3.451) 0.0107 0.7005

IVL 1.135 (1.007–1.281) 0.0387 1.1471 (0.980–1.343) 0.0878 0.1373

COL9A3 0.789 (0.649–0.960) 0.0178 0.6101 (0.464–0.802) 0.0003 − 0.4942
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Fig. 6  Prognostic gene signature of the six genes in 117 TNBC patients. a Risk score distribution; b patients’ survival status distribution; c Kaplan–
Meier curves for low-risk and high-risk groups; d time-dependent ROC curves for predicting OS in TNBC patients by the risk score; e expression of 
the six genes in low- and high-risk groups (TCGA dataset). Gene expression values are log2-transformed
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and molecular targeted therapy. However, our research 
is based on data analysis, and biological experiments are 
urgently needed to verify the biological roles of these 
predictive mRNAs in TNBC.

Additional files

Additional file 1: Table S1. Differential expressed mRNAs between 1109 
breast cancer tissue samples and 113 normal tissue samples. Differential 
expressed mRNAs between 117 TNBC and 970 non-TNBC breast cancer 
samples. 590 up-regulated overlapped DEGs and 165 down-regulated 
overlapped DEGs.

Additional file 2: Table S2. Functional and pathway enrichment analysis 
of DEGs in TNBC. Table S3. Prognostic value of the 16 genes by univariate 
Cox regression. Table S4. Clinical pathological parameters of patients with 
TNBC.

Additional file 3: Fig. S1. Validation of the 8 hub genes correlated with 
cell cycle in GEO dataset. Expression values of genes are log2-transformed.
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