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Abstract 

Background:  Tumor immune infiltration is closely associated with clinical outcome in lung cancer. We aimed to 
develop an immune signature to improve the prognostic predictions of lung adenocarcinoma (LUAD).

Methods:  We applied “Cell type Identification by Estimating Relative Subsets of RNA Transcripts” method to quantify 
the fraction of 22 leukocyte cells from six public microarray datasets. Four datasets from GPL570 were treated as the 
training cohort and two datasets from GPL96 and GPL10379 as the validation cohorts. An immune risk score (IRS) 
based on leukocyte cell fraction was established by least absolute shrinkage and selection operator cox regression 
model.

Results:  IRS consisting of 6 types of leukocytes was constructed in the training dataset. In the training cohort (520 
patients), the IRS stratified patients into high-IRS group (215 patients) and low-IRS group (305 patients) with significant 
differences in overall survival (OS) (HR: 2.77, 95% CI 2.08–3.06). Multivariate analysis including age, gender, stage, IRS 
and tumor purity revealed the IRS to be an independent prognostic factor in all datasets (training: HR: 10.71, 95% CI 
5.72–20.07; validation-1: HR 2.68, 95% CI 1.15–6.27; validation-2: HR 3.71, 95% CI 1.33–10.33); all p < 0.05). IRS was sig‑
nificantly positively correlated to the expression levels of PD1, PDL1, CTLA and LAG3 (all p < 0.001). When integrated 
with clinical characteristics including stage and age, the composite immune and clinical signature presented with 
improved prognostic accuracy than IRS (mean C-index 0.66 vs. 0.60).

Conclusions:  The proposed immune-clinical signature could predict OS in patients with LUAD effectively.
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Background
Non-small cell lung cancer accounts for 85% of all lung 
cancers, the most common cancer and cause of cancer-
related mortality world widely [1]. Lung adenocarcinoma 
(LUAD) is the most diagnosed histological subtype of 
non-small cell lung cancer [2, 3]. Due to the presence 
of metastatic disease at an early stage, the prognosis 
for patients with LUAD is generally poor, with average 
5-year survival rates of < 20% [4]. Conventionally, clinical 

decisions regarding cancer treatment and prognosis are 
based primarily on the AJCC staging system [5].

However, increasing evidence has revealed the clini-
cal importance of tumor-infiltrating immune cells in 
lung cancer [6–10], combining the survival impact of 
immune cells with the AJCC staging system could ena-
ble clinicians to predict patient survival outcomes more 
accurately. Therefore, understanding the immune com-
ponents by gene expression-based algorithms may be 
helpful for promoting studies of immune response in 
LUAD. The availability of public genomic datasets pro-
vides an ideal resource for large-scale gene expression 
analysis to identify reliable lung cancer biomarkers [11].

High resolving power is a key benefit of “Cell type 
Identification by Estimating Relative Subsets of RNA 
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Transcripts” (CIBERSORT), which applies LM22 sig-
nature matrix to quantify the relative proportions of 22 
immune cell types [12]. Because of the superiority of 
CIBERSORT algorithm over other methods regarding 
noise, closely related cell subsets and unknown cell types, 
it has received increasing attention and has been success-
fully applied to quantify the composition of immune cells 
in colon, breast, liver cancer and LUAD [13–17].

Therefore, we used the estimated proportions of 22 leu-
kocytes derived from microarray gene expression data to 
construct and validate an IRS for patients with LUAD. 
To combine the complementary value of IRS for overall 
survival (OS) with clinical characteristics, we integrated 
the IRS with clinical factors to develop a composite prog-
nostic signature, which showed improved prediction of 
LUAD prognosis.

Methods
Datasets
The gene expression data and corresponding clini-
cal characteristics of LUAD patients from Affymetrix® 
(Affymetrix, Santa Clara, California, USA) were down-
loaded from the Gene Expression Omnibus (GEO) 
websites. Datasets selection criterion was as follows: 
1) probe-level CEL files of microarray data were avail-
able; 2) the basic clinicopathological information (age, 
gender, stage and survival information) was available; 3) 
the sample size was larger than 180. Therefore, six data-
sets (GSE31210 [18], GSE30219 [19], GSE37745 [20], 
GSE50081 [21], GSE68465 [22] and GSE72094 [23]) were 
enrolled into our study. Four GEO datasets (GSE30219, 
GSE31210, GSE37745 and GSE50081) from GPL570 were 
treated as the training cohort. Moreover, we employed 
two independent GEO datasets, GSE68465 from GPL96 
and GSE72094 from GPL10379, as the validation cohorts.

Re‑analysis of microarray data
Six GEO datasets were downloaded as probe-level CEL 
files. Then, the microarray data were normalized using 
Robust multiarray average (RMA) method with the affy 
and simpleaffy packages. The datasets used in the train-
ing cohort were quantile normalized after adjusting for 
batch effects using “combat” function (sva package, R 
3.5.3) [24].

Estimation of immune cell type fractions
Gene expression data were subsequently analyzed using 
the LM22 gene signature and CIBERSORT method to 
estimate the fractions of 22 tumor infiltrating leukocytes 
subsets [12]. The CIBERSORT algorithm is well devel-
oped and has been verified by fluorescence-activated cell 
sorting [12]. CIBERSORT derives a p value for the decon-
volution of each sample using Monte Carlo sampling, 

providing a measure of confidence for the results. 
Patients with a CIBERSORT output of p < 0.05 indicated 
that the results of the estimated fractions of immune cell 
populations can be considered accurate [14]. For each 
tumor sample, the final CIBERSORT output estimates 
were normalized and the sum of all estimates of immune 
cell type fractions yields to one.

Study population and clinical variables
Samples with CIBERSORT p value ≥ 0.05 were excluded, 
as were those with normal and non LUAD samples and 
patients for whom survival information or relevant clini-
cal information was unknown. Clinical information 
including age, gender and TNM stage was collected. In 
this study, tumors were staged following the seventh 
edition of the AJCC staging system [25]. “Estimation of 
STromal and Immune cells in Malignant Tumours using 
Expression data” (ESTIMATE) algorithm was applied to 
calculate the stromal and immune scores of each sam-
ple and tumor purity can be evaluated using the formula 
reported before [26].

Construction of IRS
The survminer package [27] was applied to determine 
the optimal cut-off values for each immune cell fraction 
in the training dataset. Then, the leukocyte fraction level 
was scored as 0 or 1; a leukocyte fraction level of 1 was 
assigned when the fraction of one type of leukocyte was 
more than the corresponding cut-off value; otherwise the 
fraction level was 0. Thus, the 22 leukocytes were then 
analyzed as binary variables. To minimize the risk of 
overfitting, a cox proportional hazards regression model 
combined with the least absolute shrinkage and selec-
tion operator (LASSO) [28] was applied to identify the 
most important prognostic immune cells, and the opti-
mal values of the penalty parameter λ were determined 
by tenfold cross-validations at 1 SE beyond the minimum 
partial likelihood deviance in the training dataset [29]. 
An IRS model was constructed based on the selected 
immune cells using lasso cox regression coefficients 
derived from the training cohort. To separate patients 
into low- or high-IRS groups, the optimal IRS cutoff was 
also generated based on the association between IRS and 
OS using the survminer package.

Validation of the IRS
The predictive value of IRS for OS was evaluated in all 
patients and in subgroups stratified by age, gender, TNM-
stage and tumor purity in the training dataset, validation 
dataset-1 and validation dataset-2 with univariate cox 
analysis. We also combined IRS with other available vari-
ables in multivariate analysis (MVA).
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Establishing and validation of immune clinical score
According to the results of MVA in the training dataset, 
IRS, age and stage were significantly associated with OS. 
Thus, we integrated IRS, age, and stage to composite an 
immune clinical score (ICS) using cox proportional haz-
ards regression in the training dataset. Stage was treated 
as continuous variable: stage I was assigned as 1; II, as 2; 
III, as 3; and IV, as 4. The prognostic performance of con-
tinuous ICS was compared with that of the IRS in terms 
of C-index. Meanwhile, the sensitivity and specificity of 
the OS prediction based on the IRS and ICS were evalu-
ated using a time-dependent receiver operating charac-
teristic (ROC) curve [30]. Similar to the aforementioned 
method for determining the optimal cutoff of IRS, the 
cutoff value for ICS was also generated using the sur-
vminer package. Restricted mean survival time (RMST) 
represents the life expectancy at 10  years for training 
dataset and validation dataset-1 and at 4  years for vali-
dation dataset-2 because of shorter follow-up time. The 
performance of binary IRS and ICS was evaluated in 
terms of the RMST ratio between low- and high-risk 
groups [31]. Accordingly, a higher RMST ratio indicates a 
larger prognostic difference.

Statistical analysis
All statistical analysis was conducted using R software 
(version 3.5.3) and SPSS software (version 25.0). The cor-
relations between the IRS and mRNA expression level 
of corresponding genes were analyzed using Pearson’s 
correlation test. Gene set enrichment analysis (GSEA) 
was used to identify the pathways that were significantly 
enriched in high-IRS and low-IRS groups [32]. Kaplan–
Meier method was used to generate survival curves 
and significance of differences was compared using the 
log-rank test. Hazard ratios for univariate analysis were 
calculated using univariate cox proportional hazards 
regression model. The RMST ratio was estimated with 
survRM2 package [33]. All statistical tests were two-
sided and P values less than 0.05 were considered statisti-
cally significant.

Results
Patient characteristics
The patient selection criteria and workflow chart are 
shown in Fig.  1. After applying data filter scheme, 1337 
LUADs were used for further analysis. The mean age at 
diagnosis was 65.20 years and 657 (49.14%) patients were 
male. Most patients (88.33%) were early stage (stage I or 
II) diseases and the mean tumor purity was 0.50. Detailed 
patient characteristics are listed in Table 1.

Derivation of the IRS
The optimal cut-off values were generated for 22 leuko-
cytes in the training cohort (Additional file 1: Table S1). 
LASSO cox regression analysis was used to build an IRS 
model (Fig. 2a). Six leukocyte subsets were identified to 
calculate the IRS as following: 

 Patients in the training cohort were then assigned into a 
high- IRS group (215 patients) and low-IRS group (305 
patients) by the cut-off value (− 0.1652727). The Kaplan–
Meier curve showed the patients in the high-IRS group 
presented with a significantly worse OS in the training 
dataset (HR 2.77, 95% CI 2.78–3.67, p < 0.01) (Fig. 2b). The 
median OS was 11.19 years in low-IRS group vs. 4.47 years 
in the high-IRS group (p < 0.01). The association between 
the IRS and OS was further investigated in the multivari-
able Cox regression model (HR: 10.71, 95% CI 5.72–20.07) 
(Table 2). 

Validation of IRS for predicting overall survival 
in the validation dataset‑1 and validation dataset‑2
To ensure that the constructed IRS possessed predictive 
value for OS in different cohorts, the same formula derived 
from the training cohort was applied to the validation data-
set-1 and validation dataset-2. Patients were assigned to 
high- or low-IRS group by the cut-off values acquired from 
the corresponding cohort (validation dataset-1, 0.04828553; 
validation dataset-2, − 0.03803774). In the validation data-
set-1, 183 patients were assigned into low-IRS group and 
253 patients were assigned into high-IRS group. As for vali-
dation dataset-2, 109 patients were assigned into low-IRS 
group and 272 patients were assigned into high-IRS group. 
Consistent with the findings in the training cohort, patients 
in the high-IRS group presented with a significantly worse 
OS than those in the low-IRS group in the validation data-
set-1 (HR 1.56, 95% CI 1.20–2.02) (Fig. 2c) and the valida-
tion dataset-2 (HR 1.83, 95% CI 1.24–2.78) (Fig.  2d). The 
median OS was 7.81 years in low-IRS group vs. 6.16 years in 
the high-IRS group in the validation dataset-1 and 4.30 years 
in low-IRS group vs. 3.48 years in the high-IRS group in the 
validation dataset-2 (both p < 0.01). The IRS remained as an 
independent prognostic factor in MVA, after adjusting for 
clinical characteristics such as age, gender, TNM stage and 
purity in validation dataset-1 (HR 2.68, 95% CI 1.15–6.27) 
and the validation dataset-2 (HR 3.71, 95% CI 1.33–10.33) 
(both p < 0.05) (Table 2).

IRS = ((−0.16527275)× fraction level of plasma cells)

+
(

(−0.294722231)× fraction of T cells CD4 Memory resting
)

+
(

(0.5352580)× fraction level of Macrophages M0
)

+
(

(−0.3803774)× fraction level of Mast cells resting
)

+ ((0.21355828)× fraction level of Mast cells activated)

+ ((0.3492314)× fraction level of Neutrphils)

.
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The IRS was associated with OS in early stage patients
To further investigate the impacts of clinical character-
istics on the prognostic values of the IRS, we conducted 

stratified analysis according to the baseline character-
istics. As shown in Table  3, LUADs were stratified by 
available baseline characteristics (including age, gender, 
TNM stage and tumor purity). According to the results 
of stratified analysis, the IRS discriminated patients 
with early-stage (I and II) LUAD into significantly dif-
ferent prognostic groups in training dataset, validation 
dataset-1 and validation dataset-2 (all p < 0.01) (Table 3). 
When considering LUADs with stage I disease only, the 
IRS remained highly prognostic for the meta-overall 
dataset (combined HR: 2.01, 95% CI 1.26–3.22; p < 0.01) 
(Additional file 1: Fig. S1).

Biological phenotypes associated with the IRS model
Gene expression data were analyzed to investigate the 
potential biological phenotypes associated with the 
IRS model in the training dataset. Firstly, we specially 
focused on some immune check points and the corre-
lation plot depicted in Fig.  3a showed that the IRS was 
significantly positively correlated to the expression levels 

Fig. 1  Flow chart of data collection and analysis. CIBERSORT Cell type Identification by Estimating Relative Subsets of RNA Transcripts, LASSO least 
absolute shrinkage and selection operator, LUAD lung adenocarcinoma

Table 1  Patients’ basic characteristics

No. 
of patients 
(n = 1337)

Affymetrix® platform

 GPL570 520 (38.89%)

 GPL96 436 (32.61%)

 GPL10379 381 (28.50%)

Age (years),mean(sd) 65.20 (10.01)

Sex ratio (M: F) 657:680

Stage

 I 753 (56.32%)

 II 428 (32.01%)

 III 138 (10.32%)

 IV 18 (1.35%)

Purity, mean (SD) 0.50 (0.15)
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of PD1, PDL1, CTLA and LAG3 (all p < 0.001). Secondly, 
as for some immune-activated related transcripts such 
as GZMA, GZMB, CXCL10 and IFNG, IRS was also sig-
nificantly positively correlated to the expression levels of 
them (all p < 0.001) (Fig. 3b).Finally, we performed GSEA 
to illuminate the biological functions of the IRS model. 
The results showed that in the high-IRS group genes were 

significantly enriched in multiple biological processes 
such as cell cycle pathway and p53 signaling pathway, 
while in the low-IRS group genes were associated with 
the metabolism-related gene set, including fatty acid 
metabolism and propanoate metabolism (Fig. 3c).

Fig. 2  IRS construction and validation. a Partial likelihood deviance of different numbers of variables revealed by the LASSO regression model. The 
red dots represent the partial likelihood deviance values, the grey lines represent the standard error (SE), the two vertical dotted lines on the left 
and right, respectively, represent optimal values by minimum criteria and 1-SE criteria. b–d Kaplan–Meier curves of OS between high and low IRS 
groups in the training cohort (b), validation dataset-1 (c) and validation dataset-2 (d); IRS immune risk score, LASSO least absolute shrinkage and 
selection operator, OS overall survival
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Integrated prognostic score combining the IRS with clinical 
factors
In MVA (Table  2), IRS, age and stage were prognostic 
factors in at least two datasets, implying their comple-
mentary value for predicting OS. To further improve pre-
diction accuracy, we combined IRS, age and stage to fit a 
Cox proportional hazards regression model in the train-
ing cohort and derived an Immune Clinical Score (ICS): 
ICS = (2.68575× IRS)+

(

0.03221× age
)

+
(

0.50289× stage
)

 . 
Improved estimation of OS was achieved by the contin-
uous form of ICS compared with IRS (C-index, 0.66 vs. 
0.64 in the training dataset) (Additional file 1: Table S2). 
The prognostic accuracy of the ICS as a continuous vari-
able was also evaluated by time-dependent ROC analy-
sis (Fig. 4a). An optimal cutoff of 2.135404 for stratifying 

patients was determined in the training dataset. Similar 
results were observed in binary form of the ICS com-
pared with the IRS (RMST ratio, 1.56 vs. 1.47 in the 
training dataset) (Table 4 and Fig. 5a).

Discussion
In this study, we developed an immune prognostic sig-
nature based on the 6 leukocytes and validated it in 
two independent datasets from different platforms. The 
results showed a significantly discriminative ability of 
OS between patients with high- and low- IRS. In addi-
tion, IRS can further stratify clinically defined groups of 
patients (especially early-stage) into subgroups with dif-
ferent survival outcomes. The IRS was significantly posi-
tively correlated to the expression levels of some immune 

Table 2  Multivariate cox analysis of  immune risk score and  clinical variables in  training dataset, validation dataset-1 
and validation dataset-2

IRS immune risk score, CI confidence interval, HR hazard ratio

Training dataset HR (95% CI) p value Validation dataset-1 
HR (95% CI)

p value Validation dataset-2 
HR (95% CI)

p value

IRS 10.71 (5.72–20.07) < 0.01 2.68 (1.15–6.27) 0.02 3.71 (1.33–10.33) 0.01

Age 1.03 (1.02–1.05) < 0.01 1.03 (1.01–1.04) < 0.01 1.00 (0.98–1.03) 0.65

Gender male 1.08 (0.81–1.44) 0.60 1.22 (0.93–1.59) 0.14 1.69 (1.14–2.51) < 0.01

Stage

 I Reference

 II 2.12 (1.56–2.89) < 0.01 1.85 (1.28–2.69) < 0.01 2.13 (1.30–3.51) < 0.01

 III 2.52 (1.38–4.59) < 0.01 5.57 (3.66–8.48) < 0.01 3.37 (2.05–5.54) < 0.01

 IV 2.58 (0.82–8.18) 0.11 NA NA 4.02 (1.78–9.08) < 0.01

Purity 1.31 (0.48–3.53) 0.60 1.41 (0.52–3.85) 0.50 0.95 (0.23–3.91) 0.95

Table 3  The association between  high- and  low- immune risk score and  OS of  LUAD patients in  training, validation 
dataset-1 and validation dataset-2

CI confidence interval, HR hazard ratio, LUAD lung adenocarcinoma, OS overall survival

Training dataset (N = 520) Validation dataset-1 (N = 436) Validation dataset-2 (N = 381)

(High/low) HR (95% CI) p value (High/low) HR (95% CI) p value (High/low) HR (95% CI) p value

Total 215/305 2.77 (2.08–3.67) < 0.01 183/253 1.56 (1.20–2.02) < 0.01 109/272 1.83 (1.24–2.78) < 0.01

Age

 < 70 165/236 2.97 (2.09–4.24) < 0.01 119/171 1.53 (1.11–2.13) 0.01 56/119 1.93 (1.06–3.52) 0.03

 ≥ 70 50/69 2.87 (1.76–4.69) < 0.01 64/82 1.71 (1.12–2.63) 0.05 53/153 1.82 (1.08–3.05) 0.02

Gender

 Male 132/139 2.28 (1.57–3.31) < 0.01 102/116 1.42 (1.01–2.00) 0.04 54/114 1.95 (1.14–3.33) < 0.01

 Female 83/166 3.47 (2.23–5.39) < 0.01 81/176 1.66 (1.11–2.47) 0.01 55/158 1.66 (0.93–2.95) 0.09

Stage

 I/II 205/297 2.73 (2.03–3.65) < 0.01 150/218 1.66 (1.23–2.25) < 0.01 85/226 2.06 (1.29–3.29) < 0.01

 III/IV 10/8 2.71 (0.83–8.87) 0.10 35/33 0.95 (0.57–1.59) 0.85 24/46 1.20 (0.59–2.47) 0.61

Purity

 < 0.5 146/174 3.33 (2.30–4.82) < 0.01 52/61 1.95 (1.11–3.41) 0.02 42/84 1.70 (0.89–3.24) 0.11

 ≥ 0.5 69/131 2.11 (1.33–3.33) 0.01 131/192 1.50 (1.11–2.02) < 0.01 67/188 1.93 (1.17–3.13) < 0.01
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check points and immune-activated related transcripts. 
We further investigated the complementary value of 
IRS and clinical characteristics and found that integrat-
ing both could give a more accurate estimation of OS for 
patients with LUAD.

In recent years, immune profiling studies have taken 
up a research focus in cancer study [9]. In LUAD, several 
studies have explored the association between tumor-
infiltrating lymphocytes and patients’ survival. High 
CD4+ T cell in stroma correlated with longer OS [34] and 
disease-specific survival [35] and plasma cell infiltration 
was related to worse prognosis in LUAD patients [36]. 
It has been argued that macrophages may have a poten-
tial role in lung cancer by supporting both host-defense 
and tumor progression [37]. Mast cells were regarded a 
double-edged sword in cancer immunity: a higher den-
sity of mast cells was reported to correlate with improved 
survival in patients with LUAD [38] but activated mast 
cells presented with potential to exert immunosuppres-
sive effects [39] and Takanami et al. [40] found increased 
mast cell infiltration in LUAD was associated with worse 
prognosis. Neutrophils represented a significant por-
tion of infiltrating inflammatory cells and high neutro-
phil density was associated with a higher risk of relapse 
[41] and was a negative prognostic factor in LUAD [42]. 
To explore the potential role of tumor-infiltrating lym-
phocytes may require investigation comprehensively in 
tumor microenvironment.

Several models [43–45] based on immune cells have 
already been reported to present with strong ability for 
predicting prognosis in various types of tumors. Immu-
nohistochemistry (IHC) is an important means of inves-
tigating tumor immune micro-environment [46] in these 
studies. But IHC suffers from limitations in available 
phenotypic markers [47] and provides only a snap shot 
of the tumor IME assayed on the slide [17]. In addition, 
a standardized measurement criterion of the intensity of 
protein staining, and subsequently quantitation of pro-
tein expression, was also difficult for IHC in nature [48].

As an alternative, continuously accumulating public 
genomic data provided an ideal resource for large-scale 
analysis of the immune landscape, and multiple com-
puter-based algorithms have already been developed 
to perform such analysis [49]. The candidate immune 
cells used to construct the IRS were quantified based 
on a high-throughput gene expression data using bioin-
formatics tool CIBERSORT. By applying this computa-
tional method to public genomic data, it was possible to 
overcome some technical limitations of IHC and give an 
expanded insight into the immune profile in tumor. With 
further use of LASSO Cox regression model, functioning 
as a statistical method for screening prognosis-related 
immune cells to construct the IRS model, the predic-
tive ability could be enhanced significantly [50–52]. We 
compared our results with reports from Yang et  al. and 
found that our IRS model using much less immune cell 

Fig. 3  Biological function of IRS in the training dataset. a The correlation between IRS and immune checkpoint regulators and y axis represents the 
expression levels of certain genes. b The correlation between IRS and immune-activated related transcripts and y axis represents the expression 
levels of certain genes. c Gene set enrichment analysis delineates biological pathways between high- and low-IRS groups. IRS immune risk score
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types showed better predictive ability than IRS model 
from Yang [53] (mean 5-year AUC of 0.66 vs. 0.62). In 
addition, we included tumor purity into our analysis to 
adjust IRS, enabling our results more reliable. The value 
of the IRS was confirmed in two non-overlapping valida-
tion cohorts, indicating its excellent reproducibility for 
LUAD.

Patients with early-stage lung cancer are also at sub-
stantial risk for recurrence and death [54], even after 

complete surgical treatment and the use of adjuvant 
therapy in early-stage lung cancer remains controversial. 
An important finding in our analysis was that the IRS 
was significantly associated with OS in stage I/II LUAD 
patients. The prognostic role of IRS was also confirmed 
in patients with stage I for meta-overall dataset, imply-
ing IRS may provide a powerful prognostic indicator for 
selecting potential patients benefiting from additional 
therapy.

Fig. 3  continued
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FDA has approved IHC PDL1 expression as predictive 
biomarker for response to anti-PD1 therapy for patients 
with NSCLC [55, 56]. Since our study revealed obvi-
ous enrichment of multiple immune checkpoint mark-
ers and immune activation transcripts, especially PDL1, 
in the high-IRS group, it is reasonable to speculate that 

immunotherapy might also be a preferable choice for 
patients in this group. Although patients in high-IRS 
group presented with poor OS, the application of immu-
notherapy may bring potential survival benefit. Further 
studies are warranted to explore whether the IRS model 
can predict the response of patients with LUAD to 

Fig. 4  IRS and ICS measured by time-dependent ROC curves at 5 years in the training dataset (a), validation dataset-1 (b), and validation dataset-2 
(c). AUC​ area under the curve, IRS immune risk score, ICS immune clinical score, ROC receiver operator characteristic

Table 4  RMST ratio between low- and high-risk groups based on immune risk score or immune clinical score in training, 
validation dataset-1 and validation dataset-2

CI confidence interval, RMST restricted mean survival time

RMST (years) Immune risk score Immune clinical score

Low risk (95% CI) High risk (95% CI) Ratio (95% CI) Low risk (95% CI) High risk (95% CI) Ratio (95% CI)

Training dataset 8.01 (7.62–8.40) 5.45 (4.91–5.99) 1.47 (1.32–1.64) 8.66 (8.27–9.04) 5.55 (5.09–6.02) 1.56 (1.42–1.71)

Validation dataset-1 6.34 (5.87–6.83) 5.05 (4.49–5.62) 1.26 (1.10–1.44) 6.46 (6.06–6.87) 3.25 (2.56–3.93) 1.99 (1.60–2.48)

Validation dataset-2 3.29 (3.13–3.45) 2.85 (2.59–3.11) 1.16 (1.04–1.28) 3.36 (3.22–3.51) 2.60 (2.32–2.90) 1.29 (1.15–1.46)

Fig. 5  Kaplan–Meier curves for overall survival of all patients stratified by the IRS and the ICS in the training dataset (a), validation dataset-1 (b) and 
validation dataset-2 (c). IRS immune risk score, ICS immune clinical score
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immunotherapy. The ICS integrating the IRS and base-
line characteristics not only helped clinicians predict 
patient outcomes more precisely but boosted its proce-
dure for translation into clinic utility.

This study has some limitations. First, as all patients 
in this study were selected retrospectively, the potential 
bias relating to unbalanced clinical features with treat-
ment heterogeneity cannot be avoided. Secondly, the 
gene expression profiles used here were all derived from 
a core sample of tumor tissue, making it impossible for 
the location of the immune cell to be taken into consid-
eration when establishing the prognostic IRS model. 
Thirdly, only signatures validated in independent cohorts 
of patients with full clinical annotation available could be 
applied clinically, and thus further investigations should 
focus on clinical validation for IRS, which may provide 
more evidence for its translation into clinical practice.

Conclusion
In conclusion, our study demonstrates the utility of con-
sideration of tumor infiltrating leukocytes in the prog-
nosis prediction of LUAD and may provide additional 
information and strategies for immunotherapy. Prospec-
tive studies are needed to further test its analytical accu-
racy for estimating prognosis and to validate its clinical 
utility in individualized management of LUAD patients.
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