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Expression profile analysis identifies key 
genes as prognostic markers for metastasis 
of osteosarcoma
Xiaoqing Guan1*†, Zhiyuan Guan2,3† and Chunli Song2,3*

Abstract 

Background:  OS is the most common malignant tumor of bone which was featured with osteoid or immature bone 
produced by the malignant cells, and biomarkers are urgently needed to identify patients with this aggressive disease.

Methods:  We downloaded gene expression profiles from GEO and TARGET datasets for OS, respectively, and per-
formed WGCNA to identify the key module. Whereafter, functional annotation and GSEA demonstrated the relation-
ships between target genes and OS.

Results:  In this study, we discovered four key genes—ALOX5AP, HLA-DMB, HLA-DRA and SPINT2 as new prognostic 
markers and confirmed their relationship with OS metastasis in the validation set.

Conclusions:  In conclusion, ALOX5AP, HLA-DMB, HLA-DRA and SPINT2 were identified by bioinformatics analysis as 
possible prognostic markers for OS metastasis.
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Background
Osteosarcoma (OS) is the most common type of cancer 
that arises in bones and most people diagnosed with OS 
are under the age of 25 [1]. The incidence of OS in the 
general population is 2–3/million/year and the peak at 
the age of 15–19 is 8–11/million/year [2]. OS is charac-
terized by early metastasis, poor prognosis without treat-
ment [3], and more than 90% of patients die from lung 
metastasis before multiple chemotherapy. OS is currently 
undergoing multidisciplinary treatment, with approxi-
mately 15–20% of patients showing signs of metastasis 
at diagnosis, most in the lungs. Metastasis remains the 

leading cause of death in patients with OS, compared 
with 70% of patients with localized disease, and only 
about 20% becoming long-term survivors.

Previous studies have investigated mutational altera-
tions or gene factors in an attempt to identify candidate 
OS driver oncogenes or tumors suppressors [4–6]. So 
far, for patients with metastatic OS, neither prognostic 
factors nor optimal treatment methods have been well 
established. Therefore, more attention must be paid to 
more precise risk assessment, not only for patient consul-
tation, but also for determining treatment options based 
on reliable stratified criteria. In order to detect pulmo-
nary metastasis OS early and improve poor survivorship, 
it is important to further explore more effective prognos-
tic biomarkers and therapeutic targets.

Although research on biomarkers for metastasis within 
OS has recently expanded [7, 8], the targets after any 
OS diagnosis within the clinic and suitable for various 
sequencing platforms remain sparse. Recent develop-
ment of gene chips and high-throughput sequencing 
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technology, have enabled the identification of key genes 
related to tumor progression and prognosis based on big 
data integration and bioinformatics. Weighted gene co-
expression network analysis (WGCNA) is a systematic 
biological method that could identify highly synergisti-
cally altered gene sets and screen out therapeutic targets 
or candidate biomarkers based on the inherent char-
acteristics of the gene sets and the correlation between 
gene sets and phenotypes.

Aiming at identifying and validating key genes in OS 
metastasis, the present study firstly identified associated 
module by WGCNA according to the gene expression 
profiles from Gene Expression Omnibus (GEO) data-
sets and determined the differentially expressed genes 
between metastatic OS samples and non-metastatic 
samples. Subsequently, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses were performed to determine the most sig-
nificant pathways associated with OS metastasis. Addi-
tionally, we constructed Kaplan–Meier (KM) curves 
and receiver operating characteristic (ROC) curves and 
screened the key genes related to OS prognosis. Moreo-
ver, univariate and multivariate Cox regression analysis 
were conducted to evaluate the predictive effect of the 
gene signature. Finally, we validated the gene signature 
using an external RNA sequencing (RNA-Seq) expres-
sion data obtained from The Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET). 

The results may reveal the prognostic value of the gene 
signature for OS (Fig. 1).

Methods
Data sources and data preprocessing
We downloaded standardized matrix profile (*series 
matrix.txt) of GSE21257 (a microarray dataset) and 
obtained patient information from GEO database 
(Table 1) [9]. The platform of the dataset is the GPL10295 
Illumina human-6 v2.0 expression beadchip. We removed 
probes not mapping to the Gene symbol using platform 
annotation file. For different probes corresponding to the 
same gene, their median expression values were taken as 
the final gene expression value. Differentially expressed 
genes (DEGs) between OS samples with metastasis 
and those without metastasis were identified using the 
“limma” (linear models for microarray data) R package 
(False discovery rate (FDR) < 0.05 and absolute of log-
2fold change (FC) > 1) [10].

The OS RNA-seq expression data and the correspond-
ing clinical follow-up data were obtained from the pub-
licly available website of the National Cancer Institute 
TARGET Data Matrix (https​://ocg.cance​r.gov/progr​
ams/targe​t/data-matri​x). To meet the requirement for 
data analysis, we excluded the samples with incomplete 
information, then 84 OS expression data were remained. 
Genes that have average expression (Transcripts Per 
Million (TPM)   >  1) between samples were deemed as 

Fig. 1  Flow chart of study design

https://ocg.cancer.gov/programs/target/data-matrix
https://ocg.cancer.gov/programs/target/data-matrix
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expressed. The expression value was processed as log2 
(TPM + 1) for subsequent analysis.

Constructing dynamic weighted gene co‑expression 
network
We chose the 3000 most-varying genes for network con-
struction and module detection. Specifically, the median 
absolute deviation (MAD) was used as a robust measure 
of variability. The network was built based on the proto-
cols of R package WGCNA [11, 12]. We firstly clustered 
the samples to detect outliers. It appeared there was one 
outlier and we removed it by hand (Additional file  1: 
Figure  S1A). Use PickSoftThreshold function to select 
β = 7 (scale-free R2 = 0.89) to build an adjacency matrix 
to make our gene distribution conform to scale-free net-
works based on connectivity for training set (Additional 
file 1: Figure S1B, C). Next, we used a blockwiseModules 
function to build a gene co-expression network in one 
step and a dynamic tree-cutting algorithm detected the 
modules. The parameters used for blockwiseModules 
function in WGCNA included a minimum module size 
of 30, and the dendrogram cut height for module detec-
tion set to 0.25 to define modules of co-expressed probe-
sets. Meanwhile we calculated module eigengene of each 
module by measuring the first principal component of a 
specific module, which represented the overall level of 
gene expression within this module. Then, according to 
the correlation between the clinical traits and the module 
eigengene and the p-value to mine the modules related to 
the traits, we selected the module with the highest Pear-
son correlation coefficient for metastasis into subsequent 
analysis. Finally, to find hub genes for a given module, 
gene significance (GS, the absolute value of the correla-
tion between the gene and the trait) and module mem-
bership (MM, the correlation of the module eigengene 
and the gene expression profile) were evaluated. Based on 

criteria of MM > 0.8 and GS > 0.2, hub genes in the blue 
module were screened. Cytoscape version 3.7.2 was used 
for network visualization. The above analysis is imple-
mented using the R package “WGCNA”.

Functional annotation and gene set enrichment analysis 
(GSEA)
R package clusterProfiler was used to conduct GO Bio-
logical Process (BP) [13] and KEGG biological pathway 
over representation analysis for interesting module genes 
[14]. GO terms and KEGG pathways with adjust p < 0.05 
were considered statistically significant pathways. The 
enrichment analysis was implemented in command line 
of GSEA [15, 16]. An expression dataset and phenotype 
labels in the GSE21257 dataset were used to conduct 
GSEA analysis according to metastasis status (metasta-
sis vs. non-metastasis). The data was then interrogated 
against Reactome gene sets (1499 gene-sets) from The 
Molecular Signatures Database (MSigDB) version 6.2 [17, 
18]. We set the cut-off criteria as gene set size > 15, Num-
ber of enriched gene sets that are significant, as indicated 
by a FDR of less than 25%.

Cox‑regression based survival analysis
Univariate cox regression analysis was firstly performed 
to screen survival related genes. Furthermore, ROC anal-
ysis was performed to evaluate the predicting efficiency 
of the gene risk score and the area under curve (AUC) 
was calculated. The genes with p-value < 0.05 as well as 
AUC > 0.85 were screened as candidate genes for next 
analysis. These candidate genes were further selected for 
predictive signature construction. Risk scores were calcu-
lated and included in multivariate regression analysis in 
a Cox proportional hazard regression model for survival 
analysis. The Kaplan–Meier curve was used to visualize 
the survival probability for each group and p-value was 

Table 1  Clinical features of patients in the training set and validation set

Training set p Validation set p

Metastasis Non-metastasis Metastasis Non-metastasis

Age 0.41 0.56

 Median 16 18 14.05 14.37

Gender 0.11 0.25

 Female 9 10 12 25

 Male 25 9 9 38

Grade 0.33 – – –

 1 11 2

 2 9 7

 3 7 6

 4 3 2
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calculated by the log-rank test. The survival analysis was 
implemented with package survival and survminer. The 
ROC analysis was performed using pROC package.

Statistical analysis
Our study used a Wilcoxon rank sum test to compare 
continuous data between two groups. a Chi square test or 
Fisher’s exact test to test the difference between categori-
cal variables. A p-value < 0.05 or a adjusted p-value < 0.05 
was considered statistically significant. The Kaplan–
Meier method and log-rank test was used to evaluate the 
correlation between gene expression and overall survival. 
The WGCNA method was analyzed by Pearson correla-
tion analysis. All of these processes were conducted by R 
software (version 3.5.1 (×64)).

Results
Identification of key modules associated with OS 
metastasis
After data preprocessing and quality evaluation, an 
expression matrix with 3000 most varying genes and 
52 OS samples with clinical information in GSE21257 
was used for gene co-expression network construction 
(Fig. 2a). After merging similar modules, we were able to 
identify a total of six modules and each module was des-
ignated by distinct colors to distinguish between modules 
(Fig. 2b). The number of genes in each module were pre-
sented in Fig. 2c. Genes in grey module were removed in 
the further analysis. Additional file 1: Figure S1D allows 
us to visualize the interaction relationship of 5 modules. 
The representation showed a high-scale independence 

a b

c d

Fig. 2  Construction and identification of modules associated with the clinical traits. a Clustering dendrogram of OS samples and the clinical 
traits. For age and grade, white means a low value, red a high value, and grey a missing entry; for gender and metastasis, white means female or 
non-metastasis, red means male or metastasis. b Hierarchical clustering based on the dynamic tree, each branch above represented a gene, and 
each color below represented a gene co-expression module. Grey module color is a reserved one for genes that are not part of any module. c 
Number of genes in different gene co-expression modules. Note that genes in the grey module were identified as not co-expressed. d Heatmap of 
the correlation between module eigengenes and clinical traits. Each row corresponds to a module eigengene, column to a trait. Each cell contains 
the corresponding correlation and p-value. The table is color-coded by correlation according to the color legend. The blue module was significantly 
correlated with metastasis
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degree between any two modules even between genes 
within each gene module. Furthermore, eigengenes of 
all modules were calculated and clustered based on their 
correlation. The plot can be found in Additional file  1: 
Figure  S1E, F. It is clear from this plot that the 5 mod-
ules were mainly divided into two clusters, which were 
consistent with the result of eigengene network heat-
map. Next, relevance of all with all traits were assessed 
and results were presented in Fig. 2d. The highest corre-
lation observed was for the blue module with metastasis 
(correlation coefficient values, − 0.51; p-values, 1e−04). 
In addition, the turquoise module was also found to be 
significantly related to metastasis (correlation coefficient 
values, 0.36; p-values, 0.009). Overall, we focused on the 
560 genes in the blue modules in subsequent analysis.

Functional annotation and GSEA
We conducted GO function and KEGG pathway analy-
ses to examine the potential functional significance of the 
genes within blue module. BP of GO analysis showed that 
blue module was mainly enriched with cell migration, 
cell proliferation, cell cycle and immune response related 
pathway (Fig. 3a). Figure 3b presented the top 10 statis-
tically significant observations of KEGG. The significant 
pathways included cytokine–cytokine receptor interac-
tion, chemokine signaling pathway, toll-like receptor 
signaling pathway, cell differentiation, antigen process-
ing and presentation and metabolism related pathway. 
In order to further understand the biological function 
of genes in blue module, GSEA was utilized to perform 
a pathway enrichment analysis and find enrichment of 
pathways defined by Reactome. Then we found 2 gene 
sets (cell cycle and cell cycle mitotic) were significantly 
upregulated in phenotype Metastasis in Reactome gene 
sets (Fig. 3c). The detailed results are available in Fig. 3d, 
e.

Detection of hub genes based on the training set
As described in “Methods”, we analyzed the blue mod-
ule and plotted MM against GS in Fig. 4a. All the DEGs 
were showed in Fig.  4b. After overlapping genes found 
by WGCNA and DEGs, we obtained 29 genes recog-
nized as candidate genes. Among them, arachidonate 
5-lipoxygenase activating protein (ALOX5AP), major his-
tocompatibility complex, class II, DM beta (HLA-DMB), 
major histocompatibility complex, class II, DR alpha 
(HLA-DRA) and serine peptidase inhibitor, Kunitz type 
2 (SPINT2) were negatively associated with the overall 
survival of OS patients (Figs. 4c). Moreover, the expres-
sion levels of these 4 genes were significantly higher in 
OS patients with metastasis, compared with non-metas-
tasis patients (Fig.  4d). In addition, the diagnostic per-
formance of these 4 genes was evaluated by ROC curves. 

The AUC showed that ALOX5AP, HLA-DMB, HLA-DRA 
and SPINT2 indicated excellent diagnostic efficiency for 
patients with metastasis and those with non-metastasis 
(Fig.  4e). Figure  4f showed that ALOX5AP, HLA-DMB, 
HLA-DRA and SPINT2 were highly connected in the net-
work and demonstrated that the 4 genes play an impor-
tant role in the development of OS.

Evaluation and validation of 4‑gene signature for survival 
prediction
To investigate whether the 4-gene signature could pro-
vide an accurate prediction of overall survival in OS 
patients, the 4-gene signature risk score were calcu-
lated for each patient in the training set according to 
the expression of these 4 genes for OS prediction. Then 
patients were divided into high- and low-risk groups 
using the median risk score as the cutoff. As expected, 
risk model might be a diagnostic marker for OS with 
an AUC of 0.861 (Fig.  5a) and patients with high-risk 
scores had a poor prognosis than those with low-risk 
scores (p = 0.0088) (Fig.  5b). As such, the 4-gene signa-
ture was validated using OS data from TARGET, and 
we achieved consistent results. KM curves revealed that 
the high-risk scores of 4-gene signature were signifi-
cantly associated with shorter overall survival time of OS 
patients (p = 0.043) (Fig. 5c), which were similar to those 
observed in the training series. In order to further evalu-
ate whether the expression levels of these four genes can 
provide good prognostic value, a multivariate Cox regres-
sion analysis was performed. The results can be seen in 
Table  2. It was evident that risk scores calculated from 
these four gene signature remained a strong independent 
prognostic factor for patients with OS (p = 0.02).

Discussion
OS is the most common primary malignant tumor of 
bone, and the susceptible population is adolescents [19]. 
Its prognosis is very poor, and early metastases often 
occur. 20% of patients died of tumor metastasis or unre-
sectable tumors, and the remaining 80% of patients had 
small metastases at the time of diagnosis. Many patients 
develop lung metastases within 1  year, and the 5-year 
survival rate is only 15%. Like many other malignancies, 
its etiology remains unknown [4]. Recently, a large num-
ber of new diagnostic techniques and effective chemo-
therapy methods have been developed, and the current 
5-year survival rate has risen to 55–70%. Preoperative 
adjuvant chemotherapy followed by radical resection is 
still the most effective treatment. If surgical resection is 
not possible, radiotherapy may be beneficial for control-
ling local tumors [20]. As a generality, metastasis is the 
most adverse factors at diagnosis among known prog-
nostic factors [21]. There are large differences in survival 
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c

d

e

Fig. 3  Functional enrichment analysis of blue module. a GO analysis of all genes in blue module. b KEGG pathway analysis of all genes in blue 
module. c GSEA in Reactome gene sets. d, e enrichment plots for cell cycle (d) and cell cycle mitotic gene set (e)
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Fig. 4  Identification of key genes based on training set. a A scatterplot of Gene Significance (GS) for weight vs. Module Membership (MM) in 
the blue module. There is a highly significant correlation between GS and MM in this module. b Volcano plot of significance of gene expression 
difference between metastasis and non-Metastasis patients. A gene is considered significantly differentially expressed if its |log(FC)| > 1 and 
p-value < 0.05. c Overall survival analysis of 4 key genes. Expression levels of ALOX5AP, HLA-DMB, HLA-DRA and SPINT2 are significantly related to 
the overall survival of patients with OS (P < 0.05). d Boxplot of significance of gene expression levels of 4 key genes. ALOX5AP, HLA-DMB, HLA-DRA 
and SPINT2 are significantly downregulated in metastasis OS compared with non-metastasis OS. The **** represents P < 0.0001. e ROC curves 
analysis of 4 key genes diagnosis. ROC curves and AUC statistics are used to evaluate the capacity to discriminate OS with or without metastasis 
with excellent specificity and sensitivity. f The network illustrates the relationship of 4 key genes and the 36 most frequently altered neighbor genes. 
The 4 key genes are presented in red and orange depending on the gene importance defined as the degree of connectivity. The other genes are 
represented in blue and green
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between patients with metastatic OS (10–20%) and 
non-metastatic OS (50–78%) [25, 26]. Moreover, meta-
static OS are still very difficult to control and there are 
few effective therapeutic targets. Kinase targets, immune 
checkpoint inhibitors and cell surface marker GD2 have 
been actively investigated in multiple current clinical tri-
als, but are inadequately evaluated [22, 23]. Therefore, 
further studies on early diagnosis or prediction of metas-
tasis are warranted.

In our study, multiple bioinformatics analysis tools 
were used to identify 4 key genes related to metastasis 
and prognosis of OS patients, thus we constructed a risk 
score model which may benefit the treatment and prog-
nosis evaluation of OS.

Using GO, KEGG and GSEA, we annotated the func-
tion of genes in the key module most related with 
metastasis, and clarified the underlying mechanism of 
metastasis in OS. Our results revealed that these genes 
were found to be enriched in cell cycle, cell proliferation, 
cell migration and immune response. Some researchers 
had demonstrated the functional link between cell cycle 
disorder and cancer cell invasion and metastasis [24, 25]. 

Several small pilot studies have reported that expression 
of molecules of tumor cell immune response, particularly 
HLA class II, can induce anti-tumor T cell responses, 
which may affect tumor progression and survival time 
of patients [26, 27]. Hence, we suggested that genes in 
blue module probably involved in the development and 
metastasis of OS through cell cycle pathway and immune 
response pathway.

After screening and filtering, we obtained four genes 
that may predict OS metastasis and have prognostic 
effects, and were evaluated in a cox regression model, 
indicating that it is an independent prognostic factor. 
The 4 key genes consist of ALOX5AP, HLA-DMB, HLA-
DRA and SPINT2. ALOX5AP, also called 5-LO-activating 
protein (FLAP), which plays an important role in synthe-
sis of leukotriene and associates with prognosis of pri-
mary neuroblastoma patients and esophageal squamous 
cell carcinoma patients [28]. Shi et  al. [29] found that 
ALOX5AP showed strong associations in colorectal car-
cinoma due to microsatellite instability. And ALOX5AP 
has been considered as the important components of 
the leukotriene-synthesizing enzyme machinery, emerg-
ing opportunities for pharmacological intervention, and 
the development of new medicines exploiting both anti-
inflammatory and pro-resolving mechanisms [30]. Abe-
lin et  al. [31] revealed that HLA-DMB was dominated 
by professional antigen-presenting cells (APCs) rather 
than cancer cells. Aissani et al. [32] also found that anti-
gen processing by HLA-DMB is a target pathway in the 
pathogenesis of HIV-related Kaposi’s sarcoma. Sun et al. 
[33] indicate that KSHV RTA facilitates evasion of the 
virus from the immune system through manipulation 
of HLA-DRA. Yokoyama et  al. [34] demonstrate genetic 
overlap between AD and HLA-DRA and suggest that 
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Table 2  Multivariate analysis adjusted for  age, gender, 
grade, and  risk score based on  4 genes signature 
in the training set

HR p

Risk score (low vs. high) 0.34 0.02

Age 1.00 0.88

Gender (male vs. female) 1.52 0.38

Grade (3 and 4 vs. unknown) 0.22 0.10

Grade (1 and 2 vs. unknown) 0.61 0.56
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HLA-DRA influence AD pathogenesis and progression. 
HLA-DMB, one of the HLA class II beta chain paral-
ogues, is expressed in antigen-presenting cells. Previous 
studies have confirmed that mRNA and protein levels of 
HLA-DMB are highly expressed in tumor samples from 
patients with advanced serous ovarian cancer with a 
large number of tumor-penetrating CD8 T lymphocytes, 
which can significantly prolong the median survival time 
[35]. HLA-DRA, a component of MHC II, alpha chain 
paralogues, also are expressed in antigen presenting cells. 
Both at transcription and protein levels, reduced expres-
sion of HLA-DRA has been shown to predict poor overall 
survival and progression-free survival in diffusive large 
B-cell lymphoma [36]. Moreover, enrichment analysis 
revealed up-regulation of immune response gene sets, 
including antigen presentation (HLA-DMB and HLA-
DRA). What’s more, the SPINT2 gene is epigenetically 
silenced or downregulated in human cancers, altering the 
balance of Hepatocyte growth factor activation/inhibi-
tion ratio, which contributes to cancer development and 
progression. Pereira et  al. found that dysregulation of 
SPINT2 is a common event in both pediatric and adult 
HGG, in which SPINT2 may act as a tumor suppressor. 
SPINT2 gene expression was down-regulated, altering 
dysregulation of the HGF/MET signaling pathway, which 
contributes to cancer development and progression [37, 
38]. Whether these genes play the same role in the devel-
opment and metastasis of OS deserves further study.

However, there were still some limitations in our work. 
Firstly, there are relatively small numbers of patients in 
two datasets obtained from publicly available database. In 
order to verify the stability and accuracy of the risk pre-
diction model, more expression data and corresponding 
clinical information need to be collected, especially inde-
pendent cohorts from multiple centers to further evalu-
ate the applicability of the model. Secondly, our analysis 
is completely based on bioinformatics analysis, we need 
to accumulate more comprehensive experimental evi-
dence, including in vivo and in vitro experiments. Finally, 
our analysis was entirely based on bioinformatics analysis 
to clarify the effect and possible molecular mechanisms 
of 4 genes on OS.

Conclusions
In summary, we found 4 genes that may play a key role 
in OS metastasis and prognosis, and further constructed 
a risk score model, which may provide new clues for the 
prediction of OS metastasis and establish foundation to 
reveal prognostic markers and treatment targets for OS 
patients.
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Additional file 1: Figure S1. Network construction and module detec-
tion. (A) Clustering dendrogram of samples based on their Euclidean 
distance. (B) Analysis of the scale-free fit index and mean connectivity 
for various soft-thresholding powers (β). Panels illustrate the scale-free fit 
index (y-axis) as a function of the soft-thresholding power (x-axis). Solid 
red horizontal lines are guides of the index at 0.9. At the power = 7, the 
index curve flattened out upon reaching the higher value in all groups. 
Effects of power values on the scale independence of genes co-expres-
sion modules for OS. (C) Effects of power values on the average connectiv-
ity of genes co-expression modules for OS. The panel displays the mean 
connectivity (degree, y-axis) as a function of the soft-thresholding power 
(x-axis). (D) Analysis of relationship between pairwise gene co-expression 
modules. Different colors of horizontal axis and vertical axis represent 
different modules. The brightness of yellow in the middle represents the 
degree of connectivity of different modules. There was no significant 
difference in interactions among different modules, indicating a high-
scale independence degree among these modules. The modules in the 
horizontal and vertical axes were marked with different colors. The degree 
of the yellow brightness indicated the relevance. The overall relationship 
between the different modules was small, indicating that the modules 
had a high degree of independence. (E and F) The modules produced in 
the clustering analysis were summarized module eigengene dendrogram 
(E) and eigengene network heatmap (F). The eigengenes were mainly 
clustered into two clusters, containing 2 modules (modules green and 
blue) and 3 modules (modules brown, turquoise and yellow), respectively.
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