
Huang et al. Cancer Cell Int          (2020) 20:195  
https://doi.org/10.1186/s12935-020-01271-2

PRIMARY RESEARCH

Identification of immune‑related biomarkers 
associated with tumorigenesis and prognosis 
in cutaneous melanoma patients
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Abstract 

Background:  Skin cutaneous melanoma (SKCM) is one of the most malignant and aggressive cancers, causing about 
72% of deaths in skin carcinoma. Although extensive study has explored the mechanism of recurrence and metasta‑
sis, the tumorigenesis of cutaneous melanoma remains unclear. Exploring the tumorigenesis mechanism may help 
identify prognostic biomarkers that could serve to guide cancer therapy.

Method:  Integrative bioinformatics analyses, including GEO database, TCGA database, DAVID, STRING, Metascape, 
GEPIA, cBioPortal, TRRUST, TIMER, TISIDB and DGIdb, were performed to unveil the hub genes participating in tumor 
progression and cancer-associated immunology of SKCM. Furthermore, immunohistochemistry (IHC) staining was 
performed to validate differential expression levels of hub genes between SKCM tissue and normal tissues from the 
First Affiliated Hospital of Soochow University cohort.

Results:  A total of 308 differentially expressed genes (DEGs) and 12 hub genes were found significantly differentially 
expressed between SKCM and normal skin tissues. Functional annotation indicated that inflammatory response, 
immune response was closely associated with SKCM tumorigenesis. KEGG pathways in hub genes include IL-10 sign‑
aling and chemokine receptors bind chemokine signaling. Five chemokines members (CXCL9, CXCL10, CXCL13, CCL4, 
CCL5) were associated with better overall survival and pathological stages. IHC results suggested that significantly 
elevated CXCL9, CXCL10, CXCL13, CCL4 and CCL5 proteins expressed in the SKCM than in the normal tissues. Moreo‑
ver, our findings suggested that IRF7, RELA, NFKB1, IRF3 and IRF1 are key transcription factors for CCL4, CCL5, CXCL10. 
In addition, the expressions of CXCL9, CXCL10, CXCL13, CCL4 and CCL5 were positively correlated with infiltration 
of six immune cells (B cell, CD8+T cells, CD4+T cells, macrophages, neutrophils, dendritic cells) and 28 types of TILs. 
Among them, high levels of B cells, CD8+T cells, neutrophils and dendritic cells were significantly related to longer 
SKCM survival time.

Conclusion:  In summary, this study mainly identified five chemokine members (CXCL9, CXCL10, CXCL13, CCL4, 
CCL5) associated with SKCM tumorigenesis, progression, prognosis and immune infiltrations, which might help us 
evaluate several immune-related targets for cutaneous melanoma therapy.
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Background
Skin cutaneous melanoma (SKCM) accounts for only 
2% of total skin cancers. However, due to its high degree 
of malignancy and invasiveness, it causes over 72% of 
deaths in skin carcinoma [1]. The incidence of cutane-
ous malignant melanoma continues to increase annually 
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[2]. Melanoma has become a serious public health prob-
lem, bringing great economic burden for society [3]. It is 
well known that melanoma is associated with multiple 
risk factors especially the sun exposure [4]. The general 
progression models of SKCM are from melanocyte to 
melanoma in  situ, to invasive melanoma [5]. However, 
extensive research has explored the mechanism of recur-
rence and metastasis, the tumorigenesis of cutaneous 
melanoma remains unclear.

In the present study, we analyzed the differentially 
expressed genes (DEGs) between primary melanoma and 
normal skin to explore the potential tumorigenesis mech-
anism of SKCM. Our results mainly identified several 
chemokine family members (CXCL9, CXCL10, CXCL13, 
CCL4, CCL5) which were found related to better over-
all survival (OS) in SKCM patients. Chemokine family 
members are a group of low-molecular weight cytokines 
which were involved in many biological processes includ-
ing angiogenesis, tumor development and metastasis, 
and the migration of leukocytes [6, 7]. In addition, we 
found that their expression levels were positively associ-
ated with infiltration of immune cells (CD4+T, CD8+T, 
B-cell, macrophages, neutrophils, dendritic cells) and 
tumor infiltrating lymphocytes (TILs). These immune 
infiltration cells play important roles in tumor microen-
vironment and can directly or indirectly regulate tumor 
immunity and modulate tumor immunological for anti-
tumor effects [7, 8]. Therefore, our results may identify 
several immune-related biomarkers that may serve to 
guide SKCM therapy.

Methods
Patients and variables
A total of 46 melanoma and 46 normal tissues were 
obtained from 92 patients at the Department of Burn and 
Plastic Surgery, the First Affiliated Hospital of Soochow 
University (FAHSU, Suzhou, China) from March 2015 
to August 2019. None of the patients had received radio-
therapy or chemotherapy before operation. Tissue sam-
ples, including cutaneous melanoma and normal tissue, 
were collected during surgery and fixed in 4% paraform-
aldehyde, available from FAHSU tissue bank. Clinical 
data was available to obtain from hospital records. This 
research was supported by the Independent Ethics Com-
mittee (IEC) of the FAHSU and all patients were well 
informed of storing and upcoming use of their resected 
specimens for further research purposes.

GEO and TCGA datasets
Expression profiling of SKCM patients with clinical infor-
mation was obtained from the Gene Expression Omni-
bus (GEO) database (http://www.ncbi.nlm.nih.gov/geo) 
[9]. Among the inclusion criteria were (a) diagnosis of 

patients with primary melanoma (PM) and normal skin 
(NS), (b) detection of gene level in tissue or blood sam-
ples. Exclusion criteria included: (a) clinical data without 
survival time and outcome, and (b) datasets with small 
sample sizes (n < 15). Finally, three datasets were eligible: 
accession numbers GSE15605 (46 PM samples and 16 
NS samples), GSE46517 (31 PM samples and 8 NS sam-
ples) and GSE114445 (16 PM samples and 6 NS samples). 
For validation, gene expression profiles of 472 melanoma 
patients were downloaded from the TCGA data portal 
(https​://tcga-data.nci.nih.gov/tcga/) [10]. Clinical char-
acteristics of patients were also obtained, including age, 
Clark level, Breslow depth, survival time, and outcome. 
All of the clinicopathological characteristics of SKCM 
patients were shown in Table 1.

Identification of DEGs
The DEGs between primary melanoma and normal skin 
were identified using GEO2R (http://www.ncbi.nlm.nih.
gov/geo/geo2r​) based on limma package with the thresh-
old of|logFC| > 1 and P-value < 0.05. Next, the online 
Venn software (http://bioin​forma​tics.psb.ugent​.be/
webto​ols/Venn/) was applied to detect the overlap DEGs 
among three datasets.

DAVID database
To elucidate the biological functions of the overlapping 
DEGs, we performed functional annotation and path-
way enrichment analysis via DAVID (The Database for 
Annotation, Visualization and Integrated Discovery, 
http://david​.ncifc​rf.gov/,versi​on 6.8) online tool [11]. 
P-value < 0.05 was considered as the cutoff value. GO 
enrichment and KEGG pathway results were visualized 
as bubble charts by R software.

STRING and cytoscape
STRING (http://strin​g-db.org, version 11.0) database was 
used to predict the PPI network of DEGs and analyze the 
interactions between proteins [12]. An interaction with 
a combined score > 0.4 was recognized as statistical sig-
nificance. The molecular interaction networks were visu-
alized using the Cytoscape (version 3.7.0) and the most 
significant model in the PPI network was narrowed down 
by MCODE, with the following criteria: degree cutoff = 2, 
node score cutoff = 0.2, k-core = 2, max depth = 100 [13, 
14].

Functional enrichment
Metascape (https​://metas​cape.org) was used to fur-
ther verify the function enrichment of hub genes [15]. 
P < 0.05 was set as the cutoff value. Hub genes pathway 
analysis was performed and visualized by ClueGO (ver-
sion 2.5.4) and CluePedia (version 1.5.4), the plug‐in of 

http://www.ncbi.nlm.nih.gov/geo
https://tcga-data.nci.nih.gov/tcga/
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://david.ncifcrf.gov/%2cversion
http://string-db.org
https://metascape.org
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Cytoscape [16]. P-value < 0.01 was considered statistically 
significant.

GEPIA database
GEPIA (http://gepia​.cance​r-pku.cn/index​.html) is an 
analysis tool containing RNA sequence expression data 
of 9736 tumors and 8587 normal tissue samples [17]. In 
this study, GEPIA was used to perform survival analysis 

based on the data from TCGA database. Student’s t test 
was used to analyze the correlation between the expres-
sion and pathological stages. P value < 0.05 was consid-
ered statistically significant.

Immunohistochemistry (IHC)
Protein expression levels of hub genes were measured 
using IHC staining and rabbit polyclonal anti-CCL4 
antibody (ab235978), anti-CCL5 antibody (ab9679), 
anti-CXCL9 antibody (ab9720), anti-CXCL10 antibody 
(ab9807), anti-CXCL13 antibody (ab272874). Positive or 
negative staining of a certain protein in one FFPE slide 
was independently assessed by two experienced patholo-
gists and supervised by a clinician. Based on the staining 
intensity level (no staining, weak, moderate and strong 
staining), the score was ranging from 0 to 3, as previous 
described. The staining extent was graded from 0 to 4 for 
the coverage percentage of immunoreactive tumor cells 
(0%, 1–25%, 26–50%, 51–75%, 76–100%). The overall 
IHC score grading from 0 to 12 was evaluated according 
to the multiply of the staining intensity and extent score. 
Negative staining represented grade 0 to 4 and positive 
staining from 5 to 12 for each sample.

cBioPortal database
The cBioPortal database (www.cbiop​ortal​.org), a com-
prehensive web resource, can visualize and analyze mul-
tidimensional cancer genomics data [18]. The genetic 
alterations of prognostic genes were obtained from cBio-
Portal based on 475 SKCM samples in TCGA.

TRRUST database
TRRUST (https​://www.grnpe​dia.org/trrus​t/) is a useful 
predict tool for human, and mouse transcriptional regu-
latory networks [19]. The TRRUST database can provide 
information on how these interactions are regulated, 
containing 8444 transcription factor (TF)-target regula-
tory relationships of 800 human TFs.

Immune infiltration analysis
Prognostic gene expression data was used to measure 
the abundance of six types of infiltrating immune cells 
(B cells, CD4+T cells, CD8+T cells, neutrophils, mac-
rophages, and dendritic cells) in SKCM patients using the 
Tumor Immune Estimation Resource (TIMER) algorithm 
[20]. Then, an integrated repository portal for tumor-
immune system interactions (TISIDB, http://cis.hku.hk/
TISID​B/index​.php) was utilized to examine tumor and 
immune system interactions in 28 types of TILs across 
human cancers [21]. Spearman’s test was used to meas-
ure correlations between prognostic genes and TILs. All 
hypothetical tests were two-sided and P-values < 0.05 
were considered statistically significant.

Table 1  Clinicopathological characteristics of  SKCM 
patients

SKCM, Skin Cutaneous Melanoma

FAHSU, The First Affiliated Hospital of Soochow University

GEO, The Gene Expression Omnibus

TCGA, The Cancer Genome Atlas

Characteristics FAHSU 
cohort 
(N = 46)

GEO cohort (N = 93) TCGA 
cohort 
(N = 472)

N (%)

 Age

   ≤ 60 years 21 (45.6) 53 (56.9) 258 (54.7)

   > 60 years 25 (54.4) 40 (43.1) 214 (45.3)

 Gender

  Male 30 (65.2) 55 (59.1) 297 (61.9)

  Female 16 (34.8) 38 (40.9) 183 (38.1)

 Clark level

  I 6 (13.0) 13 (13.9) 6 (1.8)

  II 25 (54.3) 25 (26.8) 18 (5.5)

  III–IV 12 (26.1) 47 (50.7) 246(75.5)

  V 3 (6.6) 8 (8.6) 56 (17.2)

 Breslow depth(mm)

  ≤ 0.75 5 (10.9) 15 (16.1) 36 (10.2)

  0.76–1.50 28 (60.9) 30 (32.2) 65 (18.4)

  1.51–4.00 11 (23.9) 39 (41.9) 106 (30.0)

  > 4.00 2 (4.3) 9 (9.8) 146 (41.4)

 pT stage

  T1–T2 32 (69.6) 57 (61.3) 121 (32.7)

  T3–T4 14 (30.4) 36 (38.7) 249 (67.3)

 pN stage

  N0 46 (100) 93 (100) 236 (65.0)

  N1 0 (0) 0 (0) 75 (20.7)

  N2 0 (0) 0 (0) 52 (14.3)

 pM stage

  M0 46 (100) 93 (100) 424 (94.4)

 M1 0 (0) 0 (0) 25 (5.6)

 Pathologic stage

  I–II 46 (100) 93 (100) 233 (53.9)

  III–IV 0 (0) 0 (0) 199 (46.1)

 Persistent distant metastasis

  No 46 (100) 93 (100) 217 (46.1)

  Yes 0 (0) 0 (0) 254 (53.9)

http://gepia.cancer-pku.cn/index.html
http://www.cbioportal.org
https://www.grnpedia.org/trrust/
http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
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The drug–gene interaction database
DGIdb (version 2.0) is an open-source project that help 
users mine existing resources and generate assumptions 
about how genes are therapeutically targeted or prior-
itized for drug development [22]. The parameters were 
set as: preset filters: FDA approved; antineoplastic; all the 
default.

Statistical analysis
The expression heatmap and correlation coefficient were 
analyzed and visualized by pheatmap and corplot pack-
ages in R software. ROC curve of prognostic genes was 
performed by SPSS 22.0. P-values < 0.05 were considered 
statistically significant in all tests.

Results
DEGs selection
After standardization and identification of the microarray 
results, DEGs (4640 in GSE15065,1096 in GSE46517 and 
1895 in GSE114445) were selected. The overlap among 
three datasets included 308 genes as shown in the Venn 
diagram (Fig. 1a, Additional file 1: Table S1) between pri-
mary melanoma and normal skin.

GO and KEGG enrichment analysis of the DEGs
Functional and pathway enrichment of DEGs was per-
formed by DAVID, then displayed in bubble charts by 
R software (P < 0.05, Fig.  2). GO analysis indicated that 
changes in biologic processes were significantly enriched 
in the inflammatory response, immune response, regula-
tion of transcription. As for cellular component, DEGs 
were particularly enriched in extracellular region, extra-
cellular space and extracellular exosome. Changes in 
molecular function were mostly enriched in chemokine 
activity, transcriptional activator activity, protein bind-
ing and CXCR3 chemokine receptor binding. KEGG 
pathway analysis demonstrated that DEGs played pivotal 
roles in pathways in cytokine–cytokine receptor interac-
tion, chemokine signaling pathway and pathways in can-
cer. These results revealed that immune response and 
inflammatory response play important roles in SKCM 
tumorigenesis.

PPI network construction and hub genes identification
The PPI network was constructed via Cytoscape, includ-
ing 247 nodes and 792 edges (Fig.  1b). Then, the most 
important PPI network module was obtained using 
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Fig. 1  Venn diagram, PPI network and the most significant module of DEGs. a The three datasets explored an overlap of 308 genes in Venn 
diagram. b The PPI network of DEGs was performed by Cytoscape. c The most significant module of DEGs was obtained from PPI network with 12 
nodes. (DEGs, differentially expressed genes; PPI, protein‐protein interaction)
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MCODE, consisted of 12 nodes and 64 edges (Fig.  1c). 
After selection, CCL5, PTGER3, IL6, CXCL13, CCL27, 
CCL4, CXCL9, NMU, CXCL2, GAL, NPY1R, CXCL10 
were considered as hub genes of the network.

Function analysis of hub genes
As expected, functional annotation obtained from Metas-
cape suggested that hub genes were mainly enriched in 
regulation of T cell chemotaxis, peptide ligand-binding 
receptors and chemokine receptors bind chemokine sign-
aling (Fig.  3a, b, P < 0.001). Similarly, ClueGO (Fig.  3c, 
P < 0.01) revealed that the most involved pathways were 
interleukin-10 signaling, peptide ligand-binding recep-
tors and chemokine receptors bind chemokine signaling.

The prognostic and diagnostic value of hub genes in SKCM 
patients
Using the Kaplan‑Meier method, the prognostic values 
of the hub genes in SKCM patients were determined. 
Seven hub genes were significantly associated with OS 
as shown in Fig. 4. High expression of CXCL9 (HR = 0.6; 
P = 2E−4), CXCL10 (HR = 0.57; P = 2.8E−5), CXCL13 

(HR = 0.56; P = 2.1E−5), CCL4 (HR = 0.48; P = 8.2E−8), 
CCL5 (HR = 0.53; P = 3.2E−6) were significantly asso-
ciated with better OS. In contrast, NMU (HR = 1.6; 
P = 3E−4) and GAL (HR = 1.6; P = 0.001) were found 
associated with poor overall survival. Furthermore, CCL4 
(HR = 0.76; P = 0.026), CCL5 (HR = 0.76; P = 0.027) 
were also found significantly associated with better dis-
ease-free survival (Fig.  4). Except GAL (AUC = 0.536), 
the rest of hub genes, including CCL4 (AUC = 0.872), 
CCL5 (AUC = 0.775), CXCL9 (AUC = 0.834), CXCL10 
(AUC = 0.786), CXCL13 (AUC = 0.807) and NMU 
(AUC = 0.829), were of diagnostic value (P < 0.001) 
(Fig. 5).

Validation the aberrant expression of prognostic genes 
and their clinical characteristics
Based on data from GEPIA database, all of the prognostic 
genes were found differential expressed in SKCM vs nor-
mal skin tissue (P < 0.05, Fig. 6).

In addition, CXCL9 (P = 7.74E−5), CXCL10 
(P = 1.05E−4), CXCL13 (P = 8.15E−4), CCL4 
(P = 0.002), CCL5 (P = 0.001) were significantly 

a b

c d

Fig. 2  GO and KEGG analysis of the overlapping DEGs in SKCM. a Biological process. b Cellular component. c Molecular function. d KEGG pathway. 
Functional and pathway enrichment of DEGs was performed by DAVID, displayed in bubble charts
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correlated to SKCM pathological stages (Fig. 7). Among 
them, CXCL9, CXCL10, CXCL13, CCL4, CCL5 were 
higher expressed in stage I and decreased in the subse-
quent stages.

Subsequently, all of the samples from TCGA were 
ordered according to the expression level of CXCL9, 
and statistical analysis was conducted to compare the 
head 80 with the tail 80 samples. The heatmap (Fig. 8b) 
and statistical results suggested that higher expression 
levels (tail 80 samples) of CXCL9, CXCL10, CXCL13, 
CCL4, CCL5 were related to more patients of lower 
Breslow depth (0–1.5  mm, 51.2%), BRAF mutation 
(60%) and lower Clark levels (I–III 45% and IV–V, 55%), 
reduced T4 stage (T4, 25%). With the decrease levels 
of these five chemokines (head 80 samples), there were 

more patients with higher Breslow depth (0–1.5  mm, 
15% and > 1.5 mm, 85%), BRAF WT (wild type, 56.3%), 
higher Clark levels (I–III 17.5% and IV–V, 82.5%) and 
T4 stage (T4, 47.5%).

All of the data above suggested that five chemokine 
family members play critical roles in cutaneous mela-
noma tumorigenesis and progression.

Genetic alteration, correlation coefficient and key 
transcription factors analyses of prognostic genes 
in patients with SKCM
As a result, there were nearly 6% (CXCL9), 5% 
(CXCL10), 3% (CXCL13), 4% (CCL4), 5% (CCL5), 3% 
(NMU), 4% (GAL) of SKCM samples had genetic alter-
ation. The most common genetic change among five 

a b

c

Fig. 3  The function analysis of hub genes (P < 0.01). a, b The functions of hub genes were mainly enriched in regulation of T cell chemotaxis, 
peptide ligand-binding receptors and chemokine receptors bind chemokine signaling. c The most significant pathway and related genes
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chemokines (CXCL9, CXCL10, CXCL13, CCL4, CCL5) 
was enhanced mRNA expression (Fig.  8a). While 
genetic change in GAL and NMU were mainly related 
to amplification.

Then, we assessed the correlation coefficients in prog-
nostic genes. As expect, significant positive correla-
tions were observed between five chemokines (Fig. 8c). 
Among them, CXCL9 and CXCL10 had the highest 
positive correlation with a Spearman’s correlation coef-
ficient of 0.92. CXCL9 exhibited the tightest association 
with all other chemokines, with a median Spearman’s 
correlation coefficient of 0.85.

Using TRRUST database, we explored potential tran-
scription factor targets of the five chemokines. As a 

result, IRF7, IRF3 (FDR = 3.09E−05); RELA, NFKB1 
and IRF1 (FDR = 1.5E−04) were found to be the 
key transcription factors for CCL4, CCL5, CXCL10 
(Table 2).

Validation of five chemokines expression in SKCM tissues 
from the FAHSU cohort
Therefore, IHC was performed to validate the expres-
sion of five chemokine family members. Consistent 
with the mRNA expression, we found significantly 
elevated CXCL9, CXCL10, CXCL13, CCL4 and CCL5 
proteins expression in the SKCM than in the normal 
tissues. The results and the plots of IHC score were 
illustrated in Fig. 9.
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Immune infiltration analysis
We performed correlation analysis between 
prognostic genes expression and immune infil-
tration level for SKCM. There was a positive 
correlation between CXCL9 expression and the infil-
tration of B cells (Cor = 0.238, p = 3.58e−07), CD8+ 
T cells (Cor = 0.643, p = 1.94e−52), CD4+ T cells 
(Cor = 0.299, p = 1.19e−10), macrophages (Cor = 0.247, 
p = 9.59e−8), neutrophils (Cor = 0.612, p = 7.03e−48), 
and dendritic cells (Cor = 0.648, p = 1.56e−54; Fig. 10a). 
Similar results were obtained for CXCL10, CXCL13, 
CCL4 and CCL5 (Fig.  10b–e). While, the correlation 
between NMU/GAL and immune infiltration is not 
obvious (Fig. 10f, g). Additionally, we also found signifi-
cant correlations of these seven genes with 28 types of 
TILs across human heterogeneous cancers (Additional 
file  2: Fig. S1). CXCL9 significantly positive correlated 
with abundance of 28 types TILs such as activated CD8 
T cells (Act_CD8 T cells; rho = 0.801, P < 2.2e−16), 
regulatory T cells (Treg; rho = 0.693, P < 2.2e−16), mac-
rophage (rho = 0.655, P < 2.2e−16), natural killer T cells 

(NK T cells; rho = 0.74, P < 2.2e−16), myeloid derived 
suppressor cells (MDSC; rho = 0.744, P < 2.2e−16), 
immature B cell (Imm_B; rho = 0.78, P < 2.2e−16). Sim-
ilar results were found in CXCL10, CXCL13, CCL4 and 
CCL5 (Additional file 2: Fig. S1).

Additionally, in the survival model of TIMER, results 
showed that high levels of B cells (Log-rank P = 0), 
CD8+ T cells (Log-rank P = 0), neutrophils (Log-rank 
P = 0), dendritic cells (Log-rank P = 0), CXCL9 (Log-
rank P = 0), CXCL10 (Log-rank P = 0), CXCL13 (Log-
rank P = 0), CCL4 (Log-rank P = 0), CCL5 (Log-rank 
P = 0), were significantly related to longer survival time 
in SKCM patients (Additional file 3: Fig. S2).

Drug–gene interaction prediction
We obtained 42 drug-gene interaction pairs in DGIdb, 
including genes (IL6, CXCL2, CXCL10, CCL4, CCL5, 
PTGER3, GAL, NPY1R) and 69 drugs, as shown in 
Fig.  11. This result may help develop new targets for 
SKCM therapy.

Table 2  Key transcriptional factors (TFs) of five chemokines in SKCM (TRRUST database)

Key TF Description P-value FDR Regulated genes

IRF7 Interferon regulatory factor 7 7.77E−06 3.09E−05 CCL5, CXCL10

IRF3 Interferon regulatory factor 3 1.24E−05 3.09E−05 CXCL10, CCL5

RELA v-Rel reticuloendotheliosis viral oncogene 
homolog A (avian)

0.000134 0.000149 CCL4, CXCL10, CCL5

NFKB1 Nuclear factor of kappa light polypeptide 
gene enhancer in B-cells 1

0.000137 0.000149 CCL5, CXCL10, CCL4

IRF1 Interferon regulatory factor 1 0.000149 0.000149 CXCL10, CCL5

Fig. 9  Validation of five chemokines expression in SKCM tissues from the FAHSU cohort. IHC staining indicated significantly elevated expression of 
CXCL9, CXCL10, CXCL13, CCL4, CCL5 in SKCM tissues compared with normal tissues (P < 0.0001)
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Fig. 10  The correlation between prognostic genes expression and immune cell infiltration (TIMER). The correlation between the abundance of 
immune cell and the expression of a CXCL9; b CXCL10; c CXCL13; d CCL4; e CCL5; f NMU; g GAL
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Discussion
Skin is the largest organ of human beings. There are 
about 1500 melanocytes in human epidermis per square 
millimeter, equivalent to nearly 3 billion melanocytes in 
an ordinary human skin [23]. The incidence of SKCM 
continues to increase every year. Once melanoma spreads 
through the dermis, the prognosis is poor and melanoma 
is not projected to reduce the death rate in the next few 
years [24]. A series of therapeutic methods, such as radio-
therapies, chemotherapies, targeted therapies and immu-
notherapies have enhanced advanced patient survival 
[25]. However, many patients that are being administered 
these therapies demonstrate a low durable response, 
drug resistance and poor prognosis [26]. Therefore, more 
therapeutic targets and prognostic biomarkers must be 
identified.

In our study, 308 DEGs were identified between pri-
mary SKCM and normal skin, and the functional annota-
tion indicated that inflammatory response and immune 
response were closely associated with SKCM tumorigen-
esis. KEGG pathways in hub genes included IL-10 signal-
ing, chemokine receptors bind chemokine signaling and 
peptide ligand-binding receptors. STAT3 is essential for 
the action of IL-10 and IL-6. IL-6 plays a central role in 
melanoma development and enhances the IL-10 pro-
duction via STAT3-dependent signaling [27]. IL-6,10/
JAK-STAT3 pathways are found in many carcinomas, and 
their hyperactivation was generally related to unfavorable 
clinical prognosis [28]. IL-6 and IL-10 create a favorable 
environment to support tumorigenesis by increasing the 
cancer cell proliferation, angiogenesis, metastasis and 
contribute to enhancing the immune suppression [28]. 
Smith et  al. found that IL-10 directly inhibits CD8+T 
cell function by enhancing N-Glycan branching to 

decrease antigen sensitivity [29]. However, chemokine 
and its receptors usually attract immune cells such as 
CD8+T cell and NKs in the tumor microenvironment for 
immune activation [30]. Apparently, these two pathways 
play opposite roles in tumor formation, and the tumori-
genesis of SKCM may be related to their abnormality.

Moreover, SKCM patients with high expression of 
five chemokines (CXCL9, CXCL10, CXCL13, CCL4, 
CCL5) were associated with better OS. While high lev-
els of NMU and GAL showed poor prognosis. In addi-
tion, we found that the high expression of CXCL9, 
CXCL10, CXCL13, CCL4 and CCL5 were related to 
better outcomes in Breslow depth, Clark level, T-stages. 
IHC results from FAHSU cohort verified that CXCL9, 
CXCL10, CXCL13, CCL4, CCL5 were significantly over-
expressed in SKCM tissues. All of the results suggested 
that chemokines members (CXCL9, CXCL10, CXCL13, 
CCL4, CCL5) and NMU, GAL were important biomark-
ers in SKCM tumorigenesis, progression and prognosis.

Chemokines are chemotactic cytokines mediating the 
migration and localization of immune cells [31]. C–X–C 
motif ligand 9,10,13 (CXCL9, CXCL10, CXCL13) belong 
to CXC family chemokine. They are predominantly 
expressed by immune cells such as macrophages and 
T cells. CXCL9, CXCL10 exert their function through 
binding to C-X-C motif receptor CXCR3 that was highly 
expressed on the activated T cells [30]. Research shows 
that CD8+T cell infiltration is CXCR3 dependent [32]. 
CD8+T cell plays important role in tumor microenviron-
ment, which inhibits the proliferation and metastasis of 
tumor cells. A recent research found that the CXCL10-
CXCR3 axis may relate to melanoma brain metasta-
sis [33]. Additionally, the CXCR3 ligands enhanced 
the response rates to immune checkpoint blockade 

Fig. 11  Drug–gene interaction diagram, yellow circle indicates the related hub gene and white square indicates the drug
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(anti-PD-1, anti-CTLA-4) by recruiting T cells [34]. 
These results reveal the importance of manipulating 
this axis, which provide us opportunities to manipulate 
chemokine expression for tumor therapy and prevention.

C–C motif ligand CCL4, CCL5 belong to CC fam-
ily chemokine. CCL4, CCL5, CXCL9, CXCL10 were 
confirmed to be preferentially expressed in tumors that 
contained T cells [35]. This suggests that CCL4, 5 and 
CXCL9,10 may act in the same pathway in T-cell recruit-
ment. The experimental results carried out by Michelle 
H et  al. showed that expression of CXCR3 ligands and 
CCL5 in chemotherapy tumors did lead to a synergistic 
increase in T-cell infiltration [36]. It is also been reported 
that CCL5 released by tumor cells acts its function via 
paracrine signaling to attract NKs to the tumor bed [37]. 
Taken together, we assumed that CCL4 and CCL5 may 
be potent biomarkers and targets for melanoma.

Then, we conducted correlation analysis, and high cor-
relation coefficients were observed among chemokine 
members (CXCL9, CXCL10, CXCL13, CCL4, CCL5) as 
expected, suggesting that these chemokines play a syn-
ergistic role in the tumorigenesis and progression of 
SKCM. We also explored the transcription factors for 
these chemokines, and found that IRF7, RELA, NFKB1, 
IRF3 and IRF1 may be key transcription factors in the 
regulation of CCL4, CCL5 and CXCL10. RELA phos-
phorylation is involved in multiple inflammatory diseases 
and cancer progression by regulating NF-κB signaling 
[38]. NFKB1 is an suppressor of inflammation and can-
cer, which plays an inhibitory role in the occurrence 
and progression by reducing the abnormal activation of 
NF-κB signal pathway [39]. IRF family regulates type-I 
IFN system for anti-tumor immunity through promot-
ing differentiation of B cells, inducing differentiation of 
naive T cells to effector CD4+ or CD8+T cells and driv-
ing the expression of MHC class I and II [40]. Our results 
may provide evidence about the complicated correlation 
among SKCM, chemokines, type-I IFN system and the 
NF-κB signaling pathway.

In addition, the expressions of CXCL9, CXCL10, 
CXCL13, CCL4 and CCL5 were positively correlated 
with six immune cell infiltration (B cells, CD8+T cells, 
CD4+T cells, macrophages, neutrophils, dendritic cells) 
and 28 types of TILs. However, NMU and GAL were not 
significantly correlated with infiltration of immune cells 
and TILs. Previous studies suggested that high levels of 
immune cell infiltration are associated with favorable 
outcomes [41]. It was similar to our results that increas-
ing levels of B cells, CD8+T cells, neutrophils, dendritic 
cells were related to longer survival time in SKCM 
patients. A novel study based on thousands of melanoma 
patients found that the degree of lymphocyte infiltra-
tion was an independent prognosticator of disease-free 

survival (DFS), revealing that a lesser level was associ-
ated with a reduced DFS [42]. What’s more, we predicted 
drug-gene interaction pairs between hub genes and 69 
drugs, indicating that our results may reveal immune-
related targets for SKCM therapy.

Conclusion
In summary, our study mainly identified five chemokine 
members (CCL4, CCL5, CXCL9, CXCL10, CXCL13) and 
NMU, GAL as significant biomarkers in SCKM tumo-
rigenesis and progression. In addition, their expression 
levels were closely related to prognosis and immune cell 
infiltration. This study may provide several potential 
immune-related targets and help us better understanding 
the tumorigenesis of SKCM. However, further functional 
studies are needed to verify the absoluteness of these 
findings.
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