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A novel circular RNA circENTPD7 contributes 
to glioblastoma progression by targeting ROS1
Fei Zhu, Cheng Cheng, Hong qin, Hongsheng Wang and Hailong Yu*

Abstract 

Background:  Circular RNAs (circRNAs) are identified to play an important role in many human cancers, such as 
glioblastoma. However, the potential mechanisms underlying the relationship between circRNAs and glioblastoma 
pathogenesis are still elusive. This study is designed to investigate the role of circRNAs in glioblastoma progression.

Methods:  The present study is designed to investigate the mechanism by which circRNAs involves in glioblastoma 
pathogenesis. By using circRNAs microarray, we detected the dysregulated circRNAs and identified an up-regulated 
circRNA, circENTPD7 in glioblastoma tissues. Cell proliferation was measured using a CCK-8 assay. Cell clone formation 
ability was assessed with a clone formation test. We used the bioinformatics website to predict circRNA–miRNA and 
miRNA–mRNA interactions. CircRNA–miRNA interaction was confirmed by dual-luciferase reporter assays and RNA–
RNA pulldown assay.

Results:  circENTPD7 (hsa_circ_0019421) was upregulated in glioblastoma tissues. Kaplan–Meier survival analysis 
indicated that glioblastoma patients had a poor overall survival when circENTPD7 expression levels were high. Knock-
down of circENTPD7 inhibited the motility and proliferation of glioblastoma cells. Moreover, we demonstrated that 
circENTPD7 acted as a sponge of miR-101-3p to regulate the expression of ROS1 further promoted the proliferation 
and motility of glioblastoma cells.

Conclusions:  Taken together, these findings indicate that circRNA circENTPD7 promotes glioblastoma cell prolifera-
tion and motility by regulating miR-101-3p/ROS1.
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Background
Glioblastoma is the most common neurologic cancer 
in worldwide and is the top leading cause of neurologic 
cancer-related death worldwide [1]. Tumor metastasis is 
a common and major obstacle to improve the survival of 
patients with glioblastoma [2]. Despite recent advances 
in surgery, chemotherapy and molecular targeted thera-
pies, glioblastoma still has poor morbidity and mortality 
[3, 4]. The challenge of treating glioblastoma includes not 
only tumor metastasis and recurrence, but also uncer-
tain and non-specific therapeutic targets [5, 6]. A better 

understanding of glioblastoma pathogenesis is critical for 
advancing and improving available therapeutic markers 
and targets [7].

Circular RNAs (circRNAs), a new subtype of non-
coding RNAs, are covalently closed loop RNAs 
formed by 3′ end to 5′ end joining RNA fragments [8]. 
Although circRNAs had been identified for more than 
four decades, they had only received attention in recent 
years [9]. Using high-throughput sequencing approach, 
more than 30,000 circRNAs had been identified. CircR-
NAs are ubiquitous expressed in many tissues includ-
ing glioblastoma tissues [10–12]. Some circRNAs had 
been investigated in glioblastoma tissues, for instance, 
hypoxia-associated circDENND2A promoted glio-
blastoma aggressiveness by sponging miR-625-5p [13]; 
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circular RNA circSCAF11 accelerated the glioblas-
toma tumorigenesis through the miR-421/SP1/VEGFA 
axis [14]; EIF4A3-induced circular RNA MMP9 (circ-
MMP9) acted as a sponge of miR-124 and promoted 
glioblastoma multiforme cell tumorigenesis [11]. These 
results suggested that cirRNAs play an important 
role in the development and progression of glioblas-
toma. However, more circRNAs need to be explored in 
glioblastoma.

In the present study, we identified a novel circRNA 
(hsa_circ_0019421), named circENTPD7, which is gen-
erated from the ENTPD7 gene locus with spliced length 
357 nt. We found that circENTPD7 was upregulated 
in glioblastoma tissue and cells. Knockdown of cir-
cENTPD7 could decrease glioblastoma cell growth and 
motility. Mechanically, circENTPD7 served as miRNA 
sponge to decrease miR-101-3p. ROS1 was identified as 
the target of miR-101-3p. The expression of miR-101-3p 
and ROS1 in glioblastoma tissues were examined by 
RT-qPCR. The RNA levels of miR-101-3p were nega-
tively correlated with circENTPD7. Furthermore, miR-
101-3p and ROS1 were also involved in glioblastoma 
cells growth and motility. In collection, these findings 
indicated that circENTPD7/miR-101-3p/ROS1 signaling 
pathway provided a new perspective for the treatment of 
glioblastoma.

Methods
Clinical samples
The paired glioblastoma and adjacent normal tissues 
were collected from the patients at The Affiliated Hospi-
tal of Yangzhou University from 2015 to 2019. The speci-
mens were taken after tumor excision within less than 
10 min, then the specimens were stored at − 80 °C imme-
diately until application in the experiments. This study 
was approved by The Ethics Committee of The Affiliated 
Hospital of Yangzhou University, written informed con-
sents were obtained from all glioblastoma patients.

Cell culture
All cells were obtained from American type culture col-
lection (ATCC) or The Cell Bank of Type Culture Collec-
tion of Chinese Academy of Sciences. All cell lines were 
authenticated in December 2017 by using short tandem 
repeat (STR) DNA profiling method. Human glioblas-
toma cell lines (U87, A172) were incubated in DMEM 
(Gibco, Grand Island, NY, USA) supplemented with 10% 
fetal bovine serum (FBS) (Gibco, USA), and 1% penicil-
lin/streptomycin (pen/strep) (Invitrogen, Carlsbad, CA, 
USA). Cells were incubated in an atmosphere with 5% 
CO2 at 37 °C.

RNA extraction and quantitative real‑time PCR (RT‑qPCR)
According to the manufacturers’ instructions, total 
RNA was obtained from tissues or cells by Trizol rea-
gent (Invitrogen, USA). NanoDrop ND2000 (Thermo 
Scientific Inc., USA) was used to determine the purity 
and quantify the concentration of RNA. Total RNA was 
reverse transcribed by HiScript II Q RT SuperMix for 
qPCR Kit (Vazyme  Biotech  Co., Ltd, Nanjing, China). 
Primers used for RT-qPCR were synthesized by Tsingke 
Biological Technology (Nanjing, China). According to 
the manufacturer’s instructions, RT-qPCR was per-
formed using the ChamQ SYBR qPCR Master Mix 
(Without ROX) (Vazyme  Biotech  Co., Ltd, Nanjing, 
China) in a Roche LC 96 qPCR system (Roche, Ger-
many). The PCR reaction started at 95  °C for 2  min, 
followed by 40 cycles of 95  °C for 10 s, 60  °C for 30 s. 
Actin or U6 was used as the internal reference of meas-
uring qPCR results. Target gene relative expression lev-
els were measured by 2−ΔΔCT method. The RT-qPCR 
primers of circENTPD7 are Forward: 5′-ATG​CCA​GTG​
ATT​ACC​TTC​GTC-3′; Reverse: 5′-CTT​CAA​GCT​CCC​
CTA​CTC​G-3′.

RNA isolation of nuclear and cytoplasmic fractions
According to manufacturer’s instructions, we employed 
the NE-PER™ Nuclear and Cytoplasmic Extraction 
Reagents Kit (Thermo Scientific, USA) to isolate and 
collect cytosolic and nuclear fractions. The expres-
sion levels of GAPDH (cytoplasmic control transcript) 
and U6 (nuclear control transcript) were examined in 
nuclear and cytoplasmic fractions using RT-qPCR.

Cell transfection and viral infection
Lipofectamine 2000 (Life Technologies, USA) was used 
for plasmid or siRNA transfection. Lentiviral expres-
sion systems (psPAX2, pMD2.G and sh- circENTPD7) 
were generated to transduce glioblastoma cells. For 
transient knockdown circENTPD7, the small interfer-
ing RNAs (siRNAs) were designed and sythesized by 
GenePharma Co., Ltd. (Shanghai, China). The siRNA 
sequence crossing the circENTPD7 junction site is: 
5′-UCC​CUG​AGA​GGU​AUU​UGG​CU-3′;

Cell counting kit‑8 (CCK‑8)
1 × 103 glioblastoma cells were seeded into a 96-well 
plate. Absorbance at 450 nm was measured after incu-
bating the cells with 100 µL CCK-8 kit (Dojindo Labo-
ratories, Japan) for 1 h.

Transwell migration assay
8 μm pore size (Millipore, USA) insert was used in this 
assay. Add 0.5 mL of DMEM with 10% FBS to the lower 
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compartment. Gently add 1 × 104 cells to the insert. 
The cells were incubated in the transwell plate at 37 °C, 
5% CO2 for 6 h. Next, we stained the cells with 1% crys-
tal violet. The cells on the lower side of the insert were 
counted under a microscope.

Tumorigenesis assay
The mice care and whole experimental protocols were 
approved by The Affiliated Hospital of Yangzhou Uni-
versity Experimental Animal Welfare Ethics Commit-
tee. Animal Experiments were performed in compliance 
with the guidelines of the Animal Research Ethics Board 
of Nanjing Medical University (Nanjing, China). 4 weeks 
old male BALB/c nude mice were purchased from the 
Charles River laboratories and maintained under patho-
gen-free conditions during 2018–2019. In the back flank, 
mice (five in each group) were subcutaneously injected 
1 × 107 cells in 200 µL cell suspension. The tumors were 
measured every week after the tumor was visible and the 
tumors’ volume were calculated following the formula 
volume (0.5 × length × width2).

Western blot assay
Proteins were extracted from cells or immunoprecipi-
tation samples using detergent-containing RIPA lysis 
buffer. Equal amounts of total proteins were subjected 
to sulphate–polyacrylamide gel electrophoresis (SDS-
PAGE) and proteins were transferred to 0.45 μm polyvi-
nylidene difluoride (PVDF) membrane (Millipore, MA, 
USA). After blocking with 5% non-fat milk, the PVDF 
membrane was incubated with primary antibodies as fol-
low: anti-ROS1 (abcam, USA), anti-GAPDH (Santa Cruz, 
USA). Proteins were visualized through horseradish-
peroxidase (HRP) conjugated secondary antibody and 
peroxide LumiGLO reagent system (Cell Signaling Tech-
nology, USA).

Dual‑luciferase reporter assay
CircENTPD7 segment (100  bp) or ROS1 3′UTR was 
constructed into pGL3-control plasmid. Either target 
sequence or wild-type seed region was co-transfected 
with 50  ng Ranilla luciferase reporter plasmid into 

HEK-293T cells that cultured in 48-well plates by using 
Lipofectamine 2000. The luciferase activities were meas-
ured using The Dual-Luciferase® Reporter Assay System 
(Promega, USA) after 48 h transfection.

Fluorescence in situ hybridization (FISH)
Cy3-labeled spliced circENTPD7 probe (5′-CTT​CTC​
CCT​GAG​AGG​TAT​TTG​GCT​CG-3′) were purchased 
from RiboBio (Guangzhou, China). The stained cells were 
photographed via Zeiss Axiovert 200  M laser scanning 
confocal microscope (Carl Zeiss, Freistaat Thuringen, 
Germany).

RNA–RNA pulldown assay
RNA–RNA pull-down assay was employed to detect 
potential binding between circENTPD7 and miR-101-3p. 
The biotin-labeled RNA probe targeting circENTPD7 
was generated from GenScript Biotech Co., Ltd. (Nan-
jing, China). The probe sequence was 5′-GCU​CCC​CUA​
CUC​GAG​CCA​AAU​ACC​UCU​CAG​GGA​GAA​GCC​UCA​
UGC​CUG​CU-3′. The probe was mixed with the lysate 
of glioblastoma cells for 2 h at 4 °C. Thereafter, the com-
plexes were incubated with streptavidin magnetic beads 
(Thermo Fisher Scientific, Waltham, MA, USA) for 2 h. 
At last, the RNA was eluted and the level of circENTPD7-
bound miR-101-3p was examined by RT-qPCR.

Statistical analysis
Values are presented as the mean ± SD. Statistical analy-
sis was evaluated by the unpaired student’s t test. Values 
of P < 0.05 were considered to be statistically significant.

Results
circENTPD7 is overexpressed in the glioblastoma tissue 
and cells
To investigate dysregulated circRNAs in glioblastoma, 
three paired glioblastoma tissues and adjacent normal 
tissues were analyzed using ArrayStar circRNA microar-
ray. Within the top 100 differently expressed circRNAs, 
we exhibited five circRNAs that were up-regulated or 
down-regulated in Fig. 1a. Some of these circRNAs had 
previously been studied in other types of cancer, however, 

(See figure on next page.)
Fig. 1  circENTPD7 is overexpressed in the glioblastoma tissue and cells. a The heatmap showed the representative dysregulated circRNAs in 
glioblastoma tissues analyzed by microarray. b CircENTPD7 (hsa_circ_0019421) was upregulated in the glioblastoma cells compared to the normal 
cells. c We could only amplify back-spliced forms of ENTPD7 from cDNA by PCR using divergent primers following by gel electrophoresis. The 
canonical linear forms of ENTPD7 in both and gDNA and were amplified in both cDNA and gDNA. d RT-qPCR for the abundance of circENTPD7 and 
ENTPD7 mRNA in glioblastoma cells treated with RNase R were performed, ENTPD7 mRNA rather than circENTPD7 were decreased after RNase R 
treatment. e CircENTPD7 was most localized in the cytoplasm by FISH analysis in U87 cells. f CircENTPD7 was enriched in U87 cytoplasm fraction. 
Levels of circENTPD7, ENTPD7 mRNA, GAPDH, and U6 RNA in purified U87 nuclear and cytoplasm fractions were detected by RT-qPCR. Data are 
presented as mean ± SD, Student’s t test, ***P < 0.001
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there are no reports of circENTPD7 (hsa_circ_0019421) 
in the literature. By using RT-PCR, we examined the 
expression of circENTPD7 in glioblastoma or normal 
cells. To compare the circENTPD7 levels between the 
established cell lines of glioblastoma and normal cells, 
the circENTPD7 expression was examined in U87, A172 
cells. As shown in Fig.  1b, the levels of circENTPD7 in 
glioblastoma cells were significantly higher than that in 
normal cells. Using cDNA and genomic DNA (gDNA) 
from U87 cell lines as templates, the circENTPD7 ampli-
fication products were only observed in cDNA by diver-
gent primers but not in gDNA (Fig. 1c). With divergent 
and convergent primers, we performed RT-qPCR assay 
and found that circENTPD7, rather than linear ENTPD7 
or GAPDH, could resist digestion by RNAse R (Fig. 1d). 
Additionally, the fluorescence in  situ hybridization 
(FISH) results in U87 exhibited a dominantly cytoplasmic 
distribution of circENTPD7 (Fig. 1e). Nuclear and cyto-
plasm fractions were isolated from U87 cells, as shown 
in Fig.  1f, the isolated cytoplasmic fractions showed a 
higher level of circENTPD7 than the nuclear fractions.

Next, we detected the circENTPD7 expression in 90 
paired glioblastoma and adjacent normal tissues. The 
results showed that circENTPD7 was significantly upreg-
ulated in glioblastoma tissues compared to the adjacent 
normal tissues (Fig.  2a). The correlations between cir-
cENTPD7 expression and clinicopathological features 
of glioblastoma patients were analyzed. Briefly, by using 
median expression values, 90 patients were divided into 
two groups, the high and low expression groups, depend-
ing on the fold change (2−ΔΔCT). The results indicated 
that the significant high levels of circENTPD7 in patients 
were correlated with advanced classification and tumor 
size (Table  1). Additionally, the overall survival infor-
mation was followed up from the patients previously 
and then analyzed by using the Kaplan–Meier method 
through GraphPad Prism software (8.0.1). It showed that 
patients who had high levels of circENTPD7 within their 
glioblastoma tissues had significant shorter overall sur-
vival (Fig.  2b). Additionally, circENTPD7 was upregu-
lated in glioblastoma tissues that are larger than 3  cm 
(Fig. 2c), and also was increased in the group of glioblas-
toma tissues in advanced stages (Fig.  2d), implying the 
positive association of circENTPD7 expression with glio-
blastoma tumor progression and metastasis.

Knockdown circENTPD7 represses cell proliferation 
and motility of glioblastoma cells
To investigate the role of circENTPD7 in glioblastoma 
cells, we used siRNA to knockdown circENTPD7 in glio-
blastoma cells (U87, A172) (Fig. 3a). The results of clone 
formation assay showed a reduced number of clones in 
the circENTPD7 knockdown transfection group (Fig. 3b). 

Next, CCK-8 assay was performed to evaluate the effect 
of circENTPD7 knockdown on cell proliferation. Glio-
blastoma cells transfected with circENTPD7 siRNAs 
had an inhibitory effect on cell proliferation (Fig.  3c). 
We performed transwell migration assay to determine if 
circENTPD7 regulates the motility of glioblastoma cells. 
As shown in Fig.  3d and e, the motility of glioblastoma 
cells was significantly inhibited by circENTPD7 siRNAs. 
These results suggested that circENTPD7 knockdown 
represses the proliferation and metastasis of glioblastoma 
cells.

circENTPD7 targets miR‑101‑3p as a miRNA sponge
To elucidate circRNA–miRNA interaction potentials, 
bioinformatics databases TargetScan (https​://www.targe​
tscan​.org/) and circinteractome (https​://circi​ntera​ctome​
.nia.nih.gov/) were used to predict potential binding 
sites of miRNAs in circENTPD7 [15, 16]. The results of 
this study found that miR-101-3p may be the target of 
circENTPD7. Then, we examined the expression (ΔCT 
of miR-101-3p and circENTPD7) correlations between 
circENTPD7 and miR-101-3p, the results showed that 
circENTPD7 was inversely correlated with miR-101-3p 
(Fig.  4a). The miR-101-3p complementary binding site 
to circENTPD7 was shown in Fig.  4b. The luciferase 
activity assay showed the molecular interaction between 
circENTPD7 and miR-101-3p (Fig. 4c). Next, we overex-
pressed circENTPD7 in U87 and A172 cells (Fig. 4d) and 
found that circENTPD7 could reduce the expression of 
miR-101-3p (Fig. 4e). To detect the interaction between 
circENTPD7 and miR-101-3p, the RNA–RNA pulldown 
assay was carried out and we found that miR-101-3p was 
highly enriched by circENTPD7 pulldown (Fig.  4f and 
4g). Together, these results suggested that circENTPD7 
serves as a miRNA sponge for miR-101-3p.

ROS1 serves as the target of circENTPD7/miR‑101‑3p
Further experiments were carried out to identify the 
downstream target of circENTPD7 and miR-101-3p. 
Bioinformatics analysis with several programs includ-
ing TargetScan, RNAhybrid, Findtar, and Pita, were then 
performed to predict the putative miR-101-3p targets. 
The ROS1 mRNA 3′UTR was predicted to have com-
plementary sites with miR-101-3p (Fig.  5a). Further-
more, the levels of ROS1 in glioblastoma tissues was 
significantly higher than normal tissues (Fig.  5b). Then, 
luciferase reporter assay confirmed that miR-101-3p sup-
pressed the expression of ROS1 and cir ENTPD7 while a 
mutant mimic of miR-101-3p lacking the seed sequence 
did not (Fig.  5c and d). Western blot analysis revealed 
that the expression of ROS1 was inhibited after trans-
fecting with miR-101-3p (Fig.  5e). Further Western blot 
illustrated that ROS1 expression was increased in the 

https://www.targetscan.org/
https://www.targetscan.org/
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
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circENTPD7 overexpressing group (Fig.  5f ), indicating 
that circENTPD7 was at the upstream of miR-101-3p to 
regulate ROS1. We next transfected miR101-3p-express-
ing cells with ROS1 plasmid to determine whether ROS1 
was required for miR101-3p inhibition of cell motil-
ity. The results showed that ROS1 significantly rescued 
miR101-3p-inhibited cell migration (Fig.  5g). Similarly, 

knockdown of ROS1 significantly decreased circENTPD7 
induced cell migration (Fig.  5h). Taken together, these 
results suggest that ROS1 serves as the functional protein 
of circENTPD7/miR-101-3p.

To investigate whether ROS1 contributes to cir-
cENTPD7, we knocked-down ROS1 in U87 and 
A172 cells (Additional file  1: Fig. S1a). We found that 
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Fig. 2  The upregulation of circENTPD7 in osteosarcoma predicts poor prognosis. a RT-qPCR analysis was carried out to detect the expression level 
of circENTPD7 in 90 glioblastoma tissues (n = 90) and paired noncancerous tissues (n = 90). b Kaplan–Meier univariate analysis of overall survival 
in glioblastoma patients with high (above median) versus low (below median) circENTPD7 levels; P < 0.05 [log-rank test]. c The circENTPD7 was 
examined in glioblastoma tissues < 3 cm (n = 41) and > 3 cm (n = 49). d The circENTPD7 was examined in glioblastoma tissues at I–II stage (n = 34) 
and III–IV stage (n = 56). Data are presented as mean ± SD, Student’s t test, ***P < 0.001
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circENTPD7 was decreased after interfering ROS1 
(Additional file  1: Fig. S1b). Thus, ROS1-circENTPD7 
feedback contributes to glioma pathogenesis. Although 
miR-101-3p had been reported in glioblastoma [17–
19], whether miR-101-3p regulates cell growth in  vivo 
remains unclear. We found that miR-101-3p not only 
inhibited cell growth in vivo (Additional file 2: Fig. S2a–
c), but also decreased ROS1 expression (Additional file 2: 
Fig. S2d).

Knockdown circENTPD7 inhibits tumor growth 
through miR‑101‑3p/ROS1 axis
Then, we established glioblastoma cancer xenograft 
model using BALB/c nude mice. Tumors from the U87 
cells transducted with sh-circENTPD7 grew much slower 
than the cells transducted with the control mpCDH 
group (mpCDH is a vector that we used to transient 
transfect or stable transduce shRNA into host cells) 
(Fig.  6a–c). Furthermore, we measured the RNA levels 
of miR-101-3p and protein levels of ROS1 in tumors. 

The expression levels of miR-101-3p were much higher 
in sh-circENTPD7 group compared with control group 
(Fig. 6d), while ROS1 was much lower in sh-circENTPD7 
group (Fig.  6e). Taken together, these results indicated 
that circENTPD7 function as an oncogene and knock-
down circENTPD7 could inhibit tumor growth by upreg-
ulation miR-101-3p which in turn decreasing ROS1.

Discussion
Long noncoding RNA (lncRNAs) and circular RNAs (cir-
cRNAs) are important factors in human cancer patho-
genesis [15, 20, 21]. Both lncRNAs and circRNAs lack 
the ability to encode proteins and circRNAs are charac-
terized by the covalent conjunction and lacking of the 3′ 
and 5′ end. In glioblastoma, circRNAs have been found to 
exert an oncogenic or anti-oncogenic role in tumorigen-
esis [22, 23].

In the present study, dysregulated circRNAs were iden-
tified in glioblastoma tissue and circENTPD7 was found 
to be significantly up-regulated. Five overexpressed cir-
cRNAs were identified, including circENTPD7 (hsa_
circ_0019421), hsa_circ_0003026, hsa_circ_0040705, 
hsa_circ_0040708 and hsa_circ_0040719. Another five 
under-expressed circRNAs were also identified, including 
hsa_circ_0040723, hsa_circ_0000722, hsa_circ_0040738, 
hsa_circ_0040733 and hsa_circ_0007361.

Functional cellular experiments indicated that cir-
cENTPD7 silencing inhibited the glioblastoma cell motil-
ity. CircRNAs can target miRNAs by acting as miRNA 
sponge and binding with the RNA binding protein (RBP) 
to exert their function. Mechanical investigation indi-
cated that circENTPD7 targeted miR-101-3p as a miRNA 
sponge, which was confirmed using luciferase reporter 
assay and western blotting.

The ROS1 gene belongs to the subfamily of tyrosine 
kinase insulin receptor genes. ROS1 is now recognized 
as a distinct molecular target in non-small cell lung can-
cer [24, 25]. But the role of ROS1 in glioblastoma still 
elusive. We found that ROS1 was increased in glioblas-
toma, knockdown ROS1 inhibited cell proliferation and 
motility.

The role of circRNAs in human cancers has been 
established in previous studies [15, 20]. For example, 
circPTN sponges miR-145-5p/miR-330-5p to promote 
proliferation and stemness in glioblastoma [26]; FUS/
circ_002136/miR-138-5p/SOX13 feedback loop regulates 

Table 1  Correlation between  circENTPD7 expression 
and  clinicopathologic characteristics of  gastric cancer 
patients

Characteristics circENTPD7 expression

Cases High Low P

Gender

 Male 50 22 28 0.74

 Female 40 19 21

Age (years)

 < 45 31 13 18 0.26

 ≥ 45 59 32 27

Family history of cancer

 Yes 13 6 7 0.89

 No 77 34 43

Tumor location

 Supratentorial 64 33 31 0.38

 Infratentorial 26 16 10

Tumor size (cm)

 < 3 41 14 27 0.02*

 > 3 49 29 20

WHO grade

 I–II 34 11 23 0.01*

 III–IV 56 33 23

(See figure on next page.)
Fig. 3  circENTPD7 knockdown represses the proliferation and metastasis of glioblastoma cells. a Transfection efficiency si-circENTPD7 into 
glioblastoma cells (U87, A172) was examined by RT-qPCR. b Clone formation assay demonstrated the clone number in the circENTPD7 knockdown 
transfection group and the control transfection. c CCK-8 assay showed the inhibition of circENTPD7 knockdown on the proliferation ability. d 
Transwell assay demonstrated the circENTPD7 knockdown for the invasion of glioblastoma cells comparing to the control transfection. e The 
statistical results of d. Data are presented as mean ± SD, Student’s t test, *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 4  circENTPD7 targets miR-101-3p as a miRNA sponge. a Correlation analysis of expression of circENTPD7 and miR-101-3p in glioblastoma 
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angiogenesis in glioblastoma [27]. All these studies sug-
gest that circRNAs target the miRNA as a miRNA 
sponge, and bind to its target and modulate the cellular 
function.

Glioblastoma, also known as glioblastoma multiforme 
(GBM), is the most common high grade and aggressive 
malignant brain tumor in adults [28]. Many circRNAs 
had been shown to be associated with the pathological 
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grade of gliomas [29–31]. Thus, further studies will be 
necessary to reveal the molecular mechanisms underly-
ing the role of circENTPD7 in the pathological grade of 
gliomas.

Taken together, this study identified the role of cir-
cENTPD7 in glioblastoma cells via sponging miR-
101-3p to initiate ROS1 potential. This research 
characterized the regulation of circENTPD7/miR-
101-3p/ROS1 axis and its role in glioblastoma.

Conclusion
We here provide evidence that miR-101-3p can inhibit 
glioblastoma pathogenesis by sponging circPENTPD7 
and ROS1. Therefore, this study also provides new 
insights into the roles and regulatory mechanisms of 
miRNAs in glioblastoma pathogenesis. Our results 
suggest that therapeutic approaches targeting miR-
101-3p could be useful in the treatment of glioblastoma 
pathogenesis.
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