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REVIEW

Insight into the role of p62 in the cisplatin 
resistant mechanisms of ovarian cancer
Xiao‑Yu Yan1†, Xian‑Zhi Qu2†, Long Xu1, Si‑Hang Yu1, Rui Tian1, Xin‑Ru Zhong1, Lian‑Kun Sun1* and Jing Su1* 

Abstract 

Cisplatin is a platinum-based first-line drug for treating ovarian cancer. However, chemotherapy tolerance has limited 
the efficacy of cisplatin for ovarian cancer patients. Research has demonstrated that cisplatin causes changes in cell 
survival and death signaling pathways through its interaction with macromolecules and organelles, which indicates 
that investigation into the DNA off-target effects of cisplatin may provide critical insights into the mechanisms 
underlying drug resistance. The multifunctional protein p62 works as a signaling hub in the regulation of pro-survival 
transcriptional factors NF-κB and Nrf2 and connects autophagy and apoptotic signals, which play important roles in 
maintaining cell homeostasis. In this review, we discuss the role of p62 in cisplatin resistance by exploring p62-associ‑
ated signaling pathways based on current studies and our work. Insights into these resistance mechanisms may lead 
to more effective therapeutic strategies for ovarian cancer by targeting p62.
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Background
Ovarian cancer is a gynecologic cancer with a high mor-
tality rate. In developed countries, the mortality rate of 
ovarian cancer is three times that of breast cancer and 
the 5-year survival rate of patients with stage IV ovarian 
cancer is only 28% [1]. In 1965, the platinum-contain-
ing drug cisplatin (cis-diamminedichloroplatinum) was 
found to exhibit antimicrobial activity, and subsequent 
studies demonstrated that platinum compounds have 
strong antitumor activity [2, 3]. In the 1980s, the first-line 
drugs for ovarian cancer were cisplatin and cyclophos-
phamide. Carboplatin, a second-generation platinum 
drug, showed equivalent therapeutic effects as cisplatin 
but with fewer toxic side effects [4, 5]. At present, the 
standard treatment for patients with advanced ovarian 
cancer is surgery, followed by six cycles of paclitaxel and 

carboplatin neoadjuvant chemotherapy [6]. However, 
most ovarian cancer patients relapse after treatment 
and eventually show no sensitivity to platinum drugs. 
Although several clinical trials have been conducted in 
recent years to improve the efficacy of platinum-based 
therapies (Table 1), chemotherapy resistance to platinum 
drugs remains an obstacle that limits the clinical applica-
tion and efficacy of these drugs.

Platinum is an electrophilic reagent characterized by 
its ability to form covalent linkages with nucleophilic 
residues of nucleobases such as guanine and adenine. 
Because a variety of cellular macromolecules contain 
nucleophilic residues, platinum drugs have the poten-
tial to interact with various cellular components, such 
as ribosomes, spliceosomes, and the RNA in telomerase, 
as well as proteins through Met, His and free Cys side 
chains [10, 11]. Galluzzi et al. [12] proposed that cisplatin 
can accumulate in mitochondria, lysosomes, endoplas-
mic reticulum, nucleus, cell membrane, cytoskeleton and 
cytosol, which causes cell stress. These findings indicate 
that cisplatin may exhibit far more effects on tumor cells 
than only through its interaction with DNA. And it may 
not only induce death signals, but also adaptive response 
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including autophagy, the unfolded protein response and 
other pro-survival signals while disturbing organelles and 
proteins in the cytoplasm [13–15] (Fig. 1).

Although the signaling networks that determine cell 
survival and death are extensive, only a small number 
of molecules have been identified that function in coor-
dinating these signaling pathways. The multifunctional 
protein p62/SQSTM1 (also known as sequestosome-1, 

hereinafter referred to as p62) integrates both survival 
and death signaling by regulating the ubiquitination of 
key cell signaling molecules that control survival and 
death [16–19]. p62 contains multiple protein-binding 
domains: the N-terminal PB1 (Phox and Bem1p) domain 
that binds to the atypical kinase (aPKC) and mediates 
p62 self-oligomerization; the central zinc finger (ZZ) 
domain that promotes NF-κB pathway activation; a TB 

Table 1  Clinical trials for platinum-based chemotherapy in ovarian cancer

Characteristic Cancer Treatment regimen Patients 
enrolled

PFS(mo) OS(mo)

Stage III and Stage IV [7] Ovarian Cisplatin (75 mg per square meter 
of body-surface area)

Cyclophosphamide (750 mg per 
square meter)

202 13 24

Cisplatin (75 mg per square meter 
of body-surface area)

Paclitaxel (135 mg per square 
meter over a period of 24 h).

184 18 38

Stage III and Stage IV [8]
(NCT02655016)

Ovarian Niraparib once daily after a 
response to platinum-based 
chemotherapy.

487 13.9 84% (24-month interim analysis)

Placebo group once daily after 
a response to platinum-based 
chemotherapy

246 8.2 77% (24-month interim analysis)

Relapsed > 6 months following 
completion of platinum-based 
therapy [9]

(NCT00083122)

Ovarian and Primary 
Peritoneal Carci‑
noma

Cisplatin (60 mg/m2 IV) Flavopiri-
dol (100 mg/m2 IV, 24 h infusion; 
21 day cycles)

40 4.3 16.1

Fig. 1  Cytoplasm effects induced by cisplatin in ovarian cancer cells. Cisplatin interacts with mitochondria, lysosomes, endoplasmic reticulum and 
cytoplasmic proteins, leading to cell stress and the activation of both death and pro-survival signals in ovarian cancer cells
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module (motif ) that binds TNF receptor associated 
factor 6 (TRAF6); the KIR (Keap1-interacting region) 
domain that competes with NRF2 for Keap1; a UBA 
(ubiquitin-associated) domain that recruits ubiquitin-
linked proteins and mediates their degradation through 
autophagy or the ubiquitin–proteasome system; and the 
LIR (LC3-interacting region), which recognizes a specific 
sequence in the autophagosome membrane protein LC3. 
These multiple domains make p62 an important player in 
the regulation of selective autophagy [20, 21].

In this review, we discuss the changes in p62-mediated 
signaling pathways in ovarian cancer during cisplatin 
treatment based on our work and current research. We 
describe a role for p62 in cisplatin resistance of ovarian 
cancer, providing a theoretical basis for potential strate-
gies for overcoming chemotherapy resistance in ovarian 
cancer.

p62 participates in drug resistance of ovarian cancer 
by regulating autophagy
Macroautophagy
During macroautophagy, hereinafter referred to as 
autophagy, autophagosomes isolate components targeted 
for autophagy by forming a closed membrane structure 
and transporting them to lysosomes for degradation. 
Autophagy serves a protective function against malig-
nant transformation and maintains homeostasis in nor-
mal tissues. However, once cells undergo transformation, 
autophagy provides cancer-protective functions to deal 
with stress from the worse survival environment [22, 23]. 
Previous reports demonstrated that cisplatin activates 
autophagy through the MEK/ERK pathway in ovarian 
cancer, which may lead to cisplatin resistance [24].

p62 is an autophagy receptor involved in the rec-
ognition of ubiquitin-labeled substrates targeted for 
autophagy [25]. Matsumoto et  al. [26] suggested that 
p62-mediated selective autophagy is a compensatory 
pathway for protease degradation. The UBA domain 
structure in p62 forms a compact triple-spiral stalk with 
a hydrophobic surface, which may be a targeted con-
tact site for protein interactions [27, 28]. Additionally, 
p62 binds the autophagy membrane protein Atg8/LC3 
through the LIR. Current studies suggest D335, D336, 
D337, and W338 mutations eliminate the binding of p62 
to LC3 [29]. We previously found that the levels of mature 
LC3II were increased in cisplatin-resistant SKOV3/DDP 
ovarian cancer cells compared with parental cells [30]. 
When we suppressed autophagy in ovarian cancer cells 
with 3-MA or chloroquine, cisplatin showed increased 
efficacy; furthermore, p62 expression was increased in 
SKOV3/DDP cells. Upon cisplatin treatment, p62 and 
LC3 puncta were co-localized. RNAi-mediated down-
regulation of p62 also increased the sensitivity of ovarian 

cancer cells to cisplatin [31]. These results indicate that 
p62-mediated autophagy induced by cisplatin may func-
tion as a protective mechanism in ovarian cancer cells.

Cha-Molstad et  al. [32] found since ZZ domain may 
lock p62 in a close state, promoted the combination of 
ZZ domain and Nt-Arg leading to autophagy upregula-
tion. Our study suggested that the LIR and UBA domains 
in p62 may modulate autophagic flux. We transfected 
SKOV3 cells with a vector encoding the L417V mutant 
(UBA mutant) that lost binding to ubiquitinated pro-
teins and found increased autophagolysosomes in the 
UBA mutant-expressing cells, suggesting upregulated 
autophagic flux [33]. MTT assays revealed that UBA 
mutant-expressing cells showed reduced sensitivity to 
cisplatin compared with parental cells. Additionally, 
post-translational modifications of p62 also influence 
autophagy levels. Keap1/Cullin3 increased the co-locali-
zation of p62 and LC3 by ubiquitinating p62 at lysine 420 
in the UBA domain and promotes the autophagy degra-
dation pathway [34]. CK2 (casein kinase 2) increased the 
affinity of p62 to ubiquitin through phosphorylation of 
serine 403 in the UBA domain and promotes the clear-
ance of ubiquitinated proteins by autophagy [26]. Specific 
mutations in the PB1 domain (C105A and C113A muta-
tions) also significantly inhibited autophagy [35]. The 
effective mutations and post-translational modification 
sites reported to affect autophagy were shown in Fig. 2. 
Therefore, developing small molecule drugs that inhibit 
autophagy by targeting p62 may provide new strate-
gies for combination treatment with cisplatin in ovarian 
cancer.

Mitophagy
Mitochondrial autophagy (mitophagy) maintains mito-
chondria mass and function by clearing damaged or 
overloaded mitochondria. Kingnate et  al. [36] proposed 
that increased mitochondrial fusion and reduced mito-
chondrial fission may be one of the mechanisms of cis-
platin resistance in ovarian cancer cells. Williams et  al. 
[37] suggested that inhibition of mitochondrial fission 
leads to mitophagy suppression. The PINK1 (PTEN-
induced putative kinase protein 1)/Parkin pathway is one 
of the regulators of mitophagy. The PINK1 serine/threo-
nine kinase enters the mitochondrial membrane space 
through the translocase outer membrane complex. In 
healthy cells, the mitochondrial intramembrane rhom-
boid protease PARL mediates cleavage and inactivation 
of PINK1. However, in response to abnormal mitochon-
drial membrane potential, PINK1 accumulates in the 
mitochondrial outer membrane and recruits the E3 ubiq-
uitin ligase Parkin to initiate mitophagy [38, 39].

Recent studies have indicated that p62 is not only 
found in the outer mitochondrial membrane but also 
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localized to the inner mitochondrial membrane, which 
may be involved in mitochondrial function mainte-
nance and morphology regulation [40]. VDAC (voltage-
dependent anion channel), an important component of 
the mitochondrial permeability transition pore (mPTP), 
is a cysteine-containing protein that binds cisplatin [41]. 
VDAC maintains an open mPTP at low holding poten-
tials but shows anion-selectivity upon increase of holding 
potential, which is associated with apoptosis regulation 
[42]. Geisler et  al. [43] demonstrated that Parkin poly-
ubiquitinates VDAC, and p62 recognizes ubiquitinated 
VDAC and mediates the degradation of damaged mito-
chondria. Whether p62 regulation of PINK and VDAC is 
involved in the cisplatin resistance of ovarian cancer cells 
is unknown and should be examined in future studies.

p62 participates in pro‑survival signaling regulation 
induced by cisplatin treatment in ovarian cancer
NF‑κB signaling
NF-κB is one of the classical pro-survival signaling fac-
tors in cells. Phosphorylation of IκB kinase (IKK) pro-
motes degradation of the NF-κB inhibitor IκB through 
the proteasome pathway, which subsequently activates 
NF-κB signaling. Many studies showed that the activated 
NF-κB pathway functions in promoting cell survival in 
ovarian cancer. Yang et  al. [44] found that the E3 ligase 
TRIM52 (the tripartite motif 52) increased the expres-
sion of IKKβ and IKBα and promoted NF-κB subunit 
p65 nuclear translocation to activate the transcription of 
downstream MAPK9 (mitogen-activated protein kinase 
9), BCL2 (B-cell lymphoma 2), CXCL8 (C-X-C motif 
chemokine ligand 8) and TNF (tumor necrosis factor) 
genes in SKOV3 and Caov3 ovarian cancer cells. Mabu-
chi et al. found that chemotherapy increased the levels of 
p-IκB and NF-κB transcriptional activity to higher levels 

in Caov-3 cisplatin-resistant ovarian cancer cells com-
pared with A2780 cells. Furthermore, inhibiting NF-κB 
activity by BAY 11-7085 enhanced the sensitivity of 
Caov-3 cells to cisplatin [45, 46]. These studies indicate 
that NF-κB may be involved in the mechanism of cispl-
atin resistance in ovarian cancer.

Recent studies found that p62 inhibition significantly 
suppressed activation of the NF-κB pathway [47]. We 
found that NF-κB signaling was activated in SKOV3/
DDP cisplatin-resistant ovarian cancer cells. Inhibition 
of p62 by RNAi significantly reduced the translocation 
of p50/p65 into the nucleus and inhibited the transcrip-
tional activity of NF-κB, which suggests that p62 may 
control cisplatin resistance in ovarian cancer cells by 
regulating NF-κB signaling [31]. Recent studies showed 
that TRAF6 and receptor-interacting protein 1 (RIP1) are 
both involved in p62-related NF-κB activation.

The TRAF6/NF-κB pathway was originally identified 
in immune cells [48]. The E3 ubiquitin ligase TRAF6 
enhances the ubiquitination of IKKβ and the phospho-
rylation and degradation of IκB, leading to increased 
DNA-binding of NF-κB [49]. Moscat et al. demonstrated 
that RAS promoted the transcription of p62 through the 
ERK and PI3K pathways, which increase the oligomeri-
zation and polyubiquitination of TRAF6 and expres-
sions of IKKα and IKKβ, the major upstream activators 
of the NF-κB pathway [17, 50, 51]. Another study showed 
that the p62 TB domain specifically binds to the TRAF 
domain in TRAF6, which results in autoubiquitination of 
TRAF6 [52]. Ubiquitination of TRAF6 was also inhibited 
in p62-knockout mice. Furthermore, a p62 UBA deletion 
mutant (F406V mutation) also inhibited the ubiquitina-
tion of TRAF6, which suggests that the C-terminal UBA 
domain of p62 is involved in TRAF6 regulation [53].

Fig. 2  Schematic representation of p62 functional domains involved in autophagy regulation
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The RIP1 serine/threonine protein kinase is involved 
in the regulation of inflammatory signaling and various 
cell death pathways such as apoptosis and programmed 
necrosis [54, 55]. RIP1 function is tightly regulated by 
ubiquitination and deubiquitination. When cells are 
stimulated by tumor necrosis factor (TNF), TNF receptor 
1 (TNFR1) forms trimers to recruit tumor necrosis fac-
tor receptor type 1-associated DEATH domain protein 
(TRADD), RIP1, E3 ubiquitin ligase TNFR-related fac-
tor 2 (TRAF2), cIAP1/2 (cellular inhibitor of apoptosis 
1/2) as well as the linear ubiquitin chain assembly com-
plex (LUBAC). RIP1 is rapidly polyubiquitinated with 
Lys63-linked and linear Met1-linked ubiquitin chains 
and activates TGFβ-activated kinase 1 (TAK1) and the 
IKK complex. Phosphorylated IκB is degraded by the 
ubiquitin–proteasome system, resulting in activation of 
NF-κB [56–58]. p62 directly binds RIP1 but not TRAF2, 
and the 117–439 residues in p62, which include the ZZ 
domain, are essential for binding to RIP1 [59]. We found 
that cisplatin activated the NF-κB pathway and increased 
K63-linked ubiquitination of RIP1 in SKOV3/DDP cells. 
Abolishing the regulation of RIP1 K63-linked ubiquit-
ination by p62 increased the sensitivity of SKOV3 cells 
to cisplatin; deleting the ZZ domain (RIP1 interacting 
region) in p62 markedly decreased K63-linked ubiquit-
ination of RIP1 in SKOV3 cells and inhibited NF-κB sign-
aling activation [31]. These results suggested that the ZZ 
domain of p62 not only directly binds RIP1, but also par-
ticipates in the regulation of RIP1 ubiquitination. NF-κB 
signaling regulates at least 400 genes encoding proteins 
involved in proliferation, apoptosis and inflammation 
[60]. When we blocked NF-κB signaling using p62 inhi-
bition in ovarian cancer cells treated with cisplatin, the 
expressions of proliferation-related genes such as CCL2, 
IL6, TGFb and CSF3 genes were significantly suppressed 
and DNA synthesis was reduced [31].

Keap1/Nrf2 signaling
Mitochondria are the main location of cellular reac-
tive oxygen species (ROS) production. Previous stud-
ies showed that cisplatin enters into cells and directly 
binds to mitochondria, leading to cytochrome C release, 
calcium-dependent mitochondrial swelling and produc-
tion of ROS, which induces oxidative stress and reduces 
genomic stability [12, 61]. The antioxidant pathway and 
glutathione (GSH) are the main ways to clear ROS [62]. 
Current studies have shown that the Kelch-like ECH-
associated protein 1 (Keap1)-nuclear factor erythroid 
2-related factor 2 (Nrf2) pathway is one of the impor-
tant antioxidant pathways. Under basal conditions, 
Keap1 interacts with Nrf2 and mediates its degradation. 
Exposure to electrophilic reagents (such as cisplatin) 
causes Keap1-Nrf2 complex disruption, leading to Nrf2 

translocation into the nucleus to promote the expres-
sion of downstream antioxidant genes such as NQO1 
and Hmox1 genes [63]. NRF2 also controls the gene 
transcription of several important enzymes involved in 
GSH synthesis and oxidation, maintaining the mitochon-
drial GSH pool [64]. The genes encoding ATP-binding 
cassette (ABC) transporters (known as efflux pumps) 
ABCC2 and ABCF2, which transport molecules across 
cellular membranes, are also target genes of NRF2 [65, 
66]. Bao et al. [72] showed that Nrf2 knockdown inhib-
ited the expression of ABCF2 and increased the sensi-
tivity of ovarian cancer cells to cisplatin. Wu et  al. [67] 
found that Nrf2 is highly expressed in A2780/DDP and 
COC1/DDP cisplatin-resistant ovarian cancer cells; inhi-
bition of Nrf2 translocation into the nucleus significantly 
increased the gene expression of transferrin SLC401, a 
known iron exporter, which reversed the cisplatin resist-
ance of ovarian cells caused by iron overload. These stud-
ies confirmed that the Keap1-Nrf2 pathway is involved 
in the cisplatin resistance mechanism of ovarian cancer 
cells. Some reports showed that Nrf2 interacts with the 
p62 promoter, which indicates that p62 may also be a tar-
get gene of Nrf2 [68]. Jena et  al. [69] found that the E3 
ubiquitin-protein ligase TRIM16 promotes p62-mediated 
autophagy degradation of ubiquitinated proteins by up-
regulating Nrf2 under oxidative stress.

Recent studies have also confirmed that p62 is involved 
in regulation of the Keap1-Nrf2 pathway. Phosphoryla-
tion of p62 at serine 349 in the KIR domain increased 
its binding affinity to Keap1 and promoted Nrf2 activa-
tion [70]. Consistent with this data, other studies showed 
that Keap1/Cullin3 mediates p62 ubiquitination and 
increases the sequestration activity of Keap1, resulting 
in Nrf2 activation through non-canonical pathways [34]. 
We observed that SKOV3/DDP cells produced less ROS 
compared with SKOV3 cells upon cisplatin treatment, 
which suggests that cisplatin-resistant cells may have 
stronger antioxidant capacity. Furthermore, co-localiza-
tion of p62 and Keap1 was observed in SKOV3/DDP cells 
and inhibition of p62 expression significantly attenuated 
the transcriptional activity of Nrf2 [71]. These results 
indicated that highly expressed p62 in SKOV3/DDP cells 
may protect ovarian cancer cells from oxidative damage 
caused by cisplatin by competing with Nrf2 for binding 
to Keap1.

Stępkowski et al. [72] showed that p62 plays an impor-
tant role in apoptosis and autophagy by integrating the 
Keap1-Nrf2 and NF-κB signaling pathways. First, p62 
promotes activation of the NF-κB signaling pathway; 
however, increased binding of p62 to Keap1 leads to 
release of Nrf2 from Keap1, which may affect the degra-
dation of IKKβ by Keap1, resulting in NF-κB activation. 
This indicates a complicated role for p62 in pro-survival 
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signal regulation. Additionally, PGAM5 (phosphoglyc-
erate mutase family member 5), which is located in 
mitochondria and is a chaperone of Keap1, functions in 
apoptosis, programmed necrosis, and mitophagy. Mea-
ley et  al. [73] found that Keap1-Nrf2 interacted with 
PGAM5, and this complex contributed to mitochondrial 
retrograde trafficking. Furthermore, co-depleting p62 
and Nrf2 inhibited mitochondrial clustering induced by 
the proteasome inhibitor MG132, which indicates that 
p62 may be involved in mitochondrial dynamics through 
Keap1-Nrf2 signaling regulation (Fig. 3). Together these 
findings indicate that investigating the role of p62 in 
the pro-survival signaling crosstalk may be a promis-
ing approach to develop strategies to overcome cisplatin 
resistance in ovarian cancer.

Death signals recruited by p62 are involved in cisplatin 
resistance of ovarian cancer
Cisplatin causes cell death by activating apoptosis and 
programmed necrosis [74, 75]. Annunziata et  al. found 
that ovarian cancer patients with tumors expressing low 
levels of the pro-apoptotic molecule caspase 8 showed 
shorter overall survival compared with those with high 
caspase 8 expression [76, 77]. Furthermore, another 
report demonstrated that p62 regulates caspase 8 activa-
tion induced by TNF [78]. Huang et  al. [79] found that 
p62 accumulation caused by autophagy inhibitors chloro-
quine and bortezomib promoted the activity of caspase 8 
in human colon carcinoma cells. Wang et al. [80] showed 
that caspase 8 activation may be regulated by intra-
cellular death-inducing signaling complex (iDISC) on 
autophagosomal membranes. Furthermore, inhibition of 

ATG5 (autophagy-related gene 5) suppressed the forma-
tion of the autophagy membrane and reduced caspase 8 
activation. Iurlaro proposed that persistent endoplasmic 
reticulum stress may promote the formation of iDISC, 
the autophagosome-associated platform, to activate cas-
pase 8 [81]. Our group demonstrated that the combina-
tion of the autophagy inhibitor chloroquine and cisplatin 
significantly inhibited ovarian cancer growth in  vivo, 
with accumulated p62 in tumor tissue and activated cas-
pase 8. We previously found that deleting the p62 UBA 
domain, which is responsible for ubiquitin binding and 
self-oligomerization [82], inhibited cisplatin-induced 
caspase 8 activation, leading to chemoresistance in ovar-
ian cancer cells. Further studies showed that the L417V 
mutation in the UBA domain, which reduced ubiquitin-
binding activity, also suppressed caspase 8 activation and 
the co-localization with LC3 induced by cisplatin, which 
suggests that p62-mediated autophagy may participate in 
cisplatin resistance through caspase 8 regulation in ovar-
ian cancer [33].

Cellular FLICE-inhibitory protein (cFLIP) is structur-
ally similar to caspase 8 and forms a dimer with caspase 8 
to inhibit its activity. cFLIP is highly expressed in ovarian 
cancer [83, 84]. Li et al. found that cFLIP knockdown sig-
nificantly increased TRAIL-induced apoptosis in SKOV3 
cells. Nazim et al. showed that increased autophagy flux 
inhibited the expression of cFLIP and enhanced TRAIL-
induced apoptosis [85, 86]. Further studies are needed to 
clarify the role of cFLIP in p62-mediated caspase 8 acti-
vation in ovarian cancer with cisplatin treatment.

In the presence of RIP3, cisplatin induces formation of 
the necrosome containing the RIP1/RIP3/MLKL complex 

Fig. 3  Pro-survival signaling regulation by p62 in ovarian cancer cells. a Highly expressed p62 activates NF-κB through RIP1 and TRAF6. p62 
also competes with Nrf2 for binding to Keap1, which promotes the transcriptional activity of Nrf2. b p62 is recruited to function in PINK1/
Parkin-mediated mitophagy; p62 may also be involved in regulation of the PGAM5-Keap1-Nrf2 complex, which is responsible for mitochondrial 
dynamics
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as core, which initiates programmed necrosis via ROS 
production [87]. Liu et al. [88] showed that the accumu-
lation of p62 caused by autophagy inhibition promoted 
the formation of necrosomes. A recent study indicated 
that p62 induced programmed necrosis by recruiting 
RIP1 to assemble RIP3/MLKL on the autophagosome 
membrane in mouse prostate cells lacking Map3k7 [89]. 
These results suggest that p62 also works as a switch to 
determine the transition between apoptosis and necrosis. 
Targeting p62 to promote necrosis may be an alternative 
therapeutic strategy in ovarian cancers resistant to cispl-
atin-mediated apoptosis (Fig. 4).

Conclusion and future perspectives
While early studies suggested that DNA was the main 
target of cisplatin [90], later reports demonstrated that 
cisplatin also triggers multiple changes in signals involved 
in proliferation, apoptosis and anti-oxidation by binding 
to macromolecular proteins and organelles [12]. In this 
review, we summarize our current understanding about 
the role of p62 in the mechanisms of cisplatin resistance 
in ovarian cancer cells.

p62 functions as a key receptor for autophagy. Increas-
ing studies have demonstrated that autophagy is involved 
in chemotherapy resistance and several compounds have 
been identified that regulate autophagy in ovarian cancer 

(Table 2). We suggest that highly expressed p62 in ovar-
ian cancer cells not only mediates selective autophagy to 
degrade excessive accumulated ubiquitinated proteins, 
but also exerts functions beyond autophagy. p62 also acti-
vates NF-κB by enhancing K63-linked ubiquitination of 
RIP1, promotes Nrf2 nucleus translocation to counteract 
oxidative damage caused by cisplatin by interacting with 
Keap1 and initiates cell death signals from autophagy flux 
blockage. These functions may explain why an autophagy 
inhibitor increased the efficacy of cisplatin in ovarian 
cancer cells. Together these studies indicate that p62 is 
involved in cisplatin resistant mechanisms by operat-
ing as a signal hub that regulates critical proteins in key 
signaling pathways that determine cell survival and death 
(Table 3).

Notably, clarifying how p62 functions in chemotherapy 
may provide benefits for ovarian cancer clinical diagnosis 
and prognosis. Most ovarian cancer patients treated with 
cisplatin eventually develop resistance and show poor 
outcome. Iwadate examined p62 expression in tumor 
tissues of 266 patients with primary ovarian cancer and 
found that patients with high expression of p62 had poor 
prognosis [99]. Another study found that ovarian can-
cer patients with high expression of p62 had longer sur-
vival [100]. This paradox indicates that the prognosis of 
ovarian cancer patients may not be easily defined by p62 

Fig. 4  Death signals recruited by p62 in ovarian cancer cells. p62 induces apoptosis and programmed necrosis by recruiting pro-death partners on 
the autophagosome membrane while blocking autophagy flux
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expression alone. Our study showed that patients with 
high expression of p62 and caspase 8 had longer survival 
and were negatively correlated with tumor-node-metas-
tasis stage and relapse risk compared with patients with 
high p62 and low caspase 8 expression [33]. Consider-
ing the role of p62 in caspase 8 activation mentioned 
above, these findings suggest that patients with both 
overexpressed p62 and caspase 8 may be more sensitive 
to platinum-based chemotherapy; autophagy inhibitors 
may increase the sensitivity to cisplatin in patients with 
high p62 expression but low caspase 8 expression. These 
findings suggest that evaluation of p62 and its effector 
molecules could increase the accuracy of prognosis and 
optimize therapeutic strategies in ovarian cancer.

Several questions remain to be answered. For exam-
ple, the role of accumulated p62 caused by autophagy 
blockage in NF-κB or Keap-1/Nrf2 signaling activation 
is unclear. Furthermore, the function of accumulated p62 
induced by increasing transcription or degradation sup-
pression is also unknown. Future studies should focus on 
alterations in the binding partners of p62 and the post-
translational modifications that enhance p62 functions 
in ovarian cancer cells with cisplatin treatment. Together 
these findings may provide new strategies to overcome 
cisplatin resistance in ovarian cancer by targeting p62.
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APG-1387 Activator Not clear Cytotoxic Xenograft (SKOV3 cells) [96]

Bortezomib Inhibitor Promotion of ERK phosphorylation to suppress cathepsin 
B

Cytotoxic Xenograft (MOSEC/LUC) [97]

Table 3  Overview of p62-interacting proteins and associated signaling pathways that determine cancer cell fate

Domain Partner molecules Signaling Cell survival/death References

ZZ RIP1 NF-κB Survival [31]

TB TRAF6 NF-κB Survival [52]
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168–224 EGFR ERFR/Autophagy Death [98]
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