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Abstract 

Background:  Evidence is increasingly indicating that circular RNAs (circRNAs) are closely involved in tumorigenesis 
and cancer progression. However, the function of circRNAs in gastric cancer (GC) are still unknown. Here, we aimed to 
determine the regulatory mechanism of circRNAs in GC.

Methods:  Expression profiles of circRNAs were downloaded from four Gene Expression Omnibus (GEO) microarray 
datasets. Expression profiles of miRNAs and mRNAs were collected from The Cancer Genome Atlas (TCGA) database. 
We used the robust rank aggregation method to identify differentially expressed circRNAs (DEcircRNAs) and a ceRNA 
network was constructed based on circRNA–miRNA pairs and miRNA–mRNA pairs. Functional and pathway enrich‑
ment analyses were performed and interactions between proteins were predicted using Cytoscape. Aa subnetwork 
regulatory module was built using the MCODE plugin.

Results:  A total of eight DEcircRNAs, 240 DEmiRNAs, and 4578 DEmRNAs were identified. The circRNA–miRNA–mRNA 
network was constructed based on seven circRNAs, 33 miRNAs, 69 mRNAs in GC. GO and KEGG pathway analysis 
indicated DEmRNAs might be associated with GC onset and progression. A PPI network was established and four hub 
genes (MCM4, KIF23, MCM8, and NCAPD2) were determined from the network. Then a circRNA–miRNA-hub gene 
subnetwork was constructed based on the four DEcircRNAs, three DEmiRNAs, and four DEmRNAs.

Conclusions:  Our findings provide a deeper understanding the circRNA-related competing endogenous RNA regula‑
tory mechanism in GC pathogenesis.
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Background
Gastric cancer (GC) is one of the most common malig-
nancies and the second leading cause of cancer-related 
deaths worldwide [1, 2]. Despite advances in surgical 
techniques and combined chemotherapy strategies, the 
5-year overall survival (OS) of GC remains poor [3]. The 
lack of improvement in OS is largely due to a low early 
diagnostic rate and a high frequency of recurrence and 
metastasis [4, 5]. Therefore, elucidation of the molecular 

mechanisms underlying GC is imperative for the devel-
opment of effective diagnostic and therapeutic targets.

Circular RNA (circRNA), an emerging class of non-
coding RNA, has a covalently closed loop structure in 
which the 3′ and 5′ ends are linked in a non-collinear 
way by a process termed “back-splicing” [6, 7]. The lack 
of 5′ caps and 3′ tails makes circRNAs resistant to exo-
nucleases and more stable than linear RNA [8]. CircRNA 
is structurally stable in certain tissue, time and disease 
specificity [9, 10]. Therefore, circRNAs have become new 
hotspots.

An increasing number of studies have demonstrated 
that circRNAs play important regulatory roles in the 
development of cancers. CircRNA can decrease the 
cytoplasmic levels of target microRNAs (miRNAs) by 
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absorbing miRNAs and, thus, liberate mRNA transcripts 
that are targeted by the miRNAs. For example, Gao et al. 
found that has_circ_101280 was upregulated in hepato-
cellular carcinoma (HCC) tissues and cell lines. In their 
study, overexpression of hsa_circ_101280 inhibited the 
expression of tumor suppressor miRNA miR-375 and 
increased expression of the miR-124 target gene, JAK2, 
which leads to cancer cell proliferation. Further experi-
ments showed that knockdown of hsa_circ_101280 
inhibited growth of HCC xenografts in nude mice, which 
also showed downregulation of JAK2. This study dem-
onstrated conclusively that hsa_circ_101280 interacts 
with JAK2 by sponging miR-1261 in HCC [11]. Similarly, 
circZFR was shown to interact with C8orf4 through the 
sponging of miR-1261 in papillary thyroid carcinoma 
[12].

In the current study, we collected the expression pro-
files of circRNAs, miRNAs, and mRNAs in GC tissues 
and adjacent normal gastric tissues from Gene Expres-
sion Omnibus (GEO) datasets and the TCGA database. 
Differentially expressed circRNAs (DECs) were identified 
by the RobustRankAggreg package in R. After predict-
ing sponging of miRNAs by circRNA and miRNA target 
genes, we constructed a circRNA–miRNA–mRNA net-
work. To evaluate the main functional pathways of GC, 
DEmRNAs of the competitive endogenous RNA (ceRNA) 
network were assessed by gene ontology (GO) annotation 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses. We then established a protein–protein 
interaction (PPI) network and extracted hub genes from 
the PPI network. To better understand the pathogenesis 
of GC, a circRNA–miRNA-hub gene subnetwork regula-
tion module was also constructed. The flowchart for this 
procedure is shown in Fig. 1.

Materials and methods
Microarray data and RNA sequencing data
The microarray data used in this study were retrieved 
from the GEO database. Four circRNA expression 
profiles were obtained from GSE78092, GSE83521, 
GSE93541, and GSE100170. The RNA-sequencing 
(RNA-seq) data were downloaded from the TCGA data 
portal (https​://tcga-data.nci.nih.gov/tcga/). The miRNA 
sequencing data included 410 gastric cancer tissues and 
42 adjacent normal gastric tissues, the mRNA sequenc-
ing data included 343 GC tissues and 30 adjacent normal 
tissues. No ethical approval nor informed consent was 
required in this study due to the public availability of data 
in the GEO and TCGA databases.

Differentially expression analysis
Raw microarray data were normalized and 
log2-transformed. The Bioconductor Limma package was 

used to identify differentially expressed circRNA (DEcir-
cRNA) in each dataset. We then integrated and ranked all 
of the DEGs using the robust rank aggregation method 
[13]. Additionally, the edgeR package was used to screen 
differentially expressed miRNA (DEmiRNA) and mRNA 
(DEmRNA) with thresholds of |log 2 (fold change 
[FC])| > 1 and adjusted P‐value < 0.05.

Prediction of miRNA binding sites
The Circular RNA Interactome (CircInteractome) (https​
://circi​ntera​ctome​.nia.nih.gov/) and Cancer-Specific 
CircRNA (CSCD) (https​://gb.whu.edu.cn/CSCD/) were 
used to predict miRNA binding sites (MREs). Overlap-
ping miRNAs in the two databases were considered as 
potential target miRNAs of the DEcircRNAs. These tar-
get miRNAs were further screened by DEmiRNA based 
on The Cancer Genome Atlas (TCGA).

Prediction of miRNA target genes
Interactions between miRNA and mRNA were pre-
dicted based on the TargetScan, miRTarBase, and miRDB 

Fig. 1  Flow chart of the approach utilized in the present study

https://tcga-data.nci.nih.gov/tcga/
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
https://gb.whu.edu.cn/CSCD/
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databases [14–16]. Only mRNAs recognized by all three 
databases were considered as candidate mRNAs and 
intersections with the DEmRNAs were identified to 
screen out the DEmRNAs targeted by the DEmiRNAs.

Construction of the ceRNA network
The circRNA–miRNA–mRNA regulatory network was 
constructed using a combination of circRNA–miRNA 
pairs and miRNA–mRNA pairs. Finally, the regulatory 
network was visualized using Cytoscape 3.6.1.

Gene ontology and pathway enrichment analysis
To assess the main functional pathways of GC, DEmR-
NAs in the ceRNA network were assessed by GO annota-
tion and KEGG pathway analyses with the clusterProfiler 
package [17] in R. A P-value of less than 0.05 was set as 
the cut-off criterion.

Construction PPI network and module analysis
Based on the DEmRNAs identified, the Search Tool for 
the Tetrieval of Interacting Genes (STRING) database 
was used to construct a protein–protein interaction (PPI) 
network. Visualization was performed using Cytoscape 
3.6.1. The Molecular Complex Detection (MCODE) app 
was used to screen modules of hub genes from the PPI 
network [18].

Results
Identification of DEGs in GC
Expression of circRNAs in GC and control tissues 
was evaluated in four microarray datasets (GSE78092, 
GSE83521, GSE93541, and GSE100170), the basic infor-
mation of which are listed in Table 1. A total of 112 DEcir-
cRNAs, 23 upregulated and 89 downregulated, were 
identified in the GSE78092 dataset. A total of 73 DEcircR-
NAs, 43 upregulated and 30 downregulated, were identi-
fied in the GSE83521 dataset. A total of 306 DEcircRNAs, 
146 upregulated genes and 160 downregulated, were 
identified in the GSE93541 dataset. A total of 1414 DEcir-
cRNAs, 537 upregulated and 877 downregulated, were 
identified in the GSE100170 dataset. The DEcircRNAs 
from each of the four datasets were ranked and a total 
of eight DEcircRNAs, three upregulated and five down-
regulated, were present in the top rank (P < 0.05) (Fig. 2). 

The basic characteristics of the eight circRNAs are listed 
in Table  2. Their basic structural patterns are in shown 
Fig. 3. A total of 240 DEmiRNAs, 180 upregulated and 60 
downregulated, and 4578 DEmRNAs, 2403 upregulated 
and 2176 downregulated, DEmiRNAs, were identified in 
the TCGA database (P < 0.05 and logFC > 1).

Construction of the ceRNA network
To better understand the role of circRNAs and miRNAs 
in the ceRNA network of GC tissues, we established a cir-
cRNA–miRNA–mRNA (ceRNA) network. We retrieved 
data relating to the eight top-ranked DEcircRNAs iden-
tified from the microarray datasets from the CSCD and 
CircInteractome online databases and identified 349 
pairs of interacting circRNAs and miRNAs. After inter-
secting with the DEmiRNAs, only 35 circRNA–miRNA 
pairs, including seven circRNAs and 33 DEmiRNAs, 
remained. We then identified mRNAs targeted by these 
33 DEmiRNAs in three databases (miRDB, miRTarBase, 
and TargetScan). These targeted mRNAs were cross-
checked against the DEmRNAs retrieved from TCGA 
database. These results indicated that 69 DEmRNAs were 
involved in the ceRNA network. Finally, we constructed 
a ceRNA network based on seven circRNA nodes, 33 
miRNA nodes, and 69 mRNA nodes in GC (Fig. 4).

Table 1  Basic information of the 4 microarray datasets from GEO

Data source Platform Author Year Area Sample size (T/N) No. of circRNAs

GSE78092 GPL21485 Huang 2016 China 3/3 2902

GSE83521 GPL19978 Zhang 2017 China 6/6 3071

GSE93541 GPL19978 Guo 2017 China 3/3 1751

GSE100170 GPL23259 Wang 2017 China 5/5 88,012

Fig. 2  Heatmap of the eight differentially expressed circRNAs in the 
four microarray datasets
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Functional and pathway enrichment analyses
Gene ontology analysis revealed that the 69 DEmR-
NAs were enriched in 203 GO terms (P < 0.05). The top 
10 enriched GO terms are shown in Fig. 5, and include 
“extracellular matrix structural constituent”, “platelet-
derived growth factor binding”, and “adenylate cyclase 
binding”. The top 10 pathways associated with DEmRNAs 
according to KEGG analysis included “AGE-RAGE sign-
aling pathway in diabetic complications,” “Relaxin signal-
ing pathway,” and “PI3K-Akt signaling pathway” (Fig. 6). 

Construction of PPI network and module analysis
In total, 26 nodes and 33 edges were mapped in the PPI 
network (Fig.  7a). The MCODE approach in Cytoscape 
was used to identify hub genes in the PPI network. With 
the k-core = 2, a significant module containing four nodes 
and six edges was identified. These highest-scoring nodes 
were screened as hub genes: MCM4, KIF23, MCM8, 
and NCAPD2 (Fig.  7b). We constructed a circRNA–
miRNA-hub gene subnetwork based on five circRNA–
miRNA–mRNA regulatory modules (hsa_circ_0002019/

Table 2  Basic characteristics of the eight differently expressed circRNAs

circRNA ID Position Genomic length Strand Best transcript Gene symbol Regulation

hsa_circ_0000788 chr17:55372279–55372525 246  +  NM_170721 MSI2 Up

hsa_circ_0002019 chr11:126142863–126143349 486  +  NR_037648 FOXRED1 Up

hsa_circ_0076092 chr6:35195356–35201078 5722  +  NM_152753 SCUBE3 Up

hsa_circ_0005699 chr16:19627435–19663412 35,977  +  NM_020314 C16orf62 Down

hsa_circ_0005777 chr5:73136304–73136585 281  +  NM_001080479 RGNEF Down

hsa_circ_0007991 chr1:21329205–21415706 86,501 − NM_001198801 EIF4G3 Down

hsa_circ_0067934 chr3:170013698–170015181 1483  +  NM_002740 PRKCI Down

hsa_circ_0006896 chr8:95549330–95550574 1244 - NM_015496 KIAA1429 Down

Fig. 3  Structural patterns of the seven circRNAs: a hsa_circ_0076092, b hsa_circ_0002019, c hsa_circ_0005699, d hsa_circ_0005777, e hsa_
circ_0007991, f hsa_circ_0067934, g hsa_circ_0006896
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hsa-mir-1301/KIF23, hsa_circ_0005699/hsa-mir-504/
MCM8, hsa_circ_0005699/hsa-mir-504/NCAPD2, 
hsa_circ_0006896/hsa-mir-373/MCM4, and hsa_
circ_0007991/hsa-mir-373/ MCM4).

Discussion
CircRNAs are an enigmatic type of stable, non-coding 
RNA that often exhibit tissue or developmental stage 
specific expression, although the functions of circR-
NAs in mammalian cells remain mostly unclear [19, 20]. 
The high stability of circRNAs, imparted by their cyclic 
structures, makes these molecules potentially valu-
able as novel tumor biomarkers [21, 22]. Several studies 
have shown that circRNAs have important influence on 
many complicated human diseases, including malignant 

tumors [23, 24]. Recently, studies have unveiled how cir-
cRNAs participate in regulation of malignant biologi-
cal processes [25, 26]. Other evidence has revealed that 
circRNAs contain multiple MREs and can bind to miR-
NAs, often termed “miRNA sponges,” decreasing cyto-
plasmic levels of miRNAs and liberating their respective 
downstream target mRNAs [27–29]. However, the exact 
role of circRNAs in GC remains largely unknown. To 
identify whether circRNAs function as ceRNAs in GC, 
we first performed microarray data analysis to examine 
DEGs in GC samples and normal samples using a robust 
rank aggregation method. We constructed a circRNA–
miRNA–mRNA regulatory network based on biological 
predictions and developed a model PPI network of DEm-
RNAs. We also constructed a circRNA–miRNA-hub 

Fig. 4  The ceRNA network of circRNA–miRNA–mRNA in GC. Diamonds indicate circRNAs, rounded rectangles indicate miRNA, and ellipses indicate 
mRNA. The nodes highlighted in red and blue represent up-regulation and down-regulation, respectively
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Fig. 5  Ten most enriched GO, in terms of DEmRNAs, involved in the ceRNA network

Fig. 6  Ten most enriched KEGG pathways, in terms of DEmRNAs, involved in the ceRNA network
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gene subnetwork based on regulatory modules identified 
in the circRNA–miRNA–mRNA network.

Numerous studies have shown that expression of cir-
cRNA is dysregulated in GC and that this dysregulation 
is associated with pathogenesis and prognosis, suggest-
ing that circRNAs could be used as tumor-associated 
biomarkers [30]. Fang et  al. revealed that circFAT1 was 
downregulated in GC tissues and cell lines and was 
associated with OS. In  vitro, overexpression of circ-
FAT1 reduced cell proliferation, migration and invasion. 
That same study also found that circFAT1(e2) regulates 
expression of Y-box binding protein-1 (YBX1) of the 
nucleus by cytoplasmic sponging of miR-548g [30–32]. 
Similarly, high circ-SFMBT2 was observed in GC tissues 
and was correlated with higher stages of tumors in GC. 
Knockdown of circ-SFMBT2 significantly inhibited pro-
liferation of GC cells. The authors concluded that circ-
SFMBT2 participates in development and progression of 
GC through sponge miR-182-5p that targets CREB1 [31]. 
Liu [32] identified that the circular RNA-ZFR inhibited 
cell proliferation and promoted GC apoptosis via spong-
ing of miR-130a/miR-107 and regulating PTEN.

In the current study, seven cicRNAs (hsa_
circ_0000788, hsa_circ_0002019, hsa_circ_0005699, 
hsa_circ_0005777, hsa_circ_0006896, hsa_circ_0007991, 
and hsa_circ_0067934) were identified to be involved in 
the ceRNA network. One of these, hsa_circ_0067934, 

was identified previously by Xia et  al., who analyzed 51 
esophageal squamous cell carcinoma (ESCC) samples 
and normal samples, finding that hsa_circ_0067934 was 
significantly up-regulated in ESCC tissues and was asso-
ciated with poor differentiation, I–II T stage, and I–II 
TNM stage. Knockdown of hsa_circ_0067934 in vitro by 
siRNA can inhibit proliferation and migration of ESCC 
cells and blocks cell cycle progression [33]. No relevant 
studies have reported involvement of hsa_circ_0000788, 
hsa_circ_0002019, hsa_circ_0005699, hsa_circ_0005777, 
hsa_circ_0006896, or hsa_circ_0007991 in cancer.

It is well known that miRNA-mediated pathways are 
essential to tumorigenesis; miRNAs can regulate cell 
proliferation, differentiation, apoptosis, and migration 
[34]. In the current study we identified a total of 69 
DEmRNAs and 33 DEmiRNAs involved in the ceRNA 
network, some of which have been found as a bio-
marker for diagnosis and prognosis. To further identify 
the key circRNAs participating in the regulatory net-
work we established a PPI network, screening four hub 
genes, including MCM4, MCM8, NCAPD2, and KIF23. 
Previous work has identified two genes, E2F1 and 
KIF23, that play important roles in the carcinogenesis 
and development of GC. It is thought that E2F1 has an 
important role in the cell cycle pathway by regulating 
MCM3, which may interact with MCM4 [35]. KIF23 
is highly expressed in GC tissue, and its expression 

Fig. 7  Identification of hub genes from the PPI network with the MCODE algorithm. a PPI network of 69 genes. b PPI network of four hub genes 
that extracted from the PPI network
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is associated with advanced TNM stage, recurrence, 
and poor prognosis. In  vitro and in  vivo experiments 
confirmed that inhibition of KIF23 inhibits prolifera-
tion of GC cells, leading the authors to conclude that 
KIF23 might serve as a potential therapeutic target 
for GC treatment [36]. However, there are no reports 
linking MCM8 and NCAPD2 with GC, nor of their 
association with circRNAs. Here, we identified five 
circRNA–miRNA-hub gene axes, indicating competi-
tive regulatory relationships of four circRNAs with the 
four genes in GC. However, given that these results are 
based solely on bioinformatics models, further in-depth 
studies are critical to verifying the possible role of these 
four axes in GC.

Conclusions
We screened differentially expressed circRNAs, miR-
NAs, and mRNAs from publicly available microar-
ray data to construct a circRNA-associated ceRNA 
network. The circRNA–miRNA-hub genes regula-
tory subnetwork uncovered four important circRNAs 
that might be involved in carcinogenesis, providing 
new insight into the pathogenesis of GC and suggest-
ing potential therapeutic targets that warrant further 
investigation.
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