
Le et al. Cancer Cell Int          (2019) 19:228  
https://doi.org/10.1186/s12935-019-0949-0

PRIMARY RESEARCH

NAP1L1 is a prognostic biomarker 
and contribute to doxorubicin chemotherapy 
resistance in human hepatocellular carcinoma
Yong Le1,2†  , Anna Kan2†, Qi‑Jiong Li1,2†, Min‑Ke He1,2, Hai‑Long Chen2 and Ming Shi1,2*

Abstract 

Background:  Hepatocellular carcinoma (HCC) is one of the most fatal cancers, and its molecular basis needs to be 
delineated to identify biomarkers for its potential treatment. The purpose of this study was to identify a novel gene, 
nucleosome assembly proteins 1-like 1 protein (NAP1L1), associated with aggressive phenotypes of HCC.

Methods:  Immunohistochemical staining was used to detect NAP1L1 protein expression in HCC tissues. The prog‑
nostic value of NAP1L1 expression was determined using Kaplan–Meier analysis and the Cox proportional hazards 
model. CCK-8 and apoptosis assays were used to detect the chemosensitivity in vitro. Xenograft tumor models were 
used to evaluate tumor cell proliferation and chemosensitivity in vivo.

Results:  NAP1L1 expression was significantly upregulated in tumor tissues as compared to adjacent non-tumor 
tissues. High NAP1L1 expression in HCC tissues was associated with aggressive clinicopathologic features, such as 
serum AFP levels, tumor size and tumor number. Patients with high NAP1L1 expression had poor overall survival in 
our cohort and in the extra-validation cohort analyzed by TCGA microarray dataset and was further identified as an 
independent prognostic factor in HCC patients treated with radical resection. Both in vitro and in vivo assays showed 
that NAP1L1 promoted HCC cell proliferation and contribute to chemotherapy resistance. Further analyses found 
that some certain stemness associated genes were decreased concurrently with NAP1L1 down-regulation in HCC cell 
lines.

Conclusions:  Our findings support that NAP1L1 is a prognostic biomarker and may contribute to chemotherapy 
resistance in human hepatocellular carcinoma.
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Background
Hepatocellular carcinoma (HCC) is the fifth most com-
mon cancer and the second leading cause of cancer 
mortality worldwide, and results in more than 700,000 
deaths annually [1]. It is particularly prevalent in China, 
Southeast and Eastern of Asia and sub-Saharan Africa 
[2]. Most cases of HCC are associated with well-known 
underlying risk factors, such as chronic viral hepatitis and 

alcohol abuse. Despite improvements in diagnostic and 
treatment strategies, the overall survival (OS) of HCC 
patients remains poor due to postoperative recurrence 
and metastasis [3, 4]. Therefore, it is urgent to investigate 
the molecular mechanism involved in HCC initiation and 
progression, which can be used to help oncologists devise 
optimal treatment strategies and improve prognoses in 
HCC patients.

The human Nucleosome assembly proteins 1-like 
protein (NAP1L) family comprises NAP1L1, NAP1L2, 
NAP1L3, NAP1L4, NAP1L5, and NAP1L6 [5]. NAP1L1 
and L4 expressed ubiquitously in human tissues are 
highly conserved compared with NAP1L2, L3, and L5, 
which are expressed predominantly in the brain [6, 7]. 
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The functions of NAP1L proteins that have been attrib-
uted include nucleosome assembly, histone transport, 
histone eviction, transcriptional regulation, and cell 
cycle progression [8]. NAP1L1 can be detected in most 
human tissues and cell lines, but increased levels were 
often found in rapidly proliferating cells [5]. Several 
studies have identified NAP1L1 being highly expressed 
in tumors [9–12], which pointed to its potential role in 
this type of human malignancy. Previous studies also 
demonstrate that NAP1L1 is over-expressed in fetal liver 
compared with adult liver [13], in hepatoblastoma com-
pared to healthy adult liver [14]. For now, data regard-
ing the potential role of NAP1L1 in HCC tumorigenesis 
and progression are limited.Therefore, the frequent aber-
rant expression of NAP1L1 in HCC tissues was analyzed 
in our present study. Furthermore, we investigated the 
prognostic significance of NAP1L1 protein expression 
levels in HCC patients. Both in  vitro and in  vivo assays 
showed that NAP1L1 promoted HCC progression and 
contribute to chemotherapy resistance.

Methods
Patients and samples
This study was approved by the Research Ethics Com-
mittee of Sun Yat-Sen University Cancer Center. All 
patients provided informed consent to participate in the 
study before they underwent tumor resection. The tissue 
microarrays consisted of HCC tissues obtained from 304 
patients who were diagnosed with HCC between January 
2005 and December 2012 at Sun Yat-Sen University Can-
cer Center. The inclusion criteria were (1) histologically 
confirmed diagnosis, (2) no neoadjuvant chemotherapy 
or radiotherapy prior to surgery. Patients with serious 
complications, other malignant diseases, or no complete 
follow-up data were excluded from this study. The tumor 
stage was determined according to the 7th Edition tumor 
node-metastasis classification system.

Transarterial chemoembolization treatment after surgery
Transarterial chemoembolization (TACE) was performed 
using the techniques described in our previous report 
[15]. Briefly, lobaplatin (50 mg), epirubicin (50 mg), and 
mitomycin C (6 mg) were mixed in 9 ml of water-soluble 
contrast medium and 1 ml of sterile water for injection. 
Depending on the size of, location of, and arterial supply 
to the tumor, the tip of the catheter was advanced into 
the segmental artery or specific tumor-feeding artery.

Immunohistochemical staining
Immunohistochemical (IHC) staining was performed as 
described in previous study [16]. Briefly, Tissue sections 
prepared for antigen retrieval by microwave treatment in 
citrate buffer (pH 6.0) were incubated with anti-NAP1L1 

(Sigma, America), anti-Ki67 (Zsbio, China), anti-cleaved-
caspase 3 (Affinity, China) primary antibodies. Immu-
nostaining was performed using the Envision System 
with diaminobenzidine (Dako Cytomation, Glostrup, 
Denmark). To assess the expression level of NAP1L1 in 
HCC tissue microarrays, a Vectra-Inform image analysis 
system (Perkin-Elmer Applied Biosystems) was used as 
described in previous studies [17, 18].

Western blot assay
Total protein were extracted using the Protein Extrac-
tion Kit (KeyGEN BioTECH, Nanjing, China) according 
to the manufacturer’s instructions. Protein lysates were 
separated by 10% SDS-PAGE and then transferred to a 
PVDF membrane. After the membranes were blocked, 
they were incubated with various antibodies at 4 °C over-
night including, anti-GAPDH (CST, USA), anti-NAP1L1 
(Sigma, Germany), anti-NOTCH1 (CST, USA), anti-
OCT4 (Santa Cruz, CA, USA), anti-SOX2 (Santa Cruz, 
CA, USA), anti-c-MYC (CST, USA) and anti-ABCG2 
(Abcam, UK). Then, the membranes were incubated with 
horseradish peroxidase-conjugated antibodies at room 
temperature for 45  min. Protein signals were detected 
using enhanced chemiluminescence (Pierce, Rockford, 
IL, USA).

RNA extraction, reverse transcription, and real‑time PCR
Total RNA was isolated from cell lines using TRIzol 
Reagent (Invitrogen Life Technologies) according to the 
manufacturer’s instructions. Each cDNA was synthesized 
from 2 μg of total RNA using a Revert Aid First–Strand 
cDNA Synthesis Kit (TOYOBO, Osaka, Japan). For the 
real-time PCR assay, cDNA was subjected to PCR ampli-
fication using SYBR Green (Toyobo, Osaka, Japan) and a 
Roche LightCycler 480 System. GAPDH was used as an 
internal control. The primers used in this study were in 
Additional file 1: Table S1.

Cell lines and culture conditions
Four human HCC cell lines, i.e., Hep3B, SK-Hep-1, 
Huh7, and SMMC-7721, and one normal hepatic cell 
line, i.e., L02, were kindly obtained from the National 
Cancer Centre Singapore (NCCS). All cell lines were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) 
(Gibco, Carlsbad, CA, USA) supplemented with 10% fetal 
bovine serum (FBS) (Gibco). The cells were incubated in 
a humidified incubator supplied with 5% carbon dioxide 
at 37 °C.

Plasmid constructs and transfection
The psi-LVRH1GP vector containing short hairpin 
RNAs (shRNA) targeting NAP1L1 was purchased from 
GeneCopoeia and transfected into HCC cells using a 
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Lenti-Pac™ HIV Expression Packaging Kit (GeneCo-
poeia, Inc.) according to the manufacturer’s instructions.

In vitro cell growth and cytotoxicity assays
The proliferative activity and cytotoxicity assays of 
cells was determined by CCK8 assay as the manufac-
ture’ instruction (Dojindo, Japan).

Flow cytometry analysis of apoptotic cells
The SMCC-7721-NC/sh-NAP1L1 cell lines were 
treated with doxorubicin (DOX, 1 mg/l, KeyGEN Bio-
TECH, Nanjing, China) for 24 h. The sk-hep-1-NC/sh-
NAP1L1 cell lines were treated with DOX (2 mg/l) for 
24 h. Cell apoptosis was evaluated with the AnnexinV-
PI kit (KGA1030, KeyGEN BioTECH, Nanjing, China). 
Stained cells were analyzed using fluorescence-acti-
vated cell sorting (FACS) Canto I or II (BD Bioscience) 
and FlowJo software.

Animal study
All the animal experiments were performed in accord-
ance with the guidelines of the Laboratory Animal Eth-
ics Committee of Sun Yat-Sen University. Male BALB/c 
nude mice (4–5  weeks old) from the Beijing Vital River 
Laboratory Animal Technology (Beijing, China) were 
used. Sk-hep-1-sh-NAP1L1 and sk-hep-1-NC cells 
(1 × 106/mice) were subcutaneously inoculated into the 
right inguinal of the nude mice. After 1  week, the mice 
were further randomly assigned into the following differ-
ent groups: Sk-hep-1-sh-NAP1L1 + normal saline (NS), 
Sk-hep-1-sh-NAP1L1 + DOX, Sk-hep-1-NC + NS, Sk-
hep-1-NC + DOX. DOX, Intraperitoneal, 3 mg/kg, twice 
per week. After treatment for 2 weeks, the subcutaneous 
tumors were resected, fixed in phosphate-buffered neu-
tral formalin, sectioned serially, and stained with hema-
toxylin–eosin. Then, immunohistochemical analysis was 
performed. Tumor volumes was calculated using the for-
mula V = length × width × height/2.

Statistical analysis
SPSS 20.0 software (IBM, Chicago, IL, USA) and Graph-
Pad Prism V6.0 (GraphPad, La Jolla, CA, USA) were 
used for statistical analysis. For continuous variables, the 
data are expressed as the mean ± standard error of the 
mean. The significance of differences between values was 
determined using the Student’s t test. The Chi squared 
test was applied to examine the correlation between 
NAP1L1 expression and clinical pathological parameters. 
Survival curves for patients were calculated using the 
Kaplan–Meier method and analyzed using the log-rank 
test. Prognostic factors were examined by univariate and 
multivariate analyses using the Cox proportional hazards 
model. All differences were considered statistically signif-
icant with a value of p < 0.05.

Results
NAP1L1 expression in hepatocellular carcinoma tissues
In the preliminary experiment, IHC staining of the HCC 
specimens showed clear and distinguishable cytoplasm 
staining for NAP1L1 in tumor tissues, but negative stain-
ing in adjacent hepatocytes (Fig. 1a, left). NAP1L1 expres-
sion was significantly higher in tumor tissues compared 
to the adjacent non-tumor tissues (p < 0.05, Fig. 1a, right). 
To further investigate the correlation between NAP1L1 
expression levels and HCC prognosis, we performed IHC 
staining in specimens from a set of 304 HCC patients. 
Results showed that the NAP1L1 expression levels in the 
tumor cell cytoplasm varied widely among different HCC 
specimens (Fig.  1b, c). Based on NAP1L1 expression in 
the tumor cell cytoplasm, patients were divided into two 
groups, the NAP1L1 low group (NAP1L1-Lo; Fig.  1b) 
and the NAP1L1 high group (NAP1L1-Hi; Fig. 1c).

We next analyzed the relationship between NAP1L1 
expression levels in tumor cells and the clinicopatho-
logical characteristics. High NAP1L1 expression was 
significantly associated with aggressive clinicopatho-
logic features (i.e., serum AFP levels, larger tumor size, 
and late clinical stage) (Table  1). Kaplan–Meier sur-
vival analysis revealed that patients in the NAP1L1 high 
group had worse OS than those in the NAP1L1 low 

Fig. 1  NAP1L1 expression in hepatocellular carcinoma tissues. a IHC assays of NAP1L1 expression in adjacent non-tumor tissues and tumor (left 
×200, scale bar: 100 μm). NAP1L1 expression levels in tumor tissue are significantly higher than those in adjacent non-tumor tissue (n = 20). The 
IHC H-scores are shown as mean with SD (right). b Representative staining of negative NAP1L1 expression in the tumor cell cytoplasm (left ×40, 
right ×200; scale bar: 100 μm). c Representative staining of positive NAP1L1 expression in the tumor cell cytoplasm (left ×40, right ×200). d 
Kaplan–Meier analysis for OS displayed as the NAP1L1-lo group versus the NAP1L1-Hi group in present study (left). TCGA data (https​://www.prote​
inatl​as.org/) further confirmed that high NAP1L1 expression indicated reduced OS of HCC patients (right). e Kaplan–Meier analysis for DFS displayed 
as the NAP1L1-lo group versus the NAP1L1-Hi group in present study. f Kaplan–Meier analysis for recurred patients who treated with TACE as the 
NAP1L1-lo group versus the NAP1L1-Hi group. IHC Immunohistochemistry, SD standard deviation, OS overall survival, TCGA​ The Cancer Genome 
Atlas, DFS disease-free survival, TACE transarterial chemoembolization. *p < 0.05

(See figure on next page.)
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group (p < 0.001) (Fig.  1d, left). Multivariate survival 
analysis showed that high NAP1L1 expression was an 
independent prognostic factor for OS in HCC patients 
after radical resection (hazard ratio = 1.958 95% con-
fidence interval: 1.391–2.755, p < 0.001) (Table  2). 
Moreover, TCGA data (https​://www.prote​inatl​as.org/) 
also indicated that patients with high NAP1L1 expres-
sion predicted reduced OS of HCC patients (p < 0.001) 
(Fig.  1d, right) compared to those with low NAP1L1 
expression. Meanwhile, the disease-free survival time 
was significantly lower in the high NAP1L1 group than 
in the low NAP1L1 group (p < 0.001, Fig. 1e). Multivari-
ate analysis identified that high NAP1L1 expression was 
also an independent prognostic factor for disease-free 
survival (Table 2).

In our study, 87 patients were recurred after radical 
resection. The subsequent treatment for those patients 
were transarterial chemoembolization (TACE). All 
patients were stratified two groups according to the above 
criterion. The high NAP1L1 expression group showed 
dismal OS after TACE treatment than the low NAP1L1 
expression group (p = 0.007, Fig.  1f ). This results sug-
gested that NAP1L1 expression levels may influence the 
effects of chemotherapy in HCC.

Effect of NAP1L1 expression on the prognosis of HCC 
patients with different TNM stages
We next performed subgroup analysis in the patients 
with different TNM stages to evaluate predictive value of 
NAP1L1 protein expression for OS in HCC patients after 
curative hepatectomy. All patients were stratified accord-
ing to the TNM seventh staging system. Kaplan–Meier 
plots of patients with different TNM stages are shown 
in Fig.  2. Of the 219 patients at stage I–II, 86 patients 
were identified as having positive NAP1L1 expression in 
tumor cells. Patients with positive NAP1L1 expression 
had a poorer surgical prognosis than those with negative 
NAP1L1 expression in tumor cells (p < 0.001, Fig. 2a). Of 
the 85 patients at stage III–IV, the prognosis of patients 
with NAP1L1 expression in tumor cells was poorer 
than that of patients with negative NAP1L1 expression 
in tumor cells (p < 0.001, Fig.  2b). TCGA data (https​://
www.prote​inatl​as.org/) confirmed the results that HCC 
patients with high NAP1L1 expression predicted poorer 
overall survival in both TNM stage I–II and III–IV, 
respectively (p < 0.001 and p < 0.001, Fig. 2c, d).

NAP1L1 knockdown suppresses tumor growth 
and increasing chemosensitivity in vitro
First, we examined the NAP1L1 expression pattern in 
HCC cell lines (Hep3B, Sk-hep-1, Huh7, SMCC-7721) 
and normal liver cells (L02). Notably, all cell lines dis-
played high protein expression levels of NAP1L1 (Fig. 3e, 
left). To further investigate the role of NAP1L1 in HCC, 
NAP1L1 was stable knockdown in sk-hep-1 and SMCC-
7721 cell lines, respectively (Fig.  3e, right). Scrambled 
short hairpin RNA (shRNA) was used as a negative con-
trol (NC). CCK-8 assay indicated that NAP1L1 knock-
down significantly suppressed the proliferation of 
SMCC-7721 cells (Fig. 3a, left) and sk-hep-1 cells (Fig. 3a, 
right), respectively. Moreover, cytotoxicity assays and 
apoptosis assay indicated that downregulated of NAP1L1 
increased the sensitivity of SMCC-7721 and Sk-hep-1 
cells to doxorubicin (Fig. 3b, c).

Cancer stem cells (CSC) are thought to be responsible 
for the development, recurrence and chemo-resistance of 
HCC. Previously studies also demonstrated that NAP1L1 
is over-expressed in fetal liver compared with adult liver. 

Table 1  Correlation between NAP1L1 expression and   
clinicopathologic characteristics (n = 304)

Variable No. NAP1L1 expression levels p value

Low High

Age (years)

 < 50 159 78 81

 ≥ 50 145 92 53 0.012

Gender

 Female 32 17 15

 Male 272 153 119 0.736

Serum AFP (ng/ml)

 < 400 165 109 56

 ≥ 400 139 61 78 < 0.001

Cirrhosis

 No 102 61 41

 Yes 202 109 93 0.333

Tumor size (cm)

 < 5 170 115 55

 ≥ 5 134 55 79 < 0.001

Tumor number

 Solitary 233 138 95

 Multiple 71 32 39 0.035

HbsAg

 No 28 22 6

 Yes 276 148 128 0.011

Microvascular invasion

 No 200 119 81

 Yes 104 51 53 0.081

BCLC stage

 0–A 228 140 88

 B–C 76 30 46 0.001

TNM stage

 I–II 219 133 86

 III–IV 85 37 48 0.007

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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In our present study, NAP1L1 was found re-expressed in 
a subgroup of patients who have HCC and an unfavora-
ble prognosis. Therefore, we sought to evaluate whether 
the expression of NAP1L1 is correlated with CSC-related 
markers. We found that some certain CSC-related mark-
ers, such as SOX2, OCT3/4, C-MYC, NOTCH1 and 
ABCG2 were decreased concurrently with NAP1L1 
down-regulation in the 7721 cell line (Fig. 3d). Similarly, 
those CSC-related markers were also decreased in sk-
hep-1-shNAP cell line compare to sk-hep-1-NC cell line. 
Moreover, NOTCH1 and ABCG2 protein expression lev-
els were decreased concurrent with NAP1L1 down-regu-
lation in liver cancer cells by WB analysis (Fig. 3e).

NAP1L1 knockdown suppresses tumor growth 
and increasing chemosensitivity in vivo
The stable knockdown cell line, sk-hep-1-shNAP1L1 
and the negative control cell line, sk-hep-1-NC were 
implanted into nude mice to examine the proliferation 
and chemosensitivity in  vivo, respectively. Both tumor 
weight and tumor volume in sk-hep-1-shNAP1L1 

group were significantly lower than those in sk-hep-
1-NC group (Fig. 4a–c). Moreover, tumor weight as well 
as tumor volume in sk-hep-1-sh-NAP1L1 plus DOX 
group were significantly suppressed compared with that 
of either agent alone (Fig.  4a–c). IHC analysis in the 
excised tumor sections demonstrated that Ki67-positive 
cells were decreased, while cleaved caspase 3-positive 
cells were increased in the sk-hep-1-sh-NAP1L1 plus 
DOX group compared with that of either agent alone 
(Fig. 4d).

Discussion
Here, we identified the frequent aberrant expression of 
NAP1L1 in HCC tissues, and this expression pattern was 
associated with malignant clinicopathological character-
istics. Furthermore, multivariate analyses revealed that 
NAP1L1 expression in tumor cells was an independent 
and significant risk factor affecting patients’ overall sur-
vival and disease-free survival after curative resection.

In previous studies, NAP1L1 expression was reported 
to be upregulated in several cancers such as renal cancer 

Table 2  Univariate and multivariate analysis associated with OS and DFS (n = 304)

Variables Overall survival Disease-free survival

Univariate p value Multivariable analysis Univariate p value Multivariable analysis

HR (95% CI) p value HR (95% CI) p value

Age (years)

 < 50

 ≥ 50 0.241 0.246

Gender

 Female

 Male 0.965 0.352

HbsAg

 No

 Yes 0.910 0.343

AFP (ng/ml)

 < 400

 ≥ 400 0.079 n.a. 0.012 n.a.

Tumor size (cm)

 < 5.0

 ≥ 5.0 < 0.001 2.548 (1.799–3.607) < 0.001 < 0.001 2.417 (1.755–3.328) < 0.001

Tumor number

 Solitary

 Multiple < 0.001 1.532 (1.061–2.212) 0.023 < 0.001 1.509 (1.054–2.159) 0.025

Microvascular invasion

 No

 Yes < 0.001 3.160 (2.227–4.484) < 0.001 < 0.001 1.973 (1.415–2.751) < 0.001

NAP1L1 expression

 Low

 High < 0.001 1.958 (1.391–2.755) < 0.001 < 0.001 1.876 (1.373–2.565) < 0.001
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cell [19], pancreatic neuroendocrine neoplasm [12] and 
colon cancer [20], but its prognostic value has not yet 
been reported. Here, we found that NAP1L1 expression 
was significantly upregulated in HCC as compared to 
the adjacent non-tumor hepatocytes, and high NAP1L1 
expression was significantly associated with aggressive 
clinicopathologic features (i.e., serum AFP levels, larger 
tumor size and late clinical stage). Multivariate analy-
sis showed that upregulated NAP1L1 expression was an 
independent factor for poor prognosis in HCC after cura-
tive resection. Furthermore, higher NAP1L1 expression 
in tumor cells predicted poorer overall survival for TNM 
stage I-II patients. The findings of our present study sug-
gested that the measurement of NAP1L1 expression in 
tumor cells could identify worse prognoses among early 
stage HCC patients. Consistence with our present results, 
TCGA database suggest that patients with high NAP1L1 

mRNA levels had worse OS than those with NAP1L1 low 
expression.

Cancers have a subpopulation of CSCs or tumor-initiat-
ing cells, which have properties shared with normal stem 
cells [21, 22]. Those cells have aggressive phenotypes in 
oncogenesis and are resistant to chemotherapies and 
radiation therapies [23]. Interestingly, studies have dem-
onstrated that NAP1L1 is over-expressed in fetal liver 
compared with adult liver [13]. In our present study, we 
demonstrated that NAP1L1 was re-expressed in a sub-
group of patients who have HCC and usually indicated 
an unfavorable prognosis. Moreover, we found that high 
NAP1L1 expression predict poor survival in patients who 
treated with TACE. Taken together, we hypothesis that 
NAP1L1 might be an oncofetal protein in HCC. In vitro 
and in  vivo assays indicated that knockdown NAP1L1 
expression in HCC cells increase chemosensitivity. Q-pcr 

a

c

b

d

Fig. 2  Effect of NAP1L1 expression on the prognoses of patients with different TNM stages. Kaplan–Meier analysis for OS displayed as the NAP1L1 
low group versus the NAP1L1 high group in TNM stage I–II (a) and stage III–IV (b). Kaplan–Meier analysis for OS displayed as the NAP1L1 low group 
versus the NAP1L1 high group in TNM stage I–II (c) and stage III–IV (d) based on TCGA database. OS overall survival, TCGA​ The Cancer Genome Atlas

Fig. 3  NAP1L1 knockdown suppresses tumor growth and increasing chemosensitivity in vitro. a Cell growth of 7721-shNAP1L1, 
sk-hep-1-shNAP1L1 and the control cells was analyzed by CCK8 assays. b Cytotoxicity assays of 7721-shNAP1L1, SK-hep-1-shNAP1L1 and the 
control cells was analyzed by CCK8 assays. c Flow cytometry analysis 7721-shNAP1L1, sk-hep-1-shNAP1L1 and the control cells treated with DOX 
for 24 h. d Cancer stem related markers’ mRNA expression levels were measured in the 7721-shNAP1L1, sk-hep-1-shNAP1L1 and the control cells. 
e Western blotting analyzed NAP1L1 protein levels in different cell lines (left upper). Western blotting showed NAP1L1 significantly downregulated 
in 7721-shNAP1L1, sk-hep-1-shNAP1L1 compared to their respective control cells (left down). Western blotting analyzed NOTCH1, ABCG2, C-MYC, 
OCT4 and SOX2 protein level in 7721-shNAP1L1, sk-hep-1-shNAP1L1 and their respective control cells (right). Abbreviations: DOX, doxorubicin; 
p < 0.05, **p < 0.01, ***p < 0.001

(See figure on next page.)
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assays also indicated that some certain stemness associ-
ated genes, such as SOX2 [24], OCT3/4 [25], NOTCH1 
[26], C-MYC [27] and ABCG2 [28] were decreased con-
currently with NAP1L1 down-regulation in HCC cells.

The Notch signaling pathway is an evolutionarily con-
served pathway and has been reported to promote the 
self-renewal, proliferation, survival of CSCs in several 
malignancies [26, 29, 30]. It is one of the most intensively 
studied candidate therapeutic targets in cancer stem 
cells, and several Notch inhibitors are being developed 
[31, 32]. Previous studies has also demonstrated that 
the Notch1 pathway play important roles in the mainte-
nance and proliferation of liver CSCs [33, 34]. In our pre-
sent study, data showed that NOTCH1 expression levels 
were decreased in concurrently with NAP1L1 down-
regulation in HCC cell lines by Q-PCR and WB analysis. 
Meanwhile, the direct target gene of NOTCH1, ABCG2 
[35] were also decreased in liver cancer cells which was 
down-regulated NAP1L1 expression. These above results 
implied that NAP1L1 down regulation confers liver can-
cer cells sensitivity to doxorubicin may through inhib-
iting NOTCH1/ABCG2 signal pathway. However, the 

specific mechanism that NAP1L1 regulate NOTCH1 
expression should be further explored.

Conclusions
Our study shows that NAP1L1 play an important role 
in HCC progression and contribute to chemotherapy 
resistance. The underlying mechanism of NAP1L1 pro-
mote HCC progression should be further explored which 
might enhances the potential of NAP1L1 as a treatment 
target in HCC.
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