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Abstract 

Background:  Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and 
histological subtypes with different clinical characteristics. The combination of DNA methylation and gene expression 
data can improve the classification of tumor heterogeneity, by incorporating differences at the epigenetic level and 
clinical features.

Methods:  In this study, we identified the prognostic methylation and constructed specific prognosis-subgroups 
based on the DNA methylation spectrum of RCC from the TCGA database.

Results:  Significant differences in DNA methylation profiles among the seven subgroups were revealed by consistent 
clustering using 3389 CpGs that indicated that were significant differences in prognosis. The specific DNA methylation 
patterns reflected differentially in the clinical index, including TNM classification, pathological grade, clinical stage, and 
age. In addition, 437 CpGs corresponding to 477 genes of 151 samples were identified as specific hyper/hypometh-
ylation sites for each specific subgroup. A total of 277 and 212 genes corresponding to DNA methylation at promoter 
sites were enriched in transcription factor of GKLF and RREB-1, respectively. Finally, Bayesian network classifier with 
specific methylation sites was constructed and was used to verify the test set of prognoses into DNA methylation 
subgroups, which was found to be consistent with the classification results of the train set. DNA methylation-based 
classification can be used to identify the distinct subtypes of renal cell carcinoma.

Conclusions:  This study shows that DNA methylation-based classification is highly relevant for future diagnosis and 
treatment of renal cell carcinoma as it identifies the prognostic value of each epigenetic subtype.
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Background
Renal cell carcinoma is the most lethal urologic malig-
nancies and accounts for 3% of all malignant tumors. In 
recent decades, the incidence of RCC has been rising 

due to the advances in ultrasound, computed tomogra-
phy and magnetic resonance imaging used for the early 
detection of renal tumors. Although recent molecular 
targeting therapy has improved the overall survival of 
RCC patients, long-term prognosis remains precarious 
[1, 2]. Previous, pathological assessments determined the 
risk of recurrence and differentiation in RCC patients, 
thus guiding the diagnosis and treatment of recurrent 
diseases. The classification and diagnostic criteria of RCC 
are indeterminate and have a high interobserver bias. As 
a result, 30% of patients develop metastatic disease after 
treatment, with a median survival period of 1  year [3]. 
There are growing pieces of evidence that even on the 
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basis of the same RCC histological subtype, there is an 
inconsistent representation of sets of histologically and 
molecularly heterogeneous diseases [4]. With further 
understanding of the morphology, immunohistochemis-
try, molecular and epidemiological features of RCC, the 
World Health Organization (WHO) revised the classifi-
cation of renal cell tumors in 2016. It mainly focuses on 
the molecular pathological features of renal cell tumors 
[5]. To this end, a more detailed and comprehensive 
understanding of the molecular classification character-
istics of RCC is required.

Currently, the analysis of molecular characteristics 
has shown that the RCC has obvious specificity. Since 
molecular subtype supplements histopathology, invalua-
ble insights can be drawn from integrated classifications, 
which could refine and impact the future application of 
precision-focused, personalized clinical management of 
renal cell carcinoma [6]. Ricketts et al. performed a com-
prehensive genomic and phenotypic analysis on RCC 
in order to identify the common and specific molecular 
characteristics and laid the foundation for the develop-
ment of subtype-specific treatment and management 
strategies for these cancer patients [7]. Wu et  al. used 
an unsupervised Consensus Clustering algorithm to 
identify three distinct molecular subtypes of clear renal 
clear cell carcinoma (the most common subtype) on the 
basis of hierarchical clustering. Subtypes with poor prog-
nosis were irregularly up-regulated in focal adhesion 
and cytoskeleton-related pathways, and the expression 
of core genes, including LIMK1, COL5A1, MMP9 and 
CCL26, were negatively associated with the prognosis of 
the patients [8]. To produce a characteristic biomarker 
to determine the high and low risk of clear renal cell car-
cinoma, Samira et al. developed a 34 genes subtype pre-
dictor that divided 54 patients with metastatic RCC into 
good and poor follow-up groups. A model containing 
subtype-inclusive model was established to analyze the 
survival outcome of the patients [9, 10].

DNA methylation, one of the most common epige-
netic modifications, plays a crucial role in the regu-
lation of the structure and expression of genes and is 
involved in a variety of biological processes. In addi-
tion, changes in DNA methylation are inextricably 
linked to all aspects of cancer genomics and have been 
shown to be closely related to changes in the gene 
expression, sequence and copy number [11]. In addi-
tion, DNA methylation often occurs on the C (cytosine) 
of 5′-CpG-3′ and as a result generates 5-methylde-
oxycytidine (5mC). DNA methylation has become an 
important research topic in epigenetics and epigenom-
ics because of the close relationship between aberrant 
DNA methylation and physio-pathologic mechanisms 
underlying an array of human diseases, especially CpG 

island methylation. CpG-rich regions (CpG islands) are 
found in about 40–50% of promoter regions of human 
genes. Abnormal CpG island hypermethylation of 
tumor suppressor genes and hypomethylation of onco-
genes are vital in carcinogenesis [12, 13]. Therefore, as 
a promising molecular marker of RCC, abnormal DNA 
methylation appears in early detection, prognosis pre-
diction, molecular classification and therapeutic targets 
[14]. Previous studies have shown that the increase in 
promoter hypermethylation frequency is associated 
with higher stage and grade in clear cell RCC, accord-
ing to The Cancer Genome Atlas (TCGA) Research 
Network for cancer genome maps [15]. Ana et al. iden-
tified groups such as OXR, MST1R and HOXA9 pro-
moter methylation that positively identified renal cell 
tumors and differentiation of subtypes. In addition, the 
groups may improve risk stratification in patients with 
small renal masses, helping clinicians to determine the 
best treatment strategy [16]. Gabriel et  al. found that 
the DNA methylation profiles of RCC subtypes can be 
divided into two main epigenetic clusters: one consists 
of clear-cell RCC, papillary RCC, mucinous and spin-
dle cell carcinomas and translocation RCC; the other 
includes oncocytoma and chromophobe RCC [17]. 
Moreover, an epigenetic chart of the 56 genes that iden-
tify the ontogeny of renal cells can predict the results 
of clear cell RCC. However, their classification may not 
be detailed enough and has not yet been fully tested for 
specific sites related to each category.

In this study, our aim is to fully identify the entire 
DNA methylated profiles of RCC from the TCGA data-
base in order to identify the biological and clinical-
related subgroups. Our datasets and the accompanying 
classification schemes may help to identify new mark-
ers or molecular subtypes of RCC in order to accurately 
subdivide patients with renal cell carcinoma. Further-
more, the RCC classification based on integrated pro-
filing combined with histology and DNA methylation 
profiling analysis provides a more accurate prediction 
of clinical behavior compared to the histology alone 
and provides higher risk assessment accuracy for indi-
vidual patients. In addition to the identification of clin-
ical-related groups and a new classification basis, our 
datasets can provide an in-depth understanding into 
the pathogenesis of RCC and guide accurate decision-
making process during diagnosis and treatment.

Methods
Date preprocessing and DNA methylation loci in RCC​
A total of 485 RCC samples containing DNA methyla-
tion data generated from the Illumina Infinium Human-
Methylation450 Bead-Chip array of TCGA [18] were 
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downloaded by UCSC Cancer Browser [19] on June 25, 
2018. RCC samples with more than 30  days of follow-
up were selected to match the methylation profile. Ulti-
mately, 307 RCC samples were selected for methylation 
analysis. Methylation level of probes with missing data in 
more than 70% of the samples were removed. Based on 
the discovery of cross-reactive probes and polymorphic 
CpGs by the Illumina Infinium HumanMethylation450 
microarray, CpG sites of cross-reactive probes in the 
genome were removed. The other unidentified probes 
were estimated using the k-nearest neighbor (KNN) 
imputation approach in the sva R package [20]. Unsta-
ble genomic sites, which contained CpGs in sex chro-
mosomes and single nucleotide polymorphisms were 
discarded. Finally, 208,022 CpG sites were obtained for 
further analysis. This study was approved by the Clinical 
Research Ethics Committee of College of Medicine, Zhe-
jiang University.

Next, 307 RCC samples were randomly divided into 
two groups, a train group and a test group. In both 
groups, the age distribution, clinical stage, follow-up 
time and mortality were similar. Finally, 307 RCC sam-
ples were divided into 153 experimental samples in train 
group and 154 verified samples in test group.

Univariate COX model and multivariate COX proportional 
risk regression model analysis
To obtain a specific prognostic subgroup of molecu-
lar subtypes of RCC, CpG sits of DNA methylation that 
affect the survival were used as the classification feature. 
Firstly, based on the methylation level of each CpG site, 
the survival coxph function R package was used to estab-
lish a univariate COX proportional risk regression model. 
Next, significant CpG sites were selected for multivari-
ate COX proportional risk regression model. Moreover, 
the TNM classification, pathological grading, and clinical 
staging were used as covariates to identify independent 
prognostic factors. For each CpG site, the formula for 
multivariate COX proportional risk regression model 
was:

where h (t, x)i is a risk function associated with covariates 
at time t (TNM classification, pathological grade, clini-
cal stage). Methylationi is the vector of the level of CpGi 
methylation in the sample, TNM, grade and stage repre-
sent their respective vector values. β stands for regression 
coefficient of methylation, TNM, grade, and stage. The p 
values of the Cox regression coefficients were calculated 

h(t, x)i = h0(t) exp(βmethylationmethylation
i

+ βTNMTNM+ βgradegrade+ βstagestage)

and corrected by multiple test correction using the 
method of Benjamini and Hochberg false discovery rate.

Selection of molecular subtypes by consistent clustering
The K-means clustering algorithm in the ConcensusClus-
terPlus R packet [21] was used for consistent clustering 
to determine tumor subgroups based on the most vari-
able CpG sites. The K-means clustering algorithm was 
designed to classify a pre-specified dataset into k clusters. 
This algorithm defined “consensus” clustering by measur-
ing the stability of clustering results from a given cluster-
ing method applied to a random subset of data. At each 
iteration, 80% of the tumor samples were selected, the 
K-means algorithm and Euclidean square distance meas-
ure were used for groups of k ranging from 2 to 20. More 
than 100 iterations were carried out and the stability of 
each cluster was determined. The maximum number of 
clusters with at least 90% cluster consensus were chosen.

The optimal cluster number was determined by the 
cumulative distribution function and the delta area plot. 
We considered the optimal number of clusters should be 
that the consistency of the cluster was relatively high, the 
coefficient of variation was relatively low, and the area 
under the CDF curve did not increase significantly. The 
number of categories was selected based on the relative 
non-significant change in the area under CDF curve. The 
pheatmap R package was used to construct the consensus 
cluster heatmap.

Analysis of the clinical characteristics of molecular 
subtypes
The Kaplan–Meier method was used to construct the 
overall survival curve for RCC subgroups defined by 
DNA methylation spectrum and the statistical differ-
ences between clusters were determined by the log-rank 
test. R Bioconductor survival package was used for sur-
vival analysis, and Chi square test was used to compre-
hensively analyze the association between clinical and 
biological characteristics of DNA methylation clusters.

Identification of specific DNA methylation markers 
and transcription factor enrichment of specific methylation 
site annotated genes
To identify the molecular types of methylation-based 
RCC, the Epidiff software was applied to reveal spe-
cific CpG sites that defined specific DNA methylation. 
EpiDiff is an integrated software platform that provides 
bioinformatic analysis on quantitative differential chro-
matin modification region (QDCMR), quantitative dif-
ferentially methylated region (QDMR), and quantitative 
differential expressed gene (QDEG). The free platform and 
free species nature of EpiDiff makes it suitable for unprec-
edented epigenome profiles described by high-throughput 
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experimental techniques using microarrays and next-gen-
eration sequencing [22]. To identify specific hypermethyla-
tion or hypomethylation of DNA CpG sites within specific 
RCC subgroups, QDMR software (http://bioin​fo.hrbmu​
.edu.cn/qdmr) was used to quantify methylation differ-
ences and identify differentially methylated regions in 
multiple RCC samples [23]. Next, the significant CpG sites 
across the classified subgroups were used to find specific 
CpGs in each subgroup. For each subgroup, the average 
DNA methylation level for each sample with significant 
CpGs was calculated and the matrix with 3389 × 6 dimen-
sions was input into the QDMR. The threshold of standard 
deviation parameter was set to 0.04.

DNA methylation at the promoter site can promote or 
inhibit gene expression. To explore the mechanism of the 
specific CpG sites, the transcription factor (TF) enrich-
ment analysis of the corresponding genes at the promoter 
region of specific CpG sites was carried out by g:Profiler. 
G:Profiler is a simple, user-friendly Web interface with 
powerful visualization abilities to capture gene ontologies, 
pathways, or transcription factor binding sites, or even 
individual gene levels [24]. The genes corresponding to the 
TF enrichment promoters were displayed by Cytoscape.

Construction of Bayesian classifier and verification of test 
set data
In order to verify the distinguished ability of specific CpG 
sits, specific CpG sites which were identified by Epidiff 
software were constructed by Bayesian classifier. The sam-
ples in the test set were assigned to the corresponding sub-
groups using this classified model. The performance of the 
model was verified by tenfold cross-validation method, and 
the accuracy of the model was evaluated using accuracy 
rate. The pROC packet in R Program was used to establish 
a receiver Operation characteristic Curve (ROC). To verify 
the stability and reliability of the model, a prognostic model 
similar to the train group was used to assign a class label to 
154 test samples.

Results
Characteristics of RCC samples evaluated for DNA 
methylation
The DNA methylation profiles of RCC samples from 
the TCGA database were used to cluster the RCC prog-
nostic molecular subgroups. In total, 208,022 CpG 
sites were successfully screened for methylation in 
307 RCC samples. For each of the CpG that sites in the 
train set, univariate Cox proportional hazards regres-
sion model was applied to each methylation site and 
the survival data recorded. 52,878 significant CpG 
sites were identified that could influence patient sur-
vival (p < 0.05). T (p = 1.32483e−06), N (p = 0.00095), M 
(p = 1.32483e−06), Stage (p = 1.787979e−06), and Grade 

(p = 6.581784e−07) were also found to be significant 
factors based on the univariate Cox proportional risk 
regression models analysis. Then, 52,878 significant CpG 
sites were introduced into the multivariate Cox propor-
tional risk regression models, including TNM classifica-
tion, pathological grade, clinical stage as covariates to 
investigate the independent prognostic factors. Finally, 
we got 3389 significant CpG sites for further prognosis 
subgroups analysis.

Consensus clustering of DNA methylation of RCC identified 
prognosis subgroups
In order to screen distinct DNA methylation prognos-
tic molecular subtypes of RCC, consistent clustering of 
3389 significant CpG sites were constructed. Then, the 
average cluster consensus and the coefficient of variation 
among clusters were calculated for each category num-
ber to obtain the optimal number of classes. According 
to the CDF curve, the clustering result is relatively stable 
when the cluster is 7 or 8 (Fig. 1a). To further observe the 
CDF delta area curve, it can be seen that cluster has a sta-
ble clustering result when it is selected as 7, as the area 
under the CDF curve begins to stabilize after 7 categories 
(Fig. 1b). Thus, 7 was regarded as the optimal number of 
categories for further analysis. According to the result 
of consistent clustering, we selected the stable cluster-
ing result of 7 to construct a consensus matrix graph, 
which was a better visualization tool in the assessment 
of the composition of clustering and number. The color-
coded heatmap is seen to correspond to the consensus 
matrix, 153 RCC samples were assigned to 7 categories. 
Additionally, a color-coded heatmap characterized by 
blue blocks along the diagonal on a white background 
revealed a well-defined 7-block structure (Fig.  2a). Fur-
ther, the heatmaps that corresponded to 3389 CpG sites 
were generated by the heatmap function with DNA 
methylation classification with TNM classification [25], 
pathological grade [26], clinical stage [27], and age [28] 
as the annotations. It can be seen that the abundance of 
most CpG sites in each sample is low. However, there 
were obvious differences found in DNA methylation pro-
files among these 7 categories (Fig. 2b).

The Kaplan–Meier plot showed the survival of RCC 
defined by the methylation-based consensus cluster-
ing had a significant difference amount the 7 clusters 
(Fig.  3a). Among them, clusters 1 and 2 had the best 
prognosis, whereas clusters 3 and 7 had the worst prog-
nosis. Understanding the TNM classification, patho-
logical grade, clinical stage, and age can aid clinicians 
in choosing the best treatment for patients in their cur-
rent condition and predict the prognosis. Thus, we 
analyzed the distribution of TNM classification, patho-
logical grade, clinical stage, and age in the prognosis of 
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7 molecular subtypes (Fig.  3b–g). Some of the DNA 
methylation subgroups reflected differently in the TNM 
classification, pathological grade, clinical stage and age 

subtypes, whereas different DNA methylation sub-
groups were also found in the same TNM classification, 
pathological grade, clinical stage and age subtypes. These 
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results demonstrated that patients in different TNM clas-
sification, pathological grade, clinical stage and age sub-
types share the same DNA methylation characteristics 
and specific subtypes of TNM classification, pathologi-
cal grade, clinical stage and that age contained different 
DNA methylation characteristics. Also, we found that 
the DNA methylation status represents a more elabo-
rate classification analysis for RCC and also that DNA 
methylation can serve as a commendable biomarker for 
RCC classification. For example, clusters 1 and 6 had low 
invasiveness (Fig. 3b), clusters 3 and 7 had high relevance 
with lymphatic metastasis and distant metastasis (Fig. 3c, 
d), and clusters 3 and 7 connected with high pathologi-
cal grade and high clinical stage (Fig. 3e, f ). This gave a 
detailed description of the reason for the clusters 3 and 7 
having the worst prognosis, as clusters 3 and 7 were more 
likely to metastasize and develop into a higher degree 
of malignancy, even though they had the same underly-
ing aetiology, such as DNA methylation abnormalities. 
Also, it might explain the reason for the low TNM clas-
sification (such as T1 in cluster 3, primary tumor which 
is limited to kidney, maximum diameter ≤ 7  cm) still 
had higher degree of malignancy (such as G4 in cluster 
3, tumor with low differentiation or no differentiation) 
and had higher chance of deterioration (such as stage 4 in 
cluster 3, tumor disease in terminal stage), as DNA meth-
ylation changes in carcinogenesis. These results indicate 

that these DNA methylation profiles can help to under-
stand the etiology of RCC and, most importantly, they 
demonstrated clinically applicable biomarkers for use in 
the early detection of kidney cancer.

Clinical and biological characteristics with DNA 
methylation clustering
Next, we investigated whether the DNA methylation 
clustering of RCC was relevant to clinical and biologi-
cal characteristics. The clinical information of RCC 
was obtained from the TCGA Database. Then, we 
analyzed the clinical characteristics of tumor/normal, 
TNM classification, pathological grade, clinical stage, 
age, and gender in each group. The Chi square test 
was used to analyze the global associations between 
clinical and biological characteristics of DNA meth-
ylation clustering. Table  1 shows the tumor/normal, 
TNM classification, pathological grade, clinical stage, 
age was significantly different among the DNA meth-
ylation prognosis clusters (p < 0.05), but no significant 
difference was detected in gender (p > 0.05). This find-
ing implied there was evidence of a strong association 
between the DNA methylation prognosis clustering 
and the clinical and biological characteristics.
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Identification of specific DNA methylation markers 
and corresponding genes
To find the specific DNA methylation, CpGs were spe-
cifically hypermethylated or hypomethylated within 

particular RCC subgroups. We used EpiDiff software to 
identify the specific methylation sites and the QDMR 
software to quantify the methylation difference. Even-
tually, 437 of 3389 methylation sites were identified as 
cluster specific methylation sites. Specific hyper/hypo-
methylation CpG sites for each DNA methylation cluster 
are represented in Fig. 4a, which depicts cluster 4 having 
the largest number of specific methylations CpGs, most 
of which are hypomethylated. While others have a small 
number of specific methylations CpGs, most of them 
are hypermethylated. Nevertheless, no specific methyla-
tion CpGs was detected in cluster 6. Furthermore, the 
heatmap corresponding to the 437 specific methylation 
sites was constructed (Fig.  4b). The TNM classification, 
pathological grade and clinical stage, corresponding to 7 
clusters of 437 specific methylation sites were evidently 
different, which suggested these were DNA methylation 
markers for the different subgroups in RCC.

We annotated these specific methylation sites for 
gene annotation and 437 specific methylation sites cor-
responding to 477 genes were identified. Besides, we 
explored the gene expression within the particular DNA 
methylation subgroups. Finally, the expression values 
in 151 samples of the train set for 436 of the 477 genes 
were obtained. Further, the heatmap for the expression 
profile of specific methylation site annotated genes was 
depicted (Fig. 4c). It can be seen that there were different 
expression patterns of these subgroups at the standard 
of expression profile, which indicated the specificities of 
these genes were consistent with the DNA methylation 
level and the gene expression level.

Table 1  The associations between  clinical and  biological 
characteristics with  DNA methylation clustering on  Chi 
square test
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TF enrichment of specific methylation site annotated 
genes
To observe the mechanism of the 437 specific methyla-
tion sites, the genes, corresponding to the specific meth-
ylation sites in the promoter region were subjected to 
TF enrichment analysis. It was found that these genes 
were enriched with two transcription factors, GKLF and 
RREB-1 with significant false discovery rate (FDR) values 
of 0.00555 and 0.00173, respectively (Fig. 5). Besides, 277 
genes were enriched with these two TFs, of which 212 
and 221 were enriched with GKLF and RREB-1, respec-
tively. Previously, many researchers have revealed that 
GKIF is a putative tumor suppressor gene epigenetically 
silenced in RCC by promoter CpG methylation [29–31]. 
These outcomes suggest that the genes that correspond 
to the 437 specific methylation sites in the promoter 
region of enrichment of GKLF and RREB-1, have poten-
tial values of prognosis and therapy for RCC.

Validation of the prognosis prediction model
In order to verify the ability of discrimination of specific 
CpG sites for each prognosis subgroups in the set, we 
constructed a Bayesian classifier to determine the func-
tion of the prognosis prediction model, with 437 specific 
CpG sites as characters. The accuracy of the prognosis 
prediction model based on the train set was 81.7%. The 
area under the ROC curve reached 0.9455 (Fig. 6a). Then, 
we employed the prognosis model to predict cases in the 

test set. We extracted the expression profile data of 437 
specific CpG sites from the test set and put them into a 
prognosis model for verification. The number of statistics 
in the test set was assigned to a similar class correspond-
ing to the train set. Also, the heatmap corresponding to 
the 437 specific CpG sites in the test set was generated 
by the heatmap function using the prognosis model 
constructed from the train set. The results showed that 
there were also significant differences in the methylation 
patterns between the 7 categories of the prognosis pre-
diction model, which was consistent with the train set 
(Fig. 6b). Moreover, the survival analysis of the 7 clusters 
in the test set showed that they were a significant prog-
nostic difference (p < 0.00068) (Fig. 6c). The prognosis of 
cluster 2 was significantly better than the others, which is 
consistent with the train set.

Next, we analyzed the distribution of TNM classifi-
cation, pathological grade, clinical stage, and age in the 
prognosis of 7 molecular subtypes. A similar method as 
the train set was used and the relative consistent results 
were obtained (Fig. 7). In particular, clusters 1 and 4 had 
low invasiveness (Fig. 7a), clusters 3 and 6 had high rel-
evance with lymphatic metastasis (Fig. 7b), clusters 3 and 
7 had high relevance with distant metastasis (Fig. 7c), and 
clusters 3 and 7 connected with high pathological grade 
and high clinical stage (Fig. 7d, e). These results further 
illustrate the predictive accuracy of our model and the 
stability of its features.
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To examine whether the prognoses of clustering in the 
test set was similar to the corresponding clustering in 
the train set, we compared the prognostic relationship of 
7 clusters between the test set and train set. There was 
no significant difference in the prognosis between the 
test set and the train set (Fig. 8). These results show that 
the cases classified or predicted to be in the same DNA 
methylation subgroups had the same prognosis.

Comparison between 7 prognosis subgroups and 34‑gene 
classifier (ClearCode34)
34-gene classifier (ClearCode34), which was a authori-
tatively subtyped predictor for classifying clear cell RCC 
according to good risk (ccA) and poor risk (ccB) subtype 
for assigning clear cell RCC patient and built a subtype-
inclusive model to analyze patient survival outcomes 
according to risk stratification [9, 32]. The ClearCode34 
classifier was applied for RNA-sequencing of data from 
380 nonmetastatic clear cell RCC samples from TCGA. 
In the meantime, a total of 199 RCC samples in our 
study were selected to compare 7 prognosis subgroups 
and ClearCode34 classification results (Additional file 1: 
Table S1). From which it can be seen that C l and C 2 are 

mainly concentrated in ccA, whereas C 3, C 4, and C 7 
mainly enriched in the ccB. ccA and ccB subtypes repre-
sented good prognosis and poor prognosis, respectively, 
which was consistent with our study that cluster 1 and 
cluster 2 have the best prognosis, whereas cluster 3 and 
cluster 7 have the worst prognosis (Fig. 3a). Interestingly, 
the ccA and ccB appeared in almost equal among patients 
in the C 6 subgroup, and therefore we compared the 
prognosis of ccA and ccB in the C 6 subgroup (Additional 
file  2: Figure S1). The results revealed that the progno-
sis of ccA was significantly better than the ccB, even for 
the C 6 subgroup in our study. Further, we compared 
the clinically important features of ccA and ccB in C 6, 
including TNM, stage, and grade. The findings revealed 
that there was significant difference in T 1 (p = 0.024), 
T 3 (p = 0.008), N 1 (p = 0.038), N X (p = 0.003), stage I 
(p = 0.024), and stage III (p = 0.008) between ccA and 
ccB in the C 6 subgroup (Additional file  3: Table  S2). 
Moreover, most of the patients of ccA and ccB were dis-
tributed in T 1, N 0, stage 1, and grade 2, whereas less 
of the patients of ccA and ccB were distributed in T 2, 
N 1, stage 5, grade 1 in C 6 subgroup. The results were 
consistent with the analysis of the distribution of TNM 
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classification, pathological grade, and clinical stage in the 
prognosis of 7 molecular subtypes (Fig.  3b, c, e, f ). All 
these results demonstrate that our 7 prognosis subgroups 
and ClearCode34 classifier have a high degree of consist-
ency with the RCC prognostic prediction and molecular 
classification.

Discussion
Alterations in DNA methylation play an important role 
in the development and progression of RCC as confirmed 
in recent studies. In addition, the DNA methylated pro-
files provide insights into the etiology of RCC, especially 
for clinicians to provide clinically viable biomarkers for 
early diagnosis and precise treatment of RCC [33, 34]. 
Therefore, the whole genome DNA methylation spec-
trum sequencing technique has been widely used to 
study tumor-specific methylation alterations. Moreover, 
many different histology and benign adjacent RCC tis-
sues of human or experimental animals have been exten-
sively examined for DNA methylation for diagnosis and 
treatment. However, its effectiveness is limited due to 
factors such as high cost and heavy analytical burden 
and large sample size. Owing to the TCGA database, a 

publicly funded project has been prepared that aims at 
cataloging and discovering major carcinogenic genomic 
changes in more than 30 large cohorts of human tumors 
through large-scale genome sequencing and comprehen-
sive multidimensional analysis [35]. In this study, 3389 
significant CpG sites, corresponding to 307 RCC samples 
were obtained from TCGA for the classification analy-
sis. Large sample sizes were used to provide an in-depth 
understanding of the etiology of RCC, supply proven 
biomarkers based on specific methylation of CpGs, and 
present a framework for the development of molecular 
subtypes based on DNA methylation for the detection of 
RCC patients.

RCC originates from the epithelial cells of the nephron, 
the functional unit of the kidney, and consists of several 
different molecular and histological subtypes. It has dif-
ferent clinical features, including therapeutic responses 
[36]. Therefore, it poses many challenges in the diagno-
sis and treatment of RCC, including the early diagnosis 
of malignant tumors, treatment selection, surgical ben-
efits, side effects of chemotherapeutic drugs and prog-
nosis assessment of patients. Since DNA methylation is 
one of the earliest molecular changes in cancer and is 
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extensive and stable, its role in cancer biology has been 
extensively studied, including early diagnosis of renal cell 
carcinoma [37, 38]. Many studies have explored the role 
of DNA methylation in the etiology and progression of 
renal cell carcinoma. Clinical researchers have used DNA 
methylation as a biomarker for early diagnosis, prognosis 
and prediction, as well as the potential for DNA methyla-
tion to guide therapy [39, 40]. Therefore, we carried out 
this study to obtain a detailed classification of RCC epi-
genomes based on DNA methylation. Prognostic-related 
CpG sites were selected according to the classification 
of TNM, pathological grading, clinical staging, age, and 
survival analysis. In addition, according to the inherent 
molecular characteristics of DNA methylation, RCC can 
be divided into seven subtypes, which corresponds to 
the significant difference in clinical results and molecu-
lar subtypes. Thus, the classification scheme provided a 
molecular stratification suitable for individual tumors, 
which has the significance of influencing therapeutic 
decision-making and defined the biological mechanisms 
involved in the progression of RCC.

RCC is consists of a heterogeneous group of tumors, 
and according to the morphological and histological 
classification, RCC can be classified as clear cell carci-
nomas (60% of cases), papillary tumors, chromopho-
bic tumors, oncocytomas, and collecting or Bellini duct 
tumors [41]. TNM stage and Fuhrman grade are still the 
most commonly used predictors of clinical prognosis in 
RCC patient. In addition, combined with comprehensive 
clinical systems such as the Mayo Clinic stage, size, grade 
and necrosis (SSIGN) score and the University of Califor-
nia Integrated Staging System, clinicians have improved 
the accuracy of prognosis in RCC patients [42]. How-
ever, RCC patients with different cell types originating 
from renal units, as well as their histological, molecular, 
genetic and clinical diversity, may have different results 
with similar clinical characteristics or comprehensive 
system scores. Therefore, accurate classification of RCC 
is crucial for prognostic risk stratification, targeted 
therapy selection, and gene detection and identifica-
tion. Although the molecular profiling of RCC subtypes 
has been identified as a unique and diverse spectrum 
of changes that are used to improve our prognosis and 
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therapeutic effects in the initial stage, their development 
has been rapid [43, 44]. In this study, we used significant 
CpG sites to identify 7 distinct prognostic subgroups of 
RCC that seemed to predict disease-specific survival, 
as well as TNM classification and pathological grade, 
clinical stages, and age distribution of prognosis of 7 
molecular subtypes. Therefore, the classification scheme 
provided a molecular stratification suitable for indi-
vidual tumors, which significantly influenced treatment 
decision-making and accurate diagnosis. For example, an 
RCC patient was diagnosed as RCC at T1, which meant 
a primary tumor was limited to kidney, maximum diam-
eter ≤ 7 cm. Based on the 7 molecular subtypes, when the 
significant CpG sites of patients were assigned to cluster 
7, the patients were found to have high chances of devel-
oping lymph nodes, distant metastasis and had poor 
prognosis. This is necessary for early radical resection of 
RCC, to assess whether early lymph node dissection is 
needed to prevent metastasis. Whereas, when the signifi-
cant CpG sites of patients were assigned to cluster 1, the 
tumors exhibited low degree of invasion and predicted 
a good prognosis. This result can prompt clinicians to 
re-evaluate the treatment of patients, whether to have 
radical total RCC or partial resection or close clinical 
follow-up, or chemotherapeutic therapy, which can help 
alleviate pain and benefit patients. In conclusion, our 
research on the 7 subgroups at the level of DNA meth-
ylation molecular can classify RCC more accurately and 
guide clinicians when diagnosing, treating and perform-
ing prognosis of different epigenetic subtypes.

Previous researches reported that CpG island methyla-
tion as an epigenetic form of gene regulation that disrupts 
the function of tumor suppressor genes or oncogenes 
and was shown to promote carcinogenesis [45]. Based 
on the DNA methylation and gene expression profiles in 
the tumor, we found 437 specific methylation sites cor-
responding to 477 genes, and they defined the particular 
DNA methylation subgroups of RCC. Besides, we found 
that the levels of DNA methylation and gene expression 
based on 7 subgroups were consistent, which suggested 
that the changes in methylation in some regions might be 
associated with RCC by changing the expression of cor-
responding genes. Moreover, a prognostic model charac-
terized by 437 specific CpGs could be used to divide the 
test group into different prognostic clusters, which was 
consistent with the results of the classification. Hypo-
methylation and hypermethylation of DNA can affect 
the progression and prognosis of RCC, leading to over-
expression of oncogenes and down-regulation of tumor 
suppressor genes, respectively [46]. On the other hand, 
abnormal DNA methylation was significantly associated 
with poor tumor differentiation, tumor invasion and poor 
prognosis in cancer patients [47]. In our study, we found 

that cluster 1 had a small number of specific methylations 
CpGs and cluster 6 had no specific methylation CpGs, 
which is a reasonable explanation of clusters 1 and 6 hav-
ing low invasiveness. Additionally, this might explain the 
reason for the cluster 1 having the best prognosis on sur-
vival analysis.

Increasing evidence has shown that epigenetic regula-
tion, such as abnormal hypermethylation of CpG islands 
in promoters, is key to tumorigenesis [48]. In our study, 
the genes, corresponding to 437 specific methylation 
sites in the promoter region were considered for TF 
enrichment analysis. We found that the genes in the pro-
moter methylation were enriched with TF of GKLF and 
RREB-1. Li et al. found that significant reduction or loss 
of GKLF in RCC was mainly due to promoter methyla-
tion abnormalities and that GKLF deletion was associ-
ated with the progression of RCC, relatively low overall 
survival, and disease-free survival [29]. Liu et  al. found 
that RREB-1 regulated the transcription of the p53 gene, 
which is a tumor suppressor gene, through the core pro-
moter element of p53 after genotoxic stress. The silenc-
ing of RREB-1 significantly lowers the expression of p53 
mRNA and protein, which can lead to tumorigenesis [49]. 
Even though there is less literature focusing on the rela-
tionship between RCC and RREB-1, some mechanistic 
studies have suggested that the RREB-1 has a major role 
in tumor suppression of pancreatic cancer [50], bladder 
cancer [51], prostate cancer [52]. These outcomes imply 
that TFs of GKLF and RREB-1 promotes methylation in 
RCC biomarkers recognition, and highlights their diag-
nostic and prognostic values, and clinical application.

Conclusion
This study identified a new classification of RCC into 
7 prognosis subgroups according to the DNA meth-
ylation data, indicating that molecular subtypes are 
independent prognostic factors of RCC. This provides 
a more detailed explanation of molecular subtypes, as 
a simple pathological classification. In addition, this 
classification will help to identify new biomarkers of 
RCC and provide more accurate subdivision of RCC. 
Changes in DNA methylation can be used as markers 
of molecular profiles associated with standard clinical 
features, which could significantly enhance the diagno-
sis of RCC and facilitate individualized treatment for 
patients. Furthermore, the specific CpG sites and cor-
responding genes in specific subgroups can be used as 
biomarkers for early diagnosis, accurate treatment and 
precise prognosis prediction. Finally, the framework 
proposed in this work can be used to study new classi-
fications of molecular subtypes associated with specific 
tumors.
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