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Up‑regulation of microRNA‑200c‑3p inhibits 
invasion and migration of renal cell carcinoma 
cells via the SOX2‑dependent Wnt/β‑catenin 
signaling pathway
Shuai Li, Ziyu Feng, Xuechong Zhang, Dongyang Lan and Yudong Wu*

Abstract 

Background:  MicroRNA-200c-3p (miR-200c-3p) has been revealed to be related to renal cell carcinoma (RCC) 
progression, while the inner mechanisms remain unknown. In our study, we intend to unearth the capability of miR-
200c-3p in RCC development via the Wnt/β-catenin signaling pathway through binding to SOX2.

Methods:  miR-200c-3p, SOX2, β-catenin and GSK3β expression in both tissues and cells of RCC were detected by 
RT-qPCR or western blot analysis. miR-200c-3p was restored or silenced to determine their biological functions of RCC 
cells. Expression of SOX2 and related proteins in the Wnt/β-catenin signaling pathway were evaluated by RT-qPCR and 
western blot analysis. The effect of the combination of downregulated miR-200c-3p and downregulated SOX2 on cell 
biological behavior change was also determined.

Results:  Initially, we found that miR-200c-3p was declined while SOX2, β-catenin and GSK3β was elevated in RCC 
tissues and cells. A498 cells with the largest difference in miR-200c-3p expression and OS-RC-2 cells with the smallest 
difference were selected for subsequent experiments. Additionally, upregulated miR-200c-3p and downregulated 
SOX2 was determined to suppress proliferation, migration, invasion and induce apoptosis of RCC cells. Furthermore, 
miR-200c-3p inhibited SOX2 to inactivate the Wnt/β-catenin signaling pathway.

Conclusion:  Collectively, this study highlights that upregulated miR-200c-3p inhibits expression of SOX2, thereby 
inhibiting development of RCC cells via modulating the Wnt/β-catenin signaling pathway activation.

Keywords:  microRNA-200c-3p, Renal cell carcinoma, SOX2, Wnt/β-catenin signaling pathway, Proliferation, Invasion, 
Migration, Apoptosis
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Background
Renal cell carcinoma (RCC) is the 3th most frequent uro-
logical cancer be next only to prostate cancer and bladder 
cancer, and RCC accounts for around 3% adult malignan-
cies and exceeds 90% of neoplasms resulting from the 
kidney [1]. The recognized risk factors of RCC include 
male sex, increasing age, smoking, as well as genetic 
predisposition, while little consensus reaches regarding 

other RCC risk factors [2]. Due to the short of diagno-
sis biomarkers and particular symptoms at an early stage, 
approximately 20–30% of RCC patients have had metas-
tasis at the time of initial diagnosis [3]. Despite surgery 
is considered to be curative for localized disease, a larger 
number of RCC patients develop metastases or relapses, 
which are related to poor prognosis [4]. Therefore, it is 
essential to realize the molecular mechanisms in RCC 
recurrence and metastasis, for the reason that this knowl-
edge may offer help to improve RCC treatment.

The microRNA-200 (miR-200) family containing miR-
200a/b/c, − 141 as well as − 429 has been demonstrated 
to exert functions in epithelial mesenchymal transition 
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(EMT) [5]. Increasing researches have indicated that the 
decreased miR-200 family members is found in human 
cancers and among which, miR-200c is detected to be 
down-regulated in RCC [6–8]. Chang et  al. have pro-
posed that miR-200c may be considered as potential 
biomarkers and also, help to provide alternative options 
for RCC treatment [9]. MiRNAs are able to modulate 
mRNA expression in a tissue specific approach, either by 
suppressing translation or transcription or stimulating 
degradation of the transcript [8]. The family of SRY (sex 
determining region Y)-box (SOX) is a group of transcrip-
tion factors with great importance in cancer development 
and stem cell biology [10]. SOX2, one of the SOX family 
members, is a primary regulator of neural competence 
in both human and vertebrates [11]. Evidence has shown 
that SOX2 has emphasized its vital role in stem cell main-
tenance, which is a lineage fate determinant together 
with a necessary part to reprogram the pluripotency of 
somatic cells [12, 13]. SOX2 is reported as either onco-
gene or tumor suppressor gene in various cancer types. 
SOX2 is found to be upregulated in colon cancer, small 
cell lung cancer and esophageal squamous cell carcinoma 
[14–16]. However, SOX2 could also acts as tumor sup-
pressor gene in several caners, such as gastric cancer [17], 
which further highlights the context-specific character-
istics of SOX involvement in carcinogenesis. It has been 
reported that high SOX2 expression is related to poor 
prognosis for RCC, implying its role of oncogene in RCC 
[18]. On the contrary, Liu et  al. have found that SOX2 
expression level was significantly declined in RCC, sug-
gesting its inhibitory role in RCC [19]. No consensus has 
been reached upon this issue. As previously described, 
SOX proteins physically bind with β-catenin to control 
the expression of target genes of Wnt [13]. A study has 
suggested that the Wnt/β-catenin signaling pathway has 
a close association with many types of human carcino-
mas including RCC [20, 21]. Based on these evidence, we 
speculate that miR-200c-3p inhibits development of RCC 
cells via the SOX2/Wnt/β-catenin axis.

Materials and methods
Ethics statement
All the specimens in this study were collected with the 
informed consent of the patients, and this study was 
approved by the ethics committee of the First Affiliated 
Hospital of Zhengzhou University.

Clinical sample collection
Human RCC tissues and adjacent normal tissues were 
acquired from 56 patients with RCC that were enrolled 
into the First Affiliated Hospital of Zhengzhou University 
from September 2014 to October 2017. The pathological 
data of all clinical cases were complete and confirmed by 

clinical, imaging and pathology. Among these 56 patients, 
there were 47 males and 9 females, with the mean age of 
56 years old. The patients excluded major basic diseases 
such as heart, liver and lung diseases, and they didn’t 
receive chemotherapy or targeted drugs and other treat-
ment measures before operation. Each tissue specimen 
was frozen in liquid nitrogen.

Cell culture
Human RCC cell lines OS-RC-2, G401, A498, Caki-1 and 
ACHN cells and human embryonic kidney cells HEK-293 
were purchased from American Type Culture Collection 
(ATCC, USA). The cells, together with the cryopreserved 
tube, were immediately placed at 37  °C so that the cells 
could be resuscitated and melted as soon as possible. The 
melted cells were absorbed from the ultra-clean work-
bench and added to the centrifuge tube, and the centri-
fuge tube was added with calf serum-free RPMI 1640 
medium (PM150110, Procell LifeScience & Technology 
Co. Ltd., Wuhan, China). The cells were suspended and 
then centrifuged for 1500 rpm for 5 min. After the super-
natant was removed, the cells were added with cell cul-
ture medium containing 15% fetal bovine serum (FBS). 
The cells were inoculated in a culture bottle and placed in 
a 37 °C incubator containing 5% CO2. The cells were sub-
cultured routinely and the growth logarithmic cells were 
used in the experiment.

Cell transfection and grouping
OS-RC-2 and A498 (2 × 105  cells/well) during loga-
rithmic growth period were inoculated into a 6-well 
cell culture plate. The cells were transfected when the 
cell adhered to the wall and the cell confluence reached 
30–50%. The cell transfection was conduced based on the 
instructions of the lipofectamine 2000 kit (11668-027, 
Invitrogen, Carlsbad, California, USA). After transfec-
tion, the cells were cultured at 37  °C with 5% CO2 and 
saturated humidity. After 4–6 h, the medium containing 
the transfection solution in the well was discarded and 
replaced with RPMI 1640 medium containing 10% FBS 
(PM150110, Wuhan Punosei Life Technology Co., Ltd., 
Wuhan, China). After 24 to 48 h, it was used for subse-
quent experiments.

OS-RC-2 cells were transfected with miR-200c-3p-
mimics negative control (NC) or miR-200c-3p-mimics 
(miRNA mimic is a mimic synthesized by chemical 
methods, which can mimic the high level expression of 
mature miRNAs in cells, so as to enhance the regulation 
of endogenous miRNAs). A498 cells were introduced 
with miR-200c-3p-inhibitors NC, miR-200c-3p-inhib-
itors, si-SOX2 or miR-200c-3p-inhibitors + si-SOX2 
sequence. All these sequences were purchased from 
Shanghai GenePharma Co., Ltd (Shanghai, China).
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Reverse transcription quantitative polymerase chain 
reaction (RT‑PCR)
Trizol (15596-018, Invitrogen, Carlsbad, California, USA) 
was employed for extracting the total RNA of tissues 
and cells. Diethylpyrocarbonate (DEPC, A100174-0005, 
Shanghai Sangon Biotechnology Co., Ltd., Shanghai, 
China) treated with ultrapure water was utilized to dis-
solve RNA. The absorbance at 260 nm and 280 nm was 
measured using an ND-1000 UV/Vis spectrophotom-
eter (Thermo Scientific, MA, USA) to identify the mass 
of total RNA and adjust the RNA concentration. The 
extracted RNA was subjected to reverse transcription in 
a two-step method according to the kit (Thermo Scien-
tific, MA, USA). RT-qPCR was performed by TaqMan 
probe method, and the reaction system was operated on 
the basis of the instructions of the kit (KR011A1, Bei-
jing Puyihua Technology Co., Ltd., Beijing, China). The 
primer sequences are shown in Table  1. PCR was per-
formed via ABI 7900 Real time-PCR instrument (Bio-Rad 
iQ5, San Francisco, USA). U6 was used as the internal 
control of miR-200-3c, while glyceraldehyde phosphate 
dehydrogenase (GAPDH), internal control of other fac-
tors. The target gene expression was calculated by 2−∆∆Ct 
method [13].

Western blot analysis
Cells in each group were collected in a centrifuge tube 
and added with 100  μL of radioimmunoprecipitation 
assay lysate (R0020, Beijing Solarbio Technology Co., 
Ltd., Beijing, China) (containing 1  mmol/L phenylme-
thyl sulfonylfluoride, currently used), and homogenize at 
3000 r/min. The proteins were extracted and the protein 
concentration was evaluated in view of the protocols of 
the bicinchoninic acid assay (AR0146, Boster, Wuhan, 
China). Following 10% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis separation, protein sam-
ples were next transferred onto a polyvinylidene fluoride 
membrane (P2438, Sigma-Aldrich, St. Louis, Missouri, 
USA). Afterwards, the membrane was sealed with 5% 
bovine serum albumin and appended with the primary 

antibodies against β-catenin (ab3927, 1:1000), GSK3β 
(ab86714, 1:1000) and GADPH (ab181602, 1:10,000 
(Abcam, Cambridge, MA, USA), followed by the anti-rat 
secondary antibody (ab6789, 1:2000, Abcam, Cambridge, 
MA, USA), and an enhanced chemiluminescence solu-
tion together with Bio-rad Gel Doc EZ imager (Bio-rad, 
California, USA) were utilized for developing. The gray 
value analysis of target band was analyzed by Image J 
software.

Bioinformatics analysis and dual luciferase reporter gene 
assay
Online website (http://www.targe​tscan​.org) was 
employed to predict the binding between miR-200c-3p 
and SOX2. The human target gene sequence was queried 
in GenBank (National Center for Biotechnology Informa-
tion, Bethesda, Maryland, USA) and a 3′-untranslated 
region (UTR) sequence containing the miR-200c-3p 
potential target gene SOX2 was design based on the pre-
dicted results of the software. A plasmid vector contain-
ing the SOX2-3′UTR wild-type (WT) and SOX2-3′UTR 
mutant type (MUT) reporter gene was constructed using 
the site-directed mutation technique. The cells were co-
transfected with SRX2-WT and SOX2-MUT plasmids 
for 24 h with miR-200c-3p mimics NC and miR-200c-3p 
mimics, respectively. The medium was renewed and con-
tinued to culture for 48 h to lyse the cells. The luciferase 
activity was detected by a luminometer (TD20/20, Turner 
Designs, Sunnyvale, CA, USA) among with a luciferase 
detection kit (E1910, Inner Mongolia HengSeng Biotech-
nology Co., Ltd., Inner Mongolia, China).

Cell counting kit‑8 (CCK‑8) assay
At 48 h post transfection, the cells were collected and 
detached with 0.25% trypsin. The cell suspensions of 
each group were diluted with a certain concentration 
and then inoculated into 96-well plates at the density of 
5 × 104  cells/mL. Each well was added with 10  μL cell 
culture medium. The optical density (OD) value at zero 
time point was measured at first, and then measured 

Table 1  Primer sequence

miR-200c-3p microRNA-200c-3p, GAPDH glyceraldehyde phosphate dehydrogenase

Gene Forward Reverse

miR-200c-3p 5′-GGG​AAC​ACA​CCT​GGT​TAA​C-3′ 5′-CAG​TGC​GTG​TCG​TGG​AGT​-3′

U6 5′-TGC​GGG​TGC​TCG​CTT​CGG​CAGCA-3′ 5′-CCA​CTG​CAG​GGT​CCG​AGG​T-3′

SOX2 5′-CGC​CCC​CAG​CAG​ACT​TCA​CA-3′ 5′-CTC​CTC​TTT​TGC​ACC​CCT​C-3′

β-catenin 5′-ATG​GCT​TGG​AAT​GAGAC-3′ 5′-AAC​TGG​ATA​GTC​AGC​ACC​-3′

GSK3β 5′-CCT​TAA​CCT​GGT​GCT​GGA​CT-3′ 5′-AGC​TCT​GGT​GCC​CTG​TAG​TA-3′

GAPDH 5′-ACC​ACA​GTC​CAT​GCC​ATC​AC-3′ 5′-TCC​ACC​ACC​CTG​TTG​CTG​TA-3′

http://www.targetscan.org
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every 24 h, namely 24 h, 48 h, 72 h. Subsequently, each 
well was appended with 10 μL CCK-8 solution (Beyotime 
Biotechnology, Shanghai, China) and incubated at 37  °C 
for 2 h. The OD value of each well was measured at the 
wavelength of 430  nm by a microplate reader (Beijing 
Jingke Ruida Technology Co., Ltd., Beijing, China). Each 
reaction was run in triplicate.

Flow cytometry
At 48  h post transfection, the trypsin-detached cells in 
each group were harvested and centrifuged, and then 
the supernatant was discarded. Subsequently, the cells 
were suspended and washed with phosphate buffer saline 
(PBS), thus the single cell suspension was prepared. 
The single cell suspension was centrifuged for 5  min at 
1000  rpm, and the supernatant was removed. The cells 
were washed with PBS two times and fixed with 70% 
ethanol for 30 min. After that, the centrifuged cells were 
washed with PBS two times and appended with 1% pro-
pidium iodide (PI) containing RNA enzyme. After being 
stained for 30 min, the cells were washed with PBS two 
times to remove PI. Finally, the cell cycle distribution was 
determined by a BD-Aria Flow Cytometer (FACSCalibur, 
Beckman Coulter, USA).

After the cells were detached with trypsin without 
ethylene diamine tetraacetic acid, the suspension cells 
were centrifuged to collect the cells, with the superna-
tant discarded. According to the Annexin-V-fluorescein 
isothiocyanate (FITC) Apoptosis Detection Kit (C1065, 
Beyotime Biotechnology, Shanghai, China), the Annexin-
V-FITC/PI dye solution was formulated with Annexin-
V-FITC, PI, hydroxyethyl piperazine ethanesulfonic 
acid (HEPES) buffer solution in a ratio of 1:2:50. About 
1 × 106  cells were suspended with 100  μL dye solution 
and appended with 1  mL HEPES buffer solution after 
15-min incubation. A flow cytometer at 488  nm excita-
tion wavelength, with a 525  nm or 620 band-pass filter, 
was utilized for FITC or PI fluorescein detection.

Transwell assay
Matrigel (40111ES08, Yeasen, Shanghai, China) was 
dissolved at 4  °C overnight. Matrigel was diluted 1:3 in 
serum-free DMEM medium for three times (15  μL, 
7.5 μL, 7.5 μL), and 30 μL of diluted Matrigel was added 
to the apical chamber of each Transwell chamber. At 
10 min intervals, Matrigel was evenly spread and covered 
with all the microwells on the underside of the apical 
chamber. At 48 h after transfection, cells were collected 
to prepare cell suspension. The cells were seeded in 
Transwell apical chamber, and then supplemented with 
0.5  mL DMEM medium containing 10% FBS. Next, the 
cells were added to basolateral chamber of the 24-well 

plate and placed in an incubator at 37  °C with 5% CO2. 
After 48  h of incubation, the unpenetrated cells in the 
apical chamber were gently wiped off with cotton swabs. 
The membrane was fixed in 95% ethanol for 15–20 min, 
washed with water and then stained with methyl violet 
for 10 min, washed again with water, and observed under 
a high-inverted microscope. The average of 5 high-field 
cell counts was taken for each sample. The number of 
cells passing through Matrigel was an indicator of their 
invasive ability.

Scratch test
After 48 h of different treatment, the cells were collected 
and inoculated into a 6-well plate at a cell density of 
1 × 105 cells/well. When the cell confluence reached 90%, 
4 traces were drawn with 200 μL tip heads. Image J soft-
ware was used to analyze the migration ability of cells in 
each group. The experiment was repeated three times.

Statistical analysis
All the data were analyzed with statistical SPSS 21.0 (IBM 
Corp. Armonk, NY, USA) software. The measurement 
data in normal distribution (tested by the Kolmogorov–
Smirnov test) were depicted as mean ± standard devia-
tion. Comparison between two groups was analyzed by 
the t test, and among multiple groups, by one-way anal-
ysis of variance (ANOVA). The Fisher’s least significant 
difference t test (LSD-t) was applied for pairwise compar-
ison. P value ≤ 0.05 indicative of statistically significant.

Results
Downregulated miR‑200c‑3p and upregulated SOX2, 
β‑catenin and GSK3β are found in RCC tissues
RT-qPCR was used to detect miR-200c-3p expression in 
RCC tissues and corresponding adjacent normal tissues. 
The obtained results highlighted that the poor expression 
of miR-200c-3p was found in RCC tissues relative to that 
in adjacent normal tissues, as shown in Fig.  1a. Mean-
while, the expression of SOX2, β-catenin and GSK3β in 
RCC tissues and corresponding adjacent normal tissues 
was also determined by RT-qPCR and western blot anal-
ysis. The findings suggested the in contrast to adjacent 
normal tissues, the expression of SOX2, β-catenin and 
GSK3β was increased in RCC tissues (all P < 0.05; Fig. 1b, 
c). Besides, the relationship between miR-200c-3p 
expression and SOX2 mRNA expression was analyzed 
by Pearson correlation analysis. The results showed that 
(Fig.  1d) the miR-200c-3p expression was negatively 
correlated with SOX2 mRNA expression (r = − 0.850, 
P < 0.001).
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Downregulated miR‑200c‑3p and upregulated SOX2 are 
found in RCC cells
miR-200c-3p expression in RCC cells (OS-RC-2, G401, 
A498, Caki-1 and ACHN cells) and human embryonic 
kidney cells HEK-293 was detected by RT-qPCR. As pre-
sented in Fig.  2a, the results suggested that compared 
with normal embryonic kidney cells (HEK-293), miR-
200c-3p expression in OS-RC-2, G401, A498, Caki-1 
and ACHN cell lines were significantly down-regulated. 
Among them, the down-regulation of miR-200c-3p in 
A498 cells was the smallest, while that in OS-RC-2 cells 
was the largest. Meanwhile, the expression of SOX2, 
β-catenin and GSK3β in RCC cells and HEK-293 cells 

was also determined by RT-qPCR and western blot 
analysis. The results suggested that relative to normal 
embryonic kidney cells (HEK-293), the SOX2 mRNA 
and protein expression levels elevated in OS-RC-2, G401, 
A498, Caki-1 and ACHN cells (P < 0.05; Fig. 2b, c).

Expression level of miR‑200c‑3p and SOX2 in each group
According to the results of RT-qPCR, we found that 
in OS-RC-2 cells, the expression of miR-200c-3p ele-
vated and expression of SOX2 mRNA declined in cells 
upon miR-200c-3p-mimics treatment (both P < 0.05). 
No obvious difference was witnessed in miR-200c-3p 
expression and SOX2 mRNA expression between the 
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blank group and the miR-200c-3p-mimics NC group 
(P > 0.05) (Fig. 3a).

In 498 cells, no significance was found in miR-
200c-3p expression in cells without treatment, cells 
transfected with miR-200c-3p-inhibitors NC sequence 
and si-SOX2 sequence (P > 0.05). In cells introduced 
with miR-200c-3p-inhibitors and miR-200c-3p-inhib-
itors + si-SOX2, there showed decreased miR-200c-3p 
expression (P < 0.05). In 498 cells, no significance was 
found in SOX2 mRNA expression in cells without 
treatment, and cells transfected with miR-200c-3p-
inhibitors NC sequence and miR-200c-3p-inhibi-
tors + si-SOX2 sequence (P > 0.05). In cells introduced 
with miR-200c-3p-inhibitors, there showed increased 
SOX2 mRNA expression, while presented decreased 
SOX2 mRNA expression upon si-SOX2 treatment 
(both P < 0.05) (Fig. 3b).

miR‑200c‑3p inhibits expression of SOX2 and inactivates 
the Wnt/β‑catenin pathway
As shown in Fig.  4a, b, the findings of RT-qPCR and 
western blot analysis suggested that expression of 
SOX2, β-catenin and GSK3β declined in OS-RC-2 
cells transfected with miR-200c-3p-mimics sequence 
(P < 0.05). No obvious difference was witnessed in 
expression of SOX2, β-catenin and GSK3β between the 
blank group and the miR-200c-3p-mimics NC group 
(all P > 0.05).

Meanwhile, as shown in Fig. 4c, d, there was no dif-
ference in expression of SOX2, β-catenin and GSK3β 
in A498 cells without treatment, miR-200c-3p-inhib-
itors NC sequence and miR-200c-3p-inhibitors + si-
SOX2 sequence (P > 0.05). In cells introduced with 
miR-200c-3p-inhibitors, there showed increased 
expression of SOX2, β-catenin and GSK3β, while 
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presented decreased expression upon si-SOX2 treat-
ment (all P < 0.05).

miR‑200c‑3p binds to SOX2 3′‑UTR​
Using the biological prediction website http://www.
targe​tscan​.org analysis, there was a specific binding 
region between the 3′UTR of the SOX2 gene and the 
miR-200c-3p sequence, and SOX2 was determined as 
the target gene of miR-200c-3p (Fig. 5a). Besides, lucif-
erase activity assay implied that the luciferase activity of 
the SOX2-WT 3′UTR was suppressed by miR-200c-3p 
(P < 0.05), while the luciferase activity of the SOX2-
MUT 3′UTR was not restricted (P > 0.05; Fig. 5b).

Upregulation of miR‑200c‑3p and downregulation of SOX2 
suppress proliferation of RCC cells
The proliferation of OS-RC-2 cells and A498 cells 
were determined by CCK-8 assay (Fig.  6a, b). The cell 
growth rate was reduced in OS-RC-2 cells introduced 
with miR-200c-3p-mimics sequence at 48  h and 72  h, 
and the OD value was also declined (P < 0.05). Mean-
while, there was no difference in cell growth rate in 
A498 cells without treatment, miR-200c-3p-inhibi-
tors NC sequence and miR-200c-3p-inhibitors + si-
SOX2 sequence (P > 0.05). In cells in response to 
miR-200c-3p-inhibitors, there showed increased cell 
growth rate, while presented decreased cell growth rate 
upon si-SOX2 treatment (all P < 0.05).

Upregulation of miR‑200c‑3p and downregulation of SOX2 
restrict cell cycle progression and stimulate apoptosis 
of RCC cells
Based on the results of PI single staining and Annexin 
V/PI double staining (Fig.  7a–d), we found that in 
OS-RC-2 cells, no difference was found in proportion 
of cells in G1, S, and G2 phases together with cell apop-
tosis in cells without treatment and in cells treated with 
miR-200c-3p-mimics NC sequence (P > 0.05). More cells 
arrested at G1 phrase and fewer arrested in S phrase as 
well as increased apoptosis rate exhibited in cells upon 
miR-200c-3p-mimics treatment (both P < 0.05). In A498 
cells, no significance was found in proportion of cells in 
G1, S, and G2 phases together with cell apoptosis in cells 
without treatment, cells transfected with miR-200c-3p-
inhibitors NC sequence and miR-200c-3p-inhibi-
tors + si-SOX2 sequence (P > 0.05). In cells introduced 
with miR-200c-3p-inhibitors, there showed fewer cells 
arrested at G1 phrase and more arrested in S phrase as 
well as declined apoptosis rate, while an opposite tread 
was found upon si-SOX2 treatment (both P < 0.05).

Upregulation of miR‑200c‑3p and downregulation of SOX2 
repress cell migration and invasion of RCC cells
Transwell assay and scratch test (Figs. 8, 9) suggested that 
in OS-RC-2 cells, no difference was found in cell migra-
tion and invasion capabilities in cells without treatment 
and in cells transfected with miR-200c-3p-mimics NC 
sequence (P > 0.05). Cell migration and invasion abili-
ties were inhibited in cells upon miR-200c-3p-mimics 
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treatment (both P < 0.05). In A498 cells, no signifi-
cance was found in cell migration and invasion capa-
bilities in cells without treatment, cells transfected with 
miR-200c-3p-inhibitors NC sequence and miR-200c-3p-
inhibitors + si-SOX2 sequence (P > 0.05). In cells trans-
fected with miR-200c-3p-inhibitors, there showed 
enhanced cell migration and invasion abilities, while an 
opposite tread was found upon si-SOX2 treatment (both 
P < 0.05).

Discussion
In recent years, the aberrant profiles RCC-specific 
miRNA have been discussed, while no consensus reached 
on the exact role of certain miRNAs in RCC [22–24]. 

Among all the miRNAs, the EMT-related miR-200 mem-
bers have been often detected to be poorly expressed in 
RCC samples, demonstrating that these miRNAs could 
act as tumor suppressors in RCC [4]. For the purpose of 
improving the treatment of RCC, the molecular therapies 
are being widely applied for RCC patients with metastasis 
or recurrence. In view of this, we conduced this current 
study to unearth the function of miR-200c-3p in RCC 
with the involvement of SOX2-mediated Wnt/β-catenin 
signaling pathway. Collectively, the findings highlight that 
miR-200c-3p inhibits development of RCC cells via the 
SOX2-mediated Wnt/β-catenin signaling pathway.

One of this most important findings in this study 
implied that miR-200c-3p was reduced in RCC tissues 
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and cell lines, and miR-200c-3p was implicated in the ini-
tiation and development of RCC. Besides, we also found 
that miR-200c-3p was determined to suppress prolifera-
tion, migration, invasion and induces apoptosis of RCC 
cells. It has been reported that the miR-200s modulates 
EMT-activating transcription factors and is downregu-
lated in mesenchymal-like cancer cells through the regu-
lation of TGF-β [25]. A recent study has elucidated that 
the miR-200s members could be transactivated by p53, 
and p53-modulated miRNAs are able to prevent EMT 
via binding to ZEB1 and ZEB2 [26]. Based on which, 
we could conclude that the miR-200s family, acting as a 
novel part of the p53 regulatory network, results in inva-
sion and metastasis of human cancer cells via the EMT 
process. In accordance with the results in this current 

study, several articles have revealed that miR-200c is 
poorly expressed in RCC tissues [6–8]. Additionally, it 
was found that downregulated miR-200-3p was deter-
mined to suppress proliferation, migration, invasion and 
induces apoptosis of RCC cells. SOX2, defined as a main 
stemness marker, is upregulated in cancer stem cells, and 
it has the capability to produce the diversity of cell types 
[27]. Researches have strongly correlated SOX2 to cancer 
hallmarks, and SOX2 has been regarded to induce cel-
lular proliferation (breast and cervical cancers) [28, 29]. 
However, the functional significance of miR-200c-3p and 
SOX2 expression in RCC remains to be elucidated.

Additionally, it was indicated that miR-200c-3p inhib-
ited SOX2 to inactivate the Wnt/β-catenin signaling 
pathway. A study has suggested that miR-200a is a novel 

Fig. 5  miR-200c-3p binds to SOX2. a miR-200c-3p binds to the sequence of the SOX2 3′-UTR region. b Luciferase activity assay for verify the 
relationship between miR-200c-3p and SOX2. *P < 0.05 vs the NC group

Fig. 6  Upregulation of miR-200c-3p suppresses proliferation of RCC cells. a Effect of overexpressed miR-200c-3p on OS-RC-2 cell proliferation in 
each group; b Effect of downregulated miR-200c-3p and downregulated SOX2 on A498 cell proliferation in each group. N = 5; *P < 0.05 vs the blank 
group
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candidate target for tumor therapy through modulat-
ing the Wnt/β-catenin signaling pathway [30]. As pre-
viously reported, the Wnt/β-catenin signaling pathway 
was restricted by overexpressed miR-195-5p while was 
activated by suppressed miR-195-5p in RCC cells [31]. 
Meanwhile, the results in another study has demon-
strated that UBE3C may have a relationship with prolif-
eration, invasion as well as migration of RCC cells via the 
Wnt/β-catenin signaling pathway activation [21]. It has 
been revealed that an incapability to inhibit the Wnt/β-
catenin signaling may result in the pathogenesis of loss-
of-function mutations of SOX2 in human patients [32]. 
Evidence has shown that overexpression of SOX2 leads to 

increased expression of β-catenin [33], and overexpres-
sion of SOX2 activates the Wnt/β-catenin pathway [34]. 
However, it has also been suggested that overexpression 
of SOX2 contributed to suppression of Wnt/β-catenin 
signaling activity [35]. The inconsistent results might 
result from different tumor types combined with other 
influencing factors. Another study has indicated SOX15 
repressed tumor formation in pancreatic ductal adeno-
carcinoma via the block of the Wnt/β-catenin signaling 
pathway [36]. We also found that SOX2 was a target gene 
of miR-200c-3p. In accordance with the results in our 
study, a prior study has revealed that miR-200c-3p down-
regulation results in the paclitaxel resistance of breast 
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cancer cells through targeting SOX2 [37]. Another study 
has demonstrated that miR-200 family members regu-
lating SOX2 and E2F3 might be of great importance to 
transfer pluripotent or multipotent stem/progenitor cells 

to more differentiated cells [38]. Furthermore, it has been 
suggested that miR-200c overexpression could down-
regulate SOX2 and KlLF4 and elevate the activity of Wnt 
signaling suppressed by SOX2, implying that miR-200c 
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could function as a unique osteo-inductive agent used for 
bone healing and regeneration [39]. Liao et al. have found 
that novel interaction between SOX17 and miR-200 [40], 
and another study also suggested that SOX-1 and SOX-9 
are determined to be the direct targets of miR-200 and 
miR-145, respectively [41]. The relationship between 
miR-200c-3p and SOX2 needs further verification. All 
these above verified the correlations among miR-200c-3p, 
SOX2 and the Wnt/β-catenin signaling pathway.

Our study also had advantage and limitation. This cur-
rent study offers a effective and promising approach for 
miRNA-related and evidence-based RCC therapy, which 
could be helpful for the treatment of RCC in clinical. 
Nevertheless, due to the lack of follow-up data, this study 
failed to elucidate the role of the examined molecular 
markers as potential prognostic markers, which will be 
studies in future research.

Conclusion
In conclusion, EMT-associated miR-200-3p were 
decreased in clinical RCC samples, which may act as a 
tumor inhibitor via binding to certain cancer-associated 
genes and pathways. Besides, the results from this cur-
rent study could offer a effective and promising approach 
for miRNA-related and evidence-based RCC therapy. 
Thus, better recognition of the in-depth molecular path-
ways controlled by miR-200-3p might contribute to bet-
ter diagnostic, therapeutic and prognostic as well as 
interventions for RCC. However, we have no relevant 
analysis for the calculation of the survival data, and we 
will conduct relevant experimental analysis to achieve 
better results in the follow-up experiments.
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