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A panel of Transcription factors identified 
by data mining can predict the prognosis 
of head and neck squamous cell carcinoma
Boxin Zhang2, Haihui Wang1, Ziyan Guo1 and Xinhai Zhang1* 

Abstract 

Background:  Transcription factors (TFs) are responsible for the regulation of various activities related to cancer like 
cell proliferation, invasion, and migration. It is thought that, the measurement of TFs levels could assist in developing 
strategies for diagnosis and prognosis of cancer detection. However, due to lack of effective genome-wide tests, this 
cannot be carried out in clinical settings.

Methods:  A complete assessment of RNA-seq data in samples of a head and neck squamous cell carcinoma (HNSCC) 
cohort in The Cancer Genome Atlas (TCGA) database was carried out. From the expression data of six TFs, a risk score 
model was developed and further validated in the GSE41613 and GSE65858 series. Potential functional roles were 
identified for the six TFs via gene set enrichment analysis.

Results:  Based on our multi-TF signature, patients are stratified into high- and low-risk groups with significant varia-
tions in overall survival (OS) (median survival 2.416 vs. 5.934 years, log-rank test P < 0.001). The sensitivity and specific-
ity evaluation of our multi-TF for 3-year OS in TCGA, GSE41613 and GSE65858 was 0.707, 0.679 and 0.605, respectively, 
demonstrating good reproducibility and robustness for predicting overall survival of HNSCC patients. Through multi-
variate Cox regression analyses (MCRA) and stratified analyses, we confirmed that the predictive capability of this risk 
score (RS) was not dependent on any of other factors like clinicopathological parameters.

Conclusions:  With the help of a RS obtained from a panel of TFs expression signatures, effective OS prediction and 
stratification of HNSCC patients can be carried out.
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Background
Head and neck squamous cell carcinoma (HNSCC) is a 
solid malignancy that is the sixth most common human 
cancer, with an annual incidence of more than 600,000 
[1]. A combination of chemotherapy, radiotherapy, and 
adequate surgical resection has transformed HNSCC 
from a universally deadly disease to a potentially curable 
one; nevertheless, fewer than half of all patients are saved, 
with a 5-year survival rate < 50% [2]. Traditional strati-
fication schemes based on multiple clinicopathological 

parameters such as the American Joint Committee on 
Cancer (AJCC) TNM staging system have been recog-
nized as the primary criteria providing prognostic guid-
ance for the management of patients with HNSCC [3, 
4]. Despite the ease of its implementation and its wide 
application, TNM staging is insufficient for forecasting 
prognosis and estimation for subsets of HNSCC patients, 
and individual variation of survival times within the same 
stage is considerable [5, 6]. Risk scores (RS) that capture 
such individual variation might guide better therapeutic 
strategies. An increasing body of evidence suggests that 
molecular risk assignments could be used to promote 
prognostic assessment and identification of potential 
high-risk HNSCC patients [6–9].
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Proteins that bind to specific DNA sequences and con-
trol the transcription rate of genetic information from 
DNA to mRNA, are called Transcription factors (TFs) 
[7]. Their role is to regulate genes (turn on and off) and 
ensure expression in the required cells at the appropri-
ate time and at required quantities. Increasing amounts 
of evidence suggest that deregulation of TFs character-
izes the majority of human cancers, and some have been 
associated with cancer diagnosis and prognosis [8, 9]. For 
example, p53 is a tumor suppressor protein, and muta-
tions of this gene can be detected in more than half of all 
human cancers [10]; c-Myc is another important onco-
gene that is overexpressed in some malignant cancer 
cells and has been associated with tumor progression and 
poor clinical outcome [11]. Because of the significance 
of TFs in many biological processes and their aberrant 
activity in human cancer, we hypothesized that expres-
sion patterns of TFs may act as potential prognostic bio-
markers of cancer.

The current cancer sample datasets which can be 
accessed via the TCGA and other similar resources, are 
an abundant data source which can assist in the identi-
fication of biomarker signatures and predict disease out-
comes [12, 13]. In our study, an extensive evaluation of 
the RNA-seq data across a 502 HNSCC patient cohort 
was carried out with the help of available TCGA datasets. 
Using a univariate survival analysis (USA) and multivari-
ate Cox stepwise regression (MCSR) algorithm, we identi-
fied six prognosis-related TFs. Based on their expression 
in the TCGA series, a prognostic model was built and 
validated in another independent series (GSE41613 and 
GSE65858). Further MCRA and stratified analysis was 
used to confirm if the multi-TF signature was an inde-
pendent indicator of HNSCC. Our investigation will put 
forward new insights in methods of overall survival (OS) 
prediction in patients suffering from HNSCC.

Methods
Patient data extraction
Gene expression data for HNSCC were download from 
the TCGA (https​://cance​rgeno​me.nih.gov/) database. 
The HNSCC cohort comprised 502 tumor tissues and 44 
adjacent normal tissues. The probe IDs were converted to 
gene symbols in these datasets based on their Ensembl 
gene IDs, generating a dataset including the expression 
values for each gene. Corresponding patient clinical data 
which includes the gender, age, alcohol consumption, 
histologic tumor grade, lymph node dissection, HPV 
status, TNM stage, PNI, ENE, and LVI are displayed in 
Additional file  1. The GSE41613 and GSE65858 data 
set was download from the GEO database as an exter-
nal validation series. The microarray data of GSE41613 
and GSE65858 were based on the Affymetrix Human 

Genome U133 Plus 2.0 Array platform and Illumina 
HumanHT-12 V4.0 expression beadchip, respectively. 
Probes were matched to the gene symbols with a manu-
facturer-provided annotation file.

Identification of predictive TFs
The RNA-seq data of HNSCC covered 18,101 coding 
genes containing 1639 TFs. The DESeq package in Bio-
conductor was used to screen the differentially expressed 
TFs in HNSCC (Padj < 0.05 and absolute log2FC > 1). TF 
expression values were transformed as the log2(x + 1) of 
normalized expression values for further analysis. After 
excluding patients without clinical survival informa-
tion, 498 patients were chosen for the USA. TFs with a 
P-value of < 0.01 were selected for USA using the R sur-
vival package. TFs that passed this filter criterion were 
further analyzed with a multivariate Cox stepwise regres-
sion (MCSR) algorithm, as described previously [14, 15]. 
At each stage in the process, the deletion of each variable 
was tested with the help of a chosen model fit criterion. 
Based on whether the loss of a variable gave statistically 
insignificant deterioration of the model fit (F test), the 
variables were deleted till a statistically significant loss 
of fit was seen. Based on the estimated regression coef-
ficients in the MCRA and the selected TFs, a risk score 
was then developed to combine the expression levels of 
six TFs (HOXA1, ZNF662, LHX1, ZBTB32, MEIS1 and 
HOXB8) in HNSCC specimens. In this study, the six-TF 
signature was defined as a multi-TF signature.

Statistical analyses
According to the MSCR algorithm, the RS of individual 
patients were estimated, and they were split into high- 
and low-risk subgroups based on the median RS cut off. 
This RS formula was further confirmed by the GSE41613 
and GSE65858 dataset. Univariate Cox proportional 
hazards regression analyses was used to determine the 
predictive value of our multi-TF signature and other 
traditionally evaluated clinically relevant parameters, 
defining the hazard ratios and 95% confidence inter-
vals. Multivariable Cox regression analyses were used to 
determine if the RS values were independent predictors 
in HNSCC patients. In stratified analysis, the prognosis 
power of our multi-TF signature in various clinical sub-
types was determined by Kaplan–Meier analysis via log 
rank tests. The sensitivity and specificity of the RS was 
analyzed using receiver operating characteristic (ROC) 
analyses. For the log-rank tests, univariate survival analy-
ses and multivariable Cox regression analyses. P < 0.05 
was considered as statistically significant. All statistical 
analyses were performed with SPSS 24.0 (IBM, Armonk, 
NY, USA) and R 3.5.1.

https://cancergenome.nih.gov/
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GSEA analysis
A Java program (http://softw​are.broad​insti​tute.org/
gsea/index​.jsp) was used to perform GSEA with the 
MSigDB C2 CP: Canonical pathways gene set collection. 
Cytoscape (version 3.6.0) was employed to visualize this 
GSEA. Using this, we could investigate the relationship 
between particular gene sets and risk scores for all genes, 
and identify the most positively and negatively associated 
ones with such enrichment scores. Totally, 1000 random 
sample permutations were carried out, with a signifi-
cance threshold of FDR < 0.1 and P < 0.05.

Results
To identify potential prognosis biomarkers, we ana-
lyzed gene expression profiles of HNSCC downloads 
from the TCGA database. Among the expression data 
for 18,101 mRNAs, expression values for 1639 TFs were 
extracted and calculated with R (DESeq). We compared 
gene expression levels between normal and HNSCC tis-
sues and screened 258 dysregulated TFs in tumor tissues. 
Among these TFs, 110 were down-regulated and 148 
were up-regulated relative to control tissues (Fig. 1a, b).

Development of a multi‑TF predictive model in the TCGA 
series
To identify the TFs involved in HNSCC outcomes, 
gene expression profiles of 498 patients with avail-
able survival information were subjected to USA. We 
screened a panel of 24 TFs that were associated with OS 
(P < 0.01). Those 24 TFs were further assessed using an 

MCSR algorithm aimed at constructing a multi-TF sig-
nature that is predictive of survival time in the TCGA 
series. In this way, six TFs were screened out as a can-
didate signature. The detail information of these six TFs 
is shown in Table  1. Based on these six TFs, RS values 
were assigned to each patient as follows: RS = 0.18495* 
HOXA1 − 0.30561* ZNF662 + 0.16043* LHX1 − 0.26993* 
ZBTB32 − 0.25013* MEIS1 + 0.3754* HOXB8. Patients 
on either side of the median RS cut-off were split into 
high- and low-risk groups i.e., high risk-patients had a 
higher probability of dying earlier than the low risk ones 
(Fig.  2b). From a survival heatmap, we were able to see 
that MEIS1, ZNF662 and ZBTB32 were protective TFs 
that had increased expression in low-risk groups, while 
HOXA1, LHX1 and HOXB8 were risk-associated TFs 
that had increased expression in the high-risk individu-
als (Fig. 2c). Kaplan–Meier curves for high- and low-risk 
groups are shown in Fig. 2b. The median OS in low-risk 
patients was 5.934  years longer than the 2.416  years 
median OS of high-risk patients (Fig.  2d; log-rank test 
P < 0.001). Sensitivity and specificity evaluation of our 
multi-TF model was carried out by time-dependent ROC 
analysis. In 3-year ROC curves, the area under the curve 
was 0.707, suggesting good predictive performance for 
3-year OS (Fig. 2e).

Validation of the multi‑TF signature
The predictive value of our 6-TF signature was vali-
dated in another independent HNSCC series obtained 
from GEO (GSE41613 and GSE65858) to confirm its 

Fig. 1  Differentially expressed TFs between HNSCC and adjacent non-tumor tissues. a Volcano plot of differentially expressed TFs with red indicates 
high expression, green indicates low expression and black shows the TFs expression with both the log2FC < 1 and adjusted value < 0.05. The X axis 
represents an adjusted P value and the Y axis represents a log2FC; b Heatmap of the 258 differentially expressed TFs, with green indicating low 
expression and red indicating high expression

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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Table 1  Six TFs that were significantly correlated with overall survival in HNSCC patients

a  Derived from the multivariate Cox stepwise regression analysis in HNSCC patients
b  Derived from the multivariate Cox stepwise regression analysis of HNSCC patients in TCGA cohort

Gene name Ensemble ID Chromosomal P-valuea HRa Coefficientb

HOXA1 ENSG00000105991 Chrom​osome​ 7: 27,092,993–27,095,996 9.12 E−05 1.411664 0.18495

MEIS1 ENSG00000143995 Chrom​osome​ 2: 66,433,452–66,573,869 0.000993 0.750304 − 0.25013

LHX1 ENSG00000273706 Chrom​osome​ 17: 36,657,875–37,056,871 0.002217 1.234142 0.16043

ZNF662 ENSG00000182983 Chrom​osome​ 3: 42,905,731–42,917,641 0.002167 0.69372 − 0.30561

HOXB8 ENSG00000120068 Chrom​osome​ 17: 48,611,377–48,614,939 0.000541 1.335971 0.37540

ZBTB32 ENSG00000011590 Chrom​osome​ 19: 35,704,527–35,717,038 0.005333 0.746947 − 0.26993

Fig. 2  TFs risk score analysis of HNSCC patients in TCGA dataset. a The low and high score group for the TFs signature in patients; b the survival 
status and duration of HNSCC cases; c heatmap of the six prognostic-related TFs expression in HNSCC. The color from blue to red shows a trend 
from low expression to high expression; d the Kaplan–Meier curve for overall survival of two patient groups with high and low-risk groups in the 
TCGA set. The differences between the two curves were evaluated by the two-side log-rank test; e ROC analysis of the risk scores for overall survival 
prediction in the TCGA set. The AUC was calculated for ROC curves, and sensitivity and specificity were calculated to assess score performance

http://asia.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000170689;r=17:48621159-48626356;t=ENST00000311177
http://asia.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000143995;r=2:66433452-66573869
http://asia.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000111046;r=12:80707498-80709474;t=ENST00000228641
http://asia.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000182983;r=3:42905731-42917641
http://asia.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000120068;r=17:48611377-48614939
http://asia.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000011590;r=19:35704527-35717038
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reproducibility. The same prognostic RS model obtained 
from the TCGA series was used to calculate the RS for 97 
patients in the GSE41613 dataset and 270 patients in the 
GSE65858 dataset. Depending on the median cut-off of 
RS, individuals were categorized into low-risk group and 
high-risk groups in two datasets. In GSE41613 datasets, 
the median OS in low-risk group was 2.334 years, while 
median OS in patients in high-risk group was 6.472 years 
(Fig. 3a). In GSE65858 cohort, the median OS in low and 
high-risk group was 3.479 years and 5.312 years, respec-
tively (Fig.  3b). Moreover, the sensitivity and specificity 
evaluation of our multi-TF for 3-year OS in GSE41613 
and GSE65858 was 0.679 and 0.605, respectively (Fig. 3c, 
d). This result consistent with the findings described 

above, demonstrated that our multi-TF signature had 
good reproducibility in HNSCC.

Determination of independent predictive activity 
of the multi‑TF signature
To further investigate whether the multi-TF signature 
was an independent predictor of HNSCC prognosis 
not tied to underlying clinicopathological parameters, 
we performed univariate and MCRA. In univariate Cox 
regression, we found we that the multi-TF signature (95% 
CI HR 2.119–3.668, P < 0.001), TNM staging (95% CI HR 
1.186–1.701, P < 0.001), lymphovascular invasion (LVI, 
95% CI HR 1.186–1.701, P = 0.002), perineural invasion 
(PNI, 95% CI HR 1.186–1.701, P < 0.001), and extranodal 

Fig. 3  Validation of TFs prognostic risk scores in non-overlapping dataset. a Kaplan–Meier survival curves were plotted for the GSE41613 dataset 
(n = 97).; b Kaplan–Meier survival curves were plotted for the GSE65858 dataset (n = 270); c ROC analysis of the risk scores for overall survival 
prediction in the GSE41613 dataset; d ROC analysis of the risk scores for overall survival prediction in the GSE65858 dataset
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extension (ENE, 95% CI HR 1.186–1.701, P < 0.001) 
were significantly associated with OS (Table  2). Subse-
quently, MCRA was performed to test the independence 
of the multi-TF for predicting OS, with the TNM stag-
ing, multi-TF signature, ENE, PNI, and LVI as covariates. 
The results of the MCRA revealed that the multi-TF sig-
nature (95% CI HR 2.119–3.668, P = 0.006), PNI (95% CI 
HR 1.162–2.862, P = 0.009) and ENE (95% CI HR 1.488–
3.817, P < 0.001) were independent prognostic factors 
(Table 2). Therefore, a data stratification analysis was car-
ried out for patients based on PNI and ENE status. Our 
multi-TF signature showed effective prognostic power 
in the ENE (±) and PNI (±) subgroups (Fig. 4a–d). We 
also tested the prognostic value of our multi-TF in vari-
ous clinicopathological statuses that were not defined as 
independent prognosis factors, including TNM stage and 
LVI (Additional file  2: Figure S1a–d). Therefore, these 
results prove that our model can act as an independent 
predictor for the outcomes of HNSCC patients. More 
importantly, the results of the ROC analysis revealed that 
our multi-TF signature could efficiently predict OS, sug-
gesting that this multi-TF signature is a superior predic-
tive model when compared to the existing TNM staging 
(Additional file 3: Figure S2).

Identification of 6‑TF signature correlated with biological 
pathways and processes
Using a GSEA, we explored those processes and signal-
ing pathways that were associated with our 6-TF signa-
ture, using RS for classification. Cytoscape was used to 
visualize significant gene sets (FDR < 0.10, P < 0.05, Fig. 5, 
Additional file 4). We identified clusters of related genes 
associated with high-risk scores, including genes relating 
to regulation of cell cycle, regulation of metabolic pro-
cess, apoptotic process, response to stimulus, immune 

system processes and mRNA catabolic processes. There-
fore, we predict that the six prognostic TFs have an 
important functional role in the progression on tumors.

Discussion
Currently, one of the main parameters to help clini-
cians determine patient outcomes and plan treatments, 
is the TNM staging; nevertheless, variation in outcomes 
suggests that clinical features cannot fully account for 
phenotypes of different potential subtypes [3, 4, 16]. 
Oncogenesis is characterized by several stages that need 
modifications in gene expression programs [17]. TFs play 
important roles in controlling this. Therefore their dys-
regulation is a reason for the acquisition of tumor-asso-
ciated properties [18]. Previous studies [19, 20] reported 
that the expression patterns of TFs may be an effective 
means of grading tumor subtypes. However, to date, 
expression profiles based on TFs in HNSCC have not 
been clarified.

Our study was aimed at identifying a TF expression sig-
nature that could predict outcomes for HNSCC patients 
at individual levels. To this end, we evaluated the prog-
nostic significance of all differentially expressed TFs in 
HNSCC that were chosen on the basis of USA of the 
RNA-seq data retrieved from TCGA. Unfortunately, the 
requirement to measure a number of genes, reduces the 
efficiency of prognostic biomarkers in clinical applica-
tions [21]. Therefore, using an MCSR algorithm, a multi-
TF signature was identified. This was more effective than 
individual TFs as predictive potential was maximized 
while the number of predictors were reduced [14, 15, 21, 
22]. The results of MCSR suggested to us that we should 
construct a model consisting of six TFs that forecast the 
survival time of HNSCC patients.

Table 2  Univariate and multivariate Cox regression analyses in TCGA cohort

Variables Patients Univariable analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Gender (male/female) 366/132 0.329–1.926 0.612

Age (60 vs. > 60) 217/281 0.978–1.616 0.069

Alcohol (no/yes) 157/330 0.731–1.296 0.893

HPV (no/yes) 64/19 0.622–2.481 0.416

Lymph node neck dissection (yes/no) 405/90 0.971–1.888 0.074

Histologic grade (G1/G2/G3/G4) 61/297/119/2 0.893–1.354 0.370

TNM stage (I/II/III/IV) 25/70/78/257 1.186–1.701 < 0.001 0.805–1.541 0.541

Lympho-vascular invasion (no/yes) 218/119 1.208–2.384 0.002 0.588–1.442 0.691

Perineural invasion present (no/yes) 186/163 1.557–3.116 < 0.001 1.162–2.862 0.009

Extranodal extension (no/yes) 290/106 1.989–3.716 < 0.001 1.488–3.817 < 0.001

Risk (low-risk/high-risk) 357/141 2.119–3.668 < 0.001 1.182–2.750 0.006
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Among these TFs, HOXA1 was previously reported 
as an oncogene in HNSCC. Upregulation of HOXA1 
promoted the migration and invasion of HNSCC cells 
via the EMT pathway. More importantly, high lev-
els of HOXA1 were discovered to be linked with poor 
prognosis of HNSCC [23]. This finding accorded with 
our results. Another candidate HOXB8, similarly to 
HOXA1, was a member of HOX family that was found 
to be significantly linked with tumor metastasis and 
shorter overall survival in many human cancers [24–
26]. Further investigation revealed that HOXB8 was a 
predictor of the effects of FOLFOX4 chemotherapy in 
metastatic colorectal cancer [27]. Therefore, we hypoth-
esized that HOXB8 may act as an oncogene in HNSCC 
progression; further investigation of this hypothesis is 
needed. Aberrant expression of ZNF662 caused by epi-
genetic changes via DNA hypermethylation was a valu-
able biomarker of tumorigenesis and advanced HNSCC 
[28]. In our study, ZNF662 was expressed at low levels 

in HNSCC and was associated with shortened survival. 
Down-regulation of MEIS1 modulated the leukemic 
cell response to chemotherapeutic-induced apoptosis 
[29]. Additionally, LHX1 was reported as a driver gene 
of clear cell renal cell carcinoma proliferation, apopto-
sis, and promoting tumor growth [30]. In the present 
study, the up regulation of LHX1 was an indicator of 
poor prognosis of HNSCC. This suggests that MEIS1 
may participate in the regulation of chemoresistance in 
HNSCC and may be potential targets for anti-HNSCC 
drugs in the future. A recent study showed that ZBTB32 
facilitated transcriptional repressor Zpo2 targeting to 
the GATA3 promoter to downregulate GATA3 expres-
sion and activity. Modulation of GATA3 by ZBTB32 in 
turn caused the development of aggressive breast can-
cers [31]. In our study, loss of ZBTB32 was associated 
with shortened survival time in HNSCC.

Taken together, the Kaplan–Meier analyses and ROC 
analyses demonstrated that expression of these TFs was 

Fig. 4  Kaplan–Meier estimates of the OS of HNSCC patients using the multi-TFs signature, stratified by clinicopathological. a Kaplan–Meier survival 
curves for ENE (−) patients. b Kaplan–Meier survival curves for ENE (+) patients. c Kaplan–Meier survival curves for PNI (−) patients. d Kaplan–Meier 
survival curves for PNI (+) patients
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a powerful predictor prognosis of HNSCC, suggesting its 
potential research value in the context of HNSCC.

Previous simulations have shown that the prognostic 
models which are significantly linked with survival times 
in the training data set can also be developed when using 
entirely independent dataset [32]. In this study, the use-
fulness of this multi-TF signature was validated in the 
non-overlapping cohort in GSE41613 and GSE65858, 
indicating good reproducibility of this multi-TF signature 
in HNSCC.

Multivariate analysis showed that PNI and ENE were 
independent clinicopathological factors for predicting 
the risk of HNSCC. Perineural growth is an unusual 
means of tumor cells growth that is not least resist-
ance; it indicated high risk of postoperative recurrence 
and was an important poor prognosis factor in HNSCC 
[33]. ENE was defined as tumor cells infiltrating extran-
odal tissues beyond the capsule of affected lymph 

nodes. It was a characteristic of more aggressive can-
cer and was associated with shortened survival [34]. In 
stratified analysis, we found that the multi-TF signature 
remained a powerful forecaster of prognosis within 
these subsets, suggesting that our multi-TF was inde-
pendent of these important clinicopathological param-
eters. This result implied that our multi-TF signature 
has the potential ability to enhance clinical prognostic 
tests. This will assist in improving patient stratification 
and treatment planning accordingly in future trials.

As with all research, our study also has its limita-
tions. For one, due limited data, out of the thousands 
of known and predicted TFs, we could only obtain 
1639 gene expression profiles. In addition, some clini-
cal information was incomplete, which made our study 
susceptible to the inherent biases. Finally, while GSEA 
was used to investigate biological processes associated 

Fig. 5  Gene set enrichment analysis of processes linked with risk scores. Enriched gene sets are represented by individual nodes, which are groups 
on the basis of their similarity to create a network. The size of individual nodes is proportional to the number of genes contained therein, and the 
thickness of lines connecting nodes is indicative of the proportion of shared genes between these nodes
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with identified TFs, further studies are required to 
investigate their specific role in cancer.

Conclusions
In summary, by combining RNA-seq data with patient 
outcomes, we generated a powerful prognostic sig-
nature based on the expression patterns of 6 TFs. 
This multi-TF signature can predict the prognosis of 
patients with HNSCC in the TCGA dataset and was 
further validated in another independent dataset. More 
importantly, our 6-TF signature retained its ability to 
predict in tumor subtypes with varying clinicopatho-
logical parameters. Therefore, we show that the 6-TF 
signature is a potential outcome predictive method for 
HNSCC patients. It could also help with patient stratifi-
cation on the basis of predicted therapeutic responses.
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