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Abstract

Background: Skin cutaneous melanoma (SKCM) is one of the most malignant and aggressive cancers, causing about
72% of deaths in skin carcinoma. Although extensive study has explored the mechanism of recurrence and metasta-
sis, the tumorigenesis of cutaneous melanoma remains unclear. Exploring the tumorigenesis mechanism may help
identify prognostic biomarkers that could serve to guide cancer therapy.

Method: Integrative bioinformatics analyses, including GEO database, TCGA database, DAVID, STRING, Metascape,
GEPIA, cBioPortal, TRRUST, TIMER, TISIDB and DGldb, were performed to unveil the hub genes participating in tumor
progression and cancer-associated immunology of SKCM. Furthermore, immunohistochemistry (IHC) staining was
performed to validate differential expression levels of hub genes between SKCM tissue and normal tissues from the
First Affiliated Hospital of Soochow University cohort.

Results: A total of 308 differentially expressed genes (DEGs) and 12 hub genes were found significantly differentially
expressed between SKCM and normal skin tissues. Functional annotation indicated that inflammatory response,
immune response was closely associated with SKCM tumorigenesis. KEGG pathways in hub genes include IL-10 sign-
aling and chemokine receptors bind chemokine signaling. Five chemokines members (CXCL9, CXCL10, CXCL13, CCL4,
CCL5) were associated with better overall survival and pathological stages. IHC results suggested that significantly
elevated CXCL9, CXCL10, CXCL13, CCL4 and CCL5 proteins expressed in the SKCM than in the normal tissues. Moreo-
ver, our findings suggested that IRF7, RELA, NFKBT1, IRF3 and IRF1 are key transcription factors for CCL4, CCL5, CXCL10.
In addition, the expressions of CXCL9, CXCL10, CXCL13, CCL4 and CCL5 were positively correlated with infiltration

of six immune cells (B cell, CD8™T cells, CD4™T cells, macrophages, neutrophils, dendritic cells) and 28 types of TILs.
Among them, high levels of B cells, CD8™T cells, neutrophils and dendritic cells were significantly related to longer
SKCM survival time.

Conclusion: In summary, this study mainly identified five chemokine members (CXCL9, CXCL10, CXCL13, CCL4,
CCL5) associated with SKCM tumorigenesis, progression, prognosis and immune infiltrations, which might help us
evaluate several immune-related targets for cutaneous melanoma therapy.
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[2]. Melanoma has become a serious public health prob-
lem, bringing great economic burden for society [3]. It is
well known that melanoma is associated with multiple
risk factors especially the sun exposure [4]. The general
progression models of SKCM are from melanocyte to
melanoma in situ, to invasive melanoma [5]. However,
extensive research has explored the mechanism of recur-
rence and metastasis, the tumorigenesis of cutaneous
melanoma remains unclear.

In the present study, we analyzed the differentially
expressed genes (DEGs) between primary melanoma and
normal skin to explore the potential tumorigenesis mech-
anism of SKCM. Our results mainly identified several
chemokine family members (CXCL9, CXCL10, CXCL13,
CCL4, CCL5) which were found related to better over-
all survival (OS) in SKCM patients. Chemokine family
members are a group of low-molecular weight cytokines
which were involved in many biological processes includ-
ing angiogenesis, tumor development and metastasis,
and the migration of leukocytes [6, 7]. In addition, we
found that their expression levels were positively associ-
ated with infiltration of immune cells (CD4"T, CD8*T,
B-cell, macrophages, neutrophils, dendritic cells) and
tumor infiltrating lymphocytes (TILs). These immune
infiltration cells play important roles in tumor microen-
vironment and can directly or indirectly regulate tumor
immunity and modulate tumor immunological for anti-
tumor effects [7, 8]. Therefore, our results may identify
several immune-related biomarkers that may serve to
guide SKCM therapy.

Methods

Patients and variables

A total of 46 melanoma and 46 normal tissues were
obtained from 92 patients at the Department of Burn and
Plastic Surgery, the First Affiliated Hospital of Soochow
University (FAHSU, Suzhou, China) from March 2015
to August 2019. None of the patients had received radio-
therapy or chemotherapy before operation. Tissue sam-
ples, including cutaneous melanoma and normal tissue,
were collected during surgery and fixed in 4% paraform-
aldehyde, available from FAHSU tissue bank. Clinical
data was available to obtain from hospital records. This
research was supported by the Independent Ethics Com-
mittee (IEC) of the FAHSU and all patients were well
informed of storing and upcoming use of their resected
specimens for further research purposes.

GEO and TCGA datasets

Expression profiling of SKCM patients with clinical infor-
mation was obtained from the Gene Expression Omni-
bus (GEO) database (http://www.ncbi.nlm.nih.gov/geo)
[9]. Among the inclusion criteria were (a) diagnosis of
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patients with primary melanoma (PM) and normal skin
(NS), (b) detection of gene level in tissue or blood sam-
ples. Exclusion criteria included: (a) clinical data without
survival time and outcome, and (b) datasets with small
sample sizes (n<15). Finally, three datasets were eligible:
accession numbers GSE15605 (46 PM samples and 16
NS samples), GSE46517 (31 PM samples and 8 NS sam-
ples) and GSE114445 (16 PM samples and 6 NS samples).
For validation, gene expression profiles of 472 melanoma
patients were downloaded from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/) [10]. Clinical char-
acteristics of patients were also obtained, including age,
Clark level, Breslow depth, survival time, and outcome.
All of the clinicopathological characteristics of SKCM
patients were shown in Table 1.

Identification of DEGs

The DEGs between primary melanoma and normal skin
were identified using GEO2R (http://www.ncbi.nlm.nih.
gov/geo/geo2r) based on limma package with the thresh-
old of|logFC|>1 and P-value<0.05. Next, the online
Venn  software  (http://bioinformatics.psb.ugent.be/
webtools/Venn/) was applied to detect the overlap DEGs
among three datasets.

DAVID database

To elucidate the biological functions of the overlapping
DEGs, we performed functional annotation and path-
way enrichment analysis via DAVID (The Database for
Annotation, Visualization and Integrated Discovery,
http://david.ncifcrf.gov/,version 6.8) online tool [11].
P-value<0.05 was considered as the cutoff value. GO
enrichment and KEGG pathway results were visualized
as bubble charts by R software.

STRING and cytoscape

STRING (http://string-db.org, version 11.0) database was
used to predict the PPI network of DEGs and analyze the
interactions between proteins [12]. An interaction with
a combined score>0.4 was recognized as statistical sig-
nificance. The molecular interaction networks were visu-
alized using the Cytoscape (version 3.7.0) and the most
significant model in the PPI network was narrowed down
by MCODE, with the following criteria: degree cutoff=2,
node score cutoff=0.2, k-core =2, max depth=100 [13,
14].

Functional enrichment

Metascape (https://metascape.org) was used to fur-
ther verify the function enrichment of hub genes [15].
P<0.05 was set as the cutoff value. Hub genes pathway
analysis was performed and visualized by ClueGO (ver-
sion 2.5.4) and CluePedia (version 1.5.4), the plug-in of
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Table 1 Clinicopathological characteristics of SKCM
patients
Characteristics FAHSU GEO cohort(N=93) TCGA
cohort cohort
(N=46) (N=472)
N (%)
Age
<60 years 21 (45.6) 53(56.9) 258 (54.7)
>60 years 25 (54.4) 40 (43.1) 214 (45.3)
Gender
Male 30(65.2) 55(59.1) 297 (61.9)
Female 16 (34.8) 38 (40.9) 183 (38.1)
Clark level
\ 6(13.0) 13(13.9) 6(1.8)
| 25 (54.3) 25(26.8) 18 (5.5)
-V 12 (26.1) 47 (50.7) 246(75.5)
\Y 3(6.6) 8(8.6) 56 (17.2)
Breslow depth(mm)
<0.75 5(10.9) 15(16.1) 36(10.2)
0.76-1.50 28 (60.9) 30(322) 65 (184)
1.51-4.00 11 (23.9) 39 (41.9) 106 (30.0)
>4.00 2(423) 9(9.8) 146 (41.4)
pT stage
T1-T2 32(69.6) 57 (61. 121 (32.7)
T3-T4 14 (30.4) 36 (38.7) 249 (67.3)
pN stage
NO 46 (100) 93 (100) 236 (65.0)
N1 0(0) 0(0) 75(20.7)
N2 0(0) 0(0) 52 (143)
pM stage
MO 46 (100) 93 (100) 424 (94.4)
M1 0(0) 0(0) 25(5.6)
Pathologic stage
I 46 (100) 93 (100) 233(539)
-1V 0(0) 0(0) 199 (46.1)
Persistent distant metastasis
No 46 (100) 93 (100) 217 (46.1)
Yes 0(0) 0(0) 254 (53.9)

SKCM, Skin Cutaneous Melanoma

FAHSU, The First Affiliated Hospital of Soochow University
GEO, The Gene Expression Omnibus

TCGA, The Cancer Genome Atlas

Cytoscape [16]. P-value <0.01 was considered statistically
significant.

GEPIA database

GEPIA (http://gepia.cancer-pku.cn/index.html) is an
analysis tool containing RNA sequence expression data
of 9736 tumors and 8587 normal tissue samples [17]. In
this study, GEPIA was used to perform survival analysis
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based on the data from TCGA database. Student’s t test
was used to analyze the correlation between the expres-
sion and pathological stages. P value<0.05 was consid-
ered statistically significant.

Immunohistochemistry (IHC)

Protein expression levels of hub genes were measured
using IHC staining and rabbit polyclonal anti-CCL4
antibody (ab235978), anti-CCL5 antibody (ab9679),
anti-CXCL9 antibody (ab9720), anti-CXCL10 antibody
(ab9807), anti-CXCL13 antibody (ab272874). Positive or
negative staining of a certain protein in one FFPE slide
was independently assessed by two experienced patholo-
gists and supervised by a clinician. Based on the staining
intensity level (no staining, weak, moderate and strong
staining), the score was ranging from O to 3, as previous
described. The staining extent was graded from 0 to 4 for
the coverage percentage of immunoreactive tumor cells
(0%, 1-25%, 26-50%, 51-75%, 76—100%). The overall
IHC score grading from 0 to 12 was evaluated according
to the multiply of the staining intensity and extent score.
Negative staining represented grade 0 to 4 and positive
staining from 5 to 12 for each sample.

cBioPortal database

The cBioPortal database (www.cbioportal.org), a com-
prehensive web resource, can visualize and analyze mul-
tidimensional cancer genomics data [18]. The genetic
alterations of prognostic genes were obtained from cBio-
Portal based on 475 SKCM samples in TCGA.

TRRUST database

TRRUST (https://www.grnpedia.org/trrust/) is a useful
predict tool for human, and mouse transcriptional regu-
latory networks [19]. The TRRUST database can provide
information on how these interactions are regulated,
containing 8444 transcription factor (TF)-target regula-
tory relationships of 800 human TFs.

Immune infiltration analysis

Prognostic gene expression data was used to measure
the abundance of six types of infiltrating immune cells
(B cells, CD4'T cells, CDS8'T cells, neutrophils, mac-
rophages, and dendritic cells) in SKCM patients using the
Tumor Immune Estimation Resource (TIMER) algorithm
[20]. Then, an integrated repository portal for tumor-
immune system interactions (TISIDB, http://cis.hku.hk/
TISIDB/index.php) was utilized to examine tumor and
immune system interactions in 28 types of TILs across
human cancers [21]. Spearman’s test was used to meas-
ure correlations between prognostic genes and TILs. All
hypothetical tests were two-sided and P-values<0.05
were considered statistically significant.
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The drug-gene interaction database

DGIdb (version 2.0) is an open-source project that help
users mine existing resources and generate assumptions
about how genes are therapeutically targeted or prior-
itized for drug development [22]. The parameters were
set as: preset filters: FDA approved; antineoplastic; all the
default.

Statistical analysis

The expression heatmap and correlation coefficient were
analyzed and visualized by pheatmap and corplot pack-
ages in R software. ROC curve of prognostic genes was
performed by SPSS 22.0. P-values <0.05 were considered
statistically significant in all tests.

Results

DEGs selection

After standardization and identification of the microarray
results, DEGs (4640 in GSE15065,1096 in GSE46517 and
1895 in GSE114445) were selected. The overlap among
three datasets included 308 genes as shown in the Venn
diagram (Fig. 1a, Additional file 1: Table S1) between pri-
mary melanoma and normal skin.
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GO and KEGG enrichment analysis of the DEGs

Functional and pathway enrichment of DEGs was per-
formed by DAVID, then displayed in bubble charts by
R software (P<0.05, Fig. 2). GO analysis indicated that
changes in biologic processes were significantly enriched
in the inflammatory response, immune response, regula-
tion of transcription. As for cellular component, DEGs
were particularly enriched in extracellular region, extra-
cellular space and extracellular exosome. Changes in
molecular function were mostly enriched in chemokine
activity, transcriptional activator activity, protein bind-
ing and CXCR3 chemokine receptor binding. KEGG
pathway analysis demonstrated that DEGs played pivotal
roles in pathways in cytokine—cytokine receptor interac-
tion, chemokine signaling pathway and pathways in can-
cer. These results revealed that immune response and
inflammatory response play important roles in SKCM
tumorigenesis.

PPI network construction and hub genes identification

The PPI network was constructed via Cytoscape, includ-
ing 247 nodes and 792 edges (Fig. 1b). Then, the most
important PPI network module was obtained using
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MCODE, consisted of 12 nodes and 64 edges (Fig. 1c).
After selection, CCL5, PTGER3, IL6, CXCL13, CCL27,
CCL4, CXCL9, NMU, CXCL2, GAL, NPY1R, CXCL10
were considered as hub genes of the network.

Function analysis of hub genes

As expected, functional annotation obtained from Metas-
cape suggested that hub genes were mainly enriched in
regulation of T cell chemotaxis, peptide ligand-binding
receptors and chemokine receptors bind chemokine sign-
aling (Fig. 3a, b, P<0.001). Similarly, ClueGO (Fig. 3c,
P<0.01) revealed that the most involved pathways were
interleukin-10 signaling, peptide ligand-binding recep-
tors and chemokine receptors bind chemokine signaling.

The prognostic and diagnostic value of hub genes in SKCM
patients

Using the Kaplan-Meier method, the prognostic values
of the hub genes in SKCM patients were determined.
Seven hub genes were significantly associated with OS
as shown in Fig. 4. High expression of CXCL9 (HR=0.6;
P=2E—4), CXCL10 (HR=0.57; P=2.8E—5), CXCL13

(HR=0.56; P=2.1E—5), CCL4 (HR=0.48; P=8.2E—8),
CCL5 (HR=0.53; P=3.2E—6) were significantly asso-
ciated with better OS. In contrast, NMU (HR=1.6;
P=3E—4) and GAL (HR=1.6; P=0.001) were found
associated with poor overall survival. Furthermore, CCL4
(HR=0.76; P=0.026), CCL5 (HR=0.76; P=0.027)
were also found significantly associated with better dis-
ease-free survival (Fig. 4). Except GAL (AUC=0.536),
the rest of hub genes, including CCL4 (AUC=0.872),
CCL5 (AUC=0.775), CXCL9 (AUC=0.834), CXCL10
(AUC=0.786), CXCL13 (AUC=0.807) and NMU
(AUC=0.829), were of diagnostic value (P<0.001)
(Fig. 5).

Validation the aberrant expression of prognostic genes
and their clinical characteristics

Based on data from GEPIA database, all of the prognostic
genes were found differential expressed in SKCM vs nor-
mal skin tissue (P <0.05, Fig. 6).

In addition, CXCL9 (P=7.74E-5), CXCL10
(P=1.05E—4), CXCL13 (P=8.15E—4), CCL4
(P=0.002), CCL5 (P=0.001) were significantly
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correlated to SKCM pathological stages (Fig. 7). Among
them, CXCL9, CXCL10, CXCL13, CCL4, CCL5 were
higher expressed in stage I and decreased in the subse-
quent stages.

Subsequently, all of the samples from TCGA were
ordered according to the expression level of CXCL9,
and statistical analysis was conducted to compare the
head 80 with the tail 80 samples. The heatmap (Fig. 8b)
and statistical results suggested that higher expression
levels (tail 80 samples) of CXCL9, CXCL10, CXCL13,
CCL4, CCL5 were related to more patients of lower
Breslow depth (0-1.5 mm, 51.2%), BRAF mutation
(60%) and lower Clark levels (I-1II 45% and IV-V, 55%),
reduced T4 stage (T4, 25%). With the decrease levels
of these five chemokines (head 80 samples), there were

more patients with higher Breslow depth (0-1.5 mm,
15% and > 1.5 mm, 85%), BRAF WT (wild type, 56.3%),
higher Clark levels (I-1II 17.5% and IV-V, 82.5%) and
T4 stage (T4, 47.5%).

All of the data above suggested that five chemokine
family members play critical roles in cutaneous mela-
noma tumorigenesis and progression.

Genetic alteration, correlation coefficient and key
transcription factors analyses of prognostic genes

in patients with SKCM

As a result, there were nearly 6% (CXCL9), 5%
(CXCL10), 3% (CXCL13), 4% (CCL4), 5% (CCL5), 3%
(NMU), 4% (GAL) of SKCM samples had genetic alter-
ation. The most common genetic change among five
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Fig. 4 The prognostic value of five chemokines (CXCL9, CXCL10, CXCL13, CCL4, CCL5) and NMU, GAL in SKCM patients in the overall survival and

chemokines (CXCL9, CXCL10, CXCL13, CCL4, CCL5)
was enhanced mRNA expression (Fig. 8a). While
genetic change in GAL and NMU were mainly related
to amplification.

Then, we assessed the correlation coefficients in prog-
nostic genes. As expect, significant positive correla-
tions were observed between five chemokines (Fig. 8c).
Among them, CXCL9 and CXCL10 had the highest
positive correlation with a Spearman’s correlation coef-
ficient of 0.92. CXCL9 exhibited the tightest association
with all other chemokines, with a median Spearman’s
correlation coefficient of 0.85.

Using TRRUST database, we explored potential tran-
scription factor targets of the five chemokines. As a

result, IRF7, IRF3 (FDR=3.09E—05); RELA, NFKB1
and IRF1 (FDR=1.5E—04) were found to be the
key transcription factors for CCL4, CCL5, CXCL10
(Table 2).

Validation of five chemokines expression in SKCM tissues
from the FAHSU cohort

Therefore, IHC was performed to validate the expres-
sion of five chemokine family members. Consistent
with the mRNA expression, we found significantly
elevated CXCL9, CXCL10, CXCL13, CCL4 and CCL5
proteins expression in the SKCM than in the normal
tissues. The results and the plots of IHC score were
illustrated in Fig. 9.
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Table 2 Key transcriptional factors (TFs) of five chemokines in SKCM (TRRUST database)

Key TF Description P-value FDR Regulated genes

IRF7 Interferon regulatory factor 7 7.77E—06 3.09E—05 CCL5, CXCL10

IRF3 Interferon regulatory factor 3 1.24E—05 3.09E—-05 CXCL10, CCLS

RELA v-Rel reticuloendotheliosis viral oncogene 0.000134 0.000149 CCL4, CXCL10, CCLS
homolog A (avian)

NFKB1 Nuclear factor of kappa light polypeptide 0.000137 0.000149 CCL5, CXCL1o, CCL4
gene enhancer in B-cells 1

IRF1 Interferon regulatory factor 1 0.000149 0.000149 CXCL10, CCLS

cxcLe
169 p<0.0001

IHC score
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Melanoma  Normal

CXcL13
159 p<0.0001
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Fig. 9 Validation of five chemokines expression in SKCM tissues from the FAHSU cohort. IHC staining indicated significantly elevated expression of
CXCLY, CXCL10, CXCL13, CCL4, CCL5 in SKCM tissues compared with normal tissues (P <0.0001)

cxcL1o
159 <0.0001

IHC score

CXCL10

Melanoma  Normal

cCL4
169 p<0.0001

CCL4

2
IHC score
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Immune infiltration analysis

We  performed correlation analysis between
prognostic genes expression and immune infil-
tration level for SKCM. There was a positive

correlation between CXCL9 expression and the infil-
tration of B cells (Cor=0.238, p=3.58e—07), CD8+
T cells (Cor=0.643, p=1.94e—52), CD4+ T cells
(Cor=0.299, p=1.19¢e—10), macrophages (Cor =0.247,
p=9.59e—38), neutrophils (Cor=0.612, p="7.03e—48),
and dendritic cells (Cor =0.648, p = 1.56e—54; Fig. 10a).
Similar results were obtained for CXCL10, CXCL13,
CCL4 and CCL5 (Fig. 10b—e). While, the correlation
between NMU/GAL and immune infiltration is not
obvious (Fig. 10f, g). Additionally, we also found signifi-
cant correlations of these seven genes with 28 types of
TILs across human heterogeneous cancers (Additional
file 2: Fig. S1). CXCL9 significantly positive correlated
with abundance of 28 types TILs such as activated CD8
T cells (Act_CD8 T cells; rho=0.801, P<2.2e—16),
regulatory T cells (Treg; rho=0.693, P <2.2e—16), mac-
rophage (rho =0.655, P <2.2e—16), natural killer T cells

(NK T cells; rho=0.74, P <2.2e—16), myeloid derived
suppressor cells (MDSC; rho=0.744, P<2.2e—16),
immature B cell (Imm_B; rho=0.78, P <2.2e—16). Sim-
ilar results were found in CXCL10, CXCL13, CCL4 and
CCL5 (Additional file 2: Fig. S1).

Additionally, in the survival model of TIMER, results
showed that high levels of B cells (Log-rank P=0),
CD8+ T cells (Log-rank P =0), neutrophils (Log-rank
P=0), dendritic cells (Log-rank P=0), CXCL9 (Log-
rank P=0), CXCL10 (Log-rank P=0), CXCL13 (Log-
rank P=0), CCL4 (Log-rank P=0), CCL5 (Log-rank
P =0), were significantly related to longer survival time
in SKCM patients (Additional file 3: Fig. S2).

Drug-gene interaction prediction

We obtained 42 drug-gene interaction pairs in DGIdb,
including genes (IL6, CXCL2, CXCL10, CCL4, CCLS5,
PTGER3, GAL, NPY1R) and 69 drugs, as shown in
Fig. 11. This result may help develop new targets for
SKCM therapy.
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Discussion

Skin is the largest organ of human beings. There are
about 1500 melanocytes in human epidermis per square
millimeter, equivalent to nearly 3 billion melanocytes in
an ordinary human skin [23]. The incidence of SKCM
continues to increase every year. Once melanoma spreads
through the dermis, the prognosis is poor and melanoma
is not projected to reduce the death rate in the next few
years [24]. A series of therapeutic methods, such as radio-
therapies, chemotherapies, targeted therapies and immu-
notherapies have enhanced advanced patient survival
[25]. However, many patients that are being administered
these therapies demonstrate a low durable response,
drug resistance and poor prognosis [26]. Therefore, more
therapeutic targets and prognostic biomarkers must be
identified.

In our study, 308 DEGs were identified between pri-
mary SKCM and normal skin, and the functional annota-
tion indicated that inflammatory response and immune
response were closely associated with SKCM tumorigen-
esis. KEGG pathways in hub genes included IL-10 signal-
ing, chemokine receptors bind chemokine signaling and
peptide ligand-binding receptors. STAT3 is essential for
the action of IL-10 and IL-6. IL-6 plays a central role in
melanoma development and enhances the IL-10 pro-
duction via STAT3-dependent signaling [27]. IL-6,10/
JAK-STAT?3 pathways are found in many carcinomas, and
their hyperactivation was generally related to unfavorable
clinical prognosis [28]. IL-6 and IL-10 create a favorable
environment to support tumorigenesis by increasing the
cancer cell proliferation, angiogenesis, metastasis and
contribute to enhancing the immune suppression [28].
Smith et al. found that IL-10 directly inhibits CD8T
cell function by enhancing N-Glycan branching to

decrease antigen sensitivity [29]. However, chemokine
and its receptors usually attract immune cells such as
CD8™T cell and NKs in the tumor microenvironment for
immune activation [30]. Apparently, these two pathways
play opposite roles in tumor formation, and the tumori-
genesis of SKCM may be related to their abnormality.
Moreover, SKCM patients with high expression of
five chemokines (CXCL9, CXCL10, CXCL13, CCL4,
CCL5) were associated with better OS. While high lev-
els of NMU and GAL showed poor prognosis. In addi-
tion, we found that the high expression of CXCL9,
CXCL10, CXCL13, CCL4 and CCL5 were related to
better outcomes in Breslow depth, Clark level, T-stages.
IHC results from FAHSU cohort verified that CXCL9,
CXCL10, CXCL13, CCL4, CCL5 were significantly over-
expressed in SKCM tissues. All of the results suggested
that chemokines members (CXCL9, CXCL10, CXCL13,
CCL4, CCL5) and NMU, GAL were important biomark-
ers in SKCM tumorigenesis, progression and prognosis.
Chemokines are chemotactic cytokines mediating the
migration and localization of immune cells [31]. C-X-C
motif ligand 9,10,13 (CXCL9, CXCL10, CXCL13) belong
to CXC family chemokine. They are predominantly
expressed by immune cells such as macrophages and
T cells. CXCL9, CXCL10 exert their function through
binding to C-X-C motif receptor CXCR3 that was highly
expressed on the activated T cells [30]. Research shows
that CD8"T cell infiltration is CXCR3 dependent [32].
CDS8™T cell plays important role in tumor microenviron-
ment, which inhibits the proliferation and metastasis of
tumor cells. A recent research found that the CXCL10-
CXCR3 axis may relate to melanoma brain metasta-
sis [33]. Additionally, the CXCR3 ligands enhanced
the response rates to immune checkpoint blockade
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(anti-PD-1, anti-CTLA-4) by recruiting T cells [34].
These results reveal the importance of manipulating
this axis, which provide us opportunities to manipulate
chemokine expression for tumor therapy and prevention.

C-C motif ligand CCL4, CCL5 belong to CC fam-
ily chemokine. CCL4, CCL5, CXCL9, CXCL10 were
confirmed to be preferentially expressed in tumors that
contained T cells [35]. This suggests that CCL4, 5 and
CXCL9,10 may act in the same pathway in T-cell recruit-
ment. The experimental results carried out by Michelle
H et al. showed that expression of CXCR3 ligands and
CCL5 in chemotherapy tumors did lead to a synergistic
increase in T-cell infiltration [36]. It is also been reported
that CCL5 released by tumor cells acts its function via
paracrine signaling to attract NKs to the tumor bed [37].
Taken together, we assumed that CCL4 and CCL5 may
be potent biomarkers and targets for melanoma.

Then, we conducted correlation analysis, and high cor-
relation coefficients were observed among chemokine
members (CXCL9, CXCL10, CXCL13, CCL4, CCL5) as
expected, suggesting that these chemokines play a syn-
ergistic role in the tumorigenesis and progression of
SKCM. We also explored the transcription factors for
these chemokines, and found that IRF7, RELA, NFKBI,
IRF3 and IRF1 may be key transcription factors in the
regulation of CCL4, CCL5 and CXCL10. RELA phos-
phorylation is involved in multiple inflammatory diseases
and cancer progression by regulating NF-«kB signaling
[38]. NFKB1 is an suppressor of inflammation and can-
cer, which plays an inhibitory role in the occurrence
and progression by reducing the abnormal activation of
NF-kB signal pathway [39]. IRF family regulates type-I
IEN system for anti-tumor immunity through promot-
ing differentiation of B cells, inducing differentiation of
naive T cells to effector CD4" or CD8'T cells and driv-
ing the expression of MHC class I and II [40]. Our results
may provide evidence about the complicated correlation
among SKCM, chemokines, type-I IFN system and the
NF-kB signaling pathway.

In addition, the expressions of CXCL9, CXCLI10,
CXCL13, CCL4 and CCL5 were positively correlated
with six immune cell infiltration (B cells, CD8*T cells,
CD4™T cells, macrophages, neutrophils, dendritic cells)
and 28 types of TILs. However, NMU and GAL were not
significantly correlated with infiltration of immune cells
and TILs. Previous studies suggested that high levels of
immune cell infiltration are associated with favorable
outcomes [41]. It was similar to our results that increas-
ing levels of B cells, CD8*T cells, neutrophils, dendritic
cells were related to longer survival time in SKCM
patients. A novel study based on thousands of melanoma
patients found that the degree of lymphocyte infiltra-
tion was an independent prognosticator of disease-free

Page 13 of 15

survival (DFS), revealing that a lesser level was associ-
ated with a reduced DFS [42]. What’s more, we predicted
drug-gene interaction pairs between hub genes and 69
drugs, indicating that our results may reveal immune-
related targets for SKCM therapy.

Conclusion

In summary, our study mainly identified five chemokine
members (CCL4, CCL5, CXCL9, CXCL10, CXCL13) and
NMU, GAL as significant biomarkers in SCKM tumo-
rigenesis and progression. In addition, their expression
levels were closely related to prognosis and immune cell
infiltration. This study may provide several potential
immune-related targets and help us better understanding
the tumorigenesis of SKCM. However, further functional
studies are needed to verify the absoluteness of these
findings.
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