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Abstract 

Background:  Hepatocellular carcinoma (HCC) one of the most common digestive system tumors, threatens the tens 
of thousands of people with high morbidity and mortality world widely. The purpose of our study was to investigate 
the related genes of HCC and discover their potential abilities to predict the prognosis of the patients.

Methods:  We obtained RNA sequencing data of HCC from The Cancer Genome Atlas (TCGA) database and per-
formed analysis on protein coding genes. Differentially expressed genes (DEGs) were selected. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted to discover biologi-
cal functions of DEGs. Protein and protein interaction (PPI) was performed to investigate hub genes. In addition, a 
method of supervised machine learning, recursive feature elimination (RFE) based on random forest (RF) classifier, was 
used to screen for significant biomarkers. And the basic experiment was conducted by lab, we constructe a clinical 
patients’ database, and obtained the data and results of immunohistochemistry.

Results:  We identified five biomarkers with significantly high expression to predict survival risk of the HCC patients. 
These prognostic biomarkers included SPC25, NUF2, MCM2, BLM and AURKA. We also defined a risk score model 
with these biomarkers to identify the patients who is in high risk. In our single-center experiment, 95 pairs of clinical 
samples were used to explore the expression levels of NUF2 and BLM in HCC. Immunohistochemical staining results 
showed that NUF2 and BLM were significantly up-regulated in immunohistochemical staining. High expression levels 
of NUF2 and BLM indicated poor prognosis.

Conclusion:  Our investigation provided novel prognostic biomarkers and model in HCC and aimed to improve the 
understanding of HCC. In the results obtained, we also conducted a part of experiments to verify the theory described 
earlier, The experimental results did verify our theory.
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Background
Hepatocellular carcinoma (HCC) is considered to be the 
most common liver cancer in the world, ranking fifth in 
men and seventh in women [1]. The development of liver 

cancer is highly correlated with the infection of hepatitis 
B virus (HBV) and/or hepatitis C virus (HCV) [2]. Surgi-
cal resection is the main treatment for most cases of liver 
cancer (HCC) and only 30 to 40% of patients with liver 
cancer can be treated after diagnosis by surgical resec-
tion [3]. Therefore, it is important to find an effective and 
reliable diagnosis of liver cancer that can significantly 
improve the diagnosis of liver cancer patients.
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Carcinogenesis is a multi-step process, which is a 
change caused by signal pathways triggered by multiple 
genes, which transforms normal cells into malignant cells 
[4, 5]. The molecular mechanism of the occurrence and 
development of HCC are unclear. However, it is consid-
ered that, at the beginning of the preneoplastic stage, 
genetic changes in a few genes and chromosomal loci will 
slowly accelerate and enhance the transition of hepato-
cytes from atypical hyperplasia to liver cancer [6]. With 
the development of Next Generation Sequencing (NGS) 
technologies, we have located key carcinogenic genes and 
related oncogenic signaling pathways that play a pivotal 
role in the initiation and progression of HCC. However, 
despite the availability of a large amount of public genetic 
information, effective diagnostic methods are needed to 
predict the prognosis of HCC.

With a series of changes in biological processes, such 
as immune regulation, cell cycle, angiogenesis, heal-
ing, and auto-swallowing, genetic mutations contribute 
significantly to tumor formation [7–11]. Differentially 
expressed genes (DEGs) are involved in changes in signal 
routing and biological processes during tumor formation. 
Tracks were not independent in their function, which 
are linked between tracks. Interfering genes revealed by 
related pathways are potential biomarkers and therapeu-
tic targets for cancer. Important information about liver 
cancer can be found in these intersecting genes.

In this study, the HCC gene expression profile data was 
downloaded from the public database to determine a lin-
ear risk score as a survival prediction model based on the 
HCC interference genes and for identify biomarkers that 
predict the risk of survival for patients with liver cancer.

Materials and methods
RNA‑seq transcriptome data of samples
We downloaded the RNA-sequencing (RNA-seq) expres-
sion profiles of HCC from TCGA database (https​://
cance​rgeno​me.nih.gov/, up to Nov.03, 2016), involving 
423 samples. These samples contained 373 HCC tumor 
tissues and 50 normal liver tissues, which were publicly 
available and open-access. The clinical data of HCC 
patients were also obtained from TCGA and 369 patients 
with complete survival data were enrolled in further sur-
vival analysis. Data acquired from TCGA database were 
carried out by the Illumina HiSeq Systems. Data format 
of sequencing is Counts files.

Gene reannotation
RNA-sequencing data got from the TCGA contained 
multiple types of RNA, including long non-coding RNA 
(lncRNA), protein coding genes and pseudogenes. The 
transcriptome data was reannotated to identify the 
gene symbols based on annotation file (Homo_sapiens.

GRCh38.87.chr.gtf ) downloaded from Ensemble gene 
browser (http://www.ensem​bl.org/). Only the protein 
coding genes were selected during the annotation. Oth-
ers were filtered in this step.

Identification of differentially expressed genes (DEGS)
The Location of DEGs was the first step in our research. 
It played a crucial role in the studying internal mecha-
nism in HCC [12].The identification was conducted by 
R/edgeR, obtained from an open-source Bioinformatics 
project, Bioconductor (http://www.bioco​nduct​or.org/) 
[13, 14]. The negative binomial distributions is the key 
foundation of the package, also involving empirical Bayes 
estimation, exact tests, generalized linear models (GLM) 
and quasi-likelihood tests. LogFC ≥ 2.0 or logFC ≤ −2.0 
associated with the P value < 0.01 were selected as the 
statistically significant difference.

Gene Ontology and KEGG pathway enrichment
The analysis of Gene Ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment is an essential aspect of Bioinformatics to 
reveal the biological functions and molecular mecha-
nisms of DEGs [15, 16]. DAVID database (https​://david​
.ncifc​rf.gov/) is designed as a web tool which contains the 
relevant biological annotation. We revealed the biology 
function and pathways of DEGs with DAVID. In this step, 
the false discovery rate (FDR) < 0.1 was considered as sig-
nificance for filtering the GO terms and KEGG pathways.

Protein–protein interaction (PPI) network of DEGS
Search Tool for the Retrieval of Interacting Genes 
(STRING) database (http://www.strin​g-db.org/) is an 
important Bioinformatics tool for determining the rela-
tionship between genes [17]. We performed the PPI anal-
ysis in order to promote our understanding of undetected 
connection underlying the DEGs. Here, we choose only 
the experimentally validated PPI links with its combined 
score > 0.7 to enhance the reliability. Nodes with no links 
with others were discarded. We defined a C-score (Con-
nection score) to measure the hub degree for every node. 
The genes with a high C-score had the potential to be the 
biomarkers. We screened the genes for their C-score ≥ 5 
as the significance.

Significant biomarkers selection
The expression of significant hub genes got from PPI 
analysis was log2 scale. For the prognostic signature 
analysis, the 369 HCC samples that contained complete 
clinical data were assigned into groups of good or poor 
prognosis according to the 5 years survival (expected sur-
vival time > 5 or < 5 years). Recursive Feature Elimination 
(RFE) based on Random Forest (RF) classifier, a method 
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of supervised Machine Learning, was conducted to iden-
tify the prognostic genes in survival [18, 19]. The pre-
diction was examined by fivefolds cross-validation. We 
selected the best prognostic genes according to the accu-
racy of the RFE-RF predictor. Genes selected by RFE-RF 
were chosen as the candidate biomarkers. The selection 
was performed with R/Caret package.

Survival model
The genes selected from RFE-RF were considered as 
the variables for survival analysis. We separated the 
369 patients with complete clinical data into train-
ing (n = 239) and testing (n = 130) datasets randomly. 
To better investigate the performance of these genes in 
predicting survival, multivariate Cox regression model 
was conducted in the training dataset. The coefficients 
were used as the weight for genes’ expression to create 

a risk score model. Besides, samples were divided into 
two groups according to the median value of risk score 
model. Keplan-Meire (KM) method was performed to 
test the prognostic performance of the model. All the 
analysis was used with R/survival package.

Patients’ information and tissue samples
Tissue samples were taken from patients who had under-
gone liver resections in the Second Hospital of Lan-
zhou University. All patients received liver resections 
from July 2012 to December 2014. None of the patients 
received preoperative chemotherapy and radiotherapy. 
All patients were followed until December 2018. Details 
of the clinical traits of all patients are shown in Tables 1 
and 2. All groups were assessed and unidentified based 
on ethical criteria. The period of time between the opera-
tion and death or final result is defined as Legislation 

Table 1  Correlation between NUF2 expressions with clinic-
pathological characteristics of HCC

AFP alpha fetoprotein, HBsAg hepatitis B surface antigen

Clinicopathological variables N NUF2 expression P value

Low (37) High (58)

Sex 0.482

 Male 81 31 50

 Female 14 6 8

Age, years 0.533

 < 50 48 19 29

 ≥ 50 47 18 29

AFP, ng/L < 0.001

 < 200 53 29 24

 ≥ 200 42 8 34

HBsAg 0.439

 Negative 44 12 32

 Positive 51 25 26

Tumor size, cm 0.075

 ≤ 5 49 23 26

 > 5 46 14 32

Tumor nodule number 0.001

 Solitary 57 30 27

 Multiple (≥ 2) 38 7 31

Cancer embolus 0.002

 Absence 62 31 31

 Presence 33 6 27

TNM stage 0.013

 Early (I & II) 52 26 26

 Late (III & IV) 43 11 32

Differentiation grade 0.571

 Well 67 26 41

 Poor 28 11 17

Table 2  Correlation between  BLM expressions with  clinic-
pathological characteristics of HCC

AFP alpha fetoprotein, HBsAg hepatitis B surface antigen

Clinicopathological variables N BLM expression P value

Low (55) High (40)

Sex 0.208

 Male 81 45 36

 Female 14 10 4

Age, years 0.171

 < 50 48 25 23

 ≥ 50 47 30 17

AFP, ng/L 0.022

 < 200 53 36 17

 ≥ 200 42 19 23

HBsAg 0.504

 Negative 44 25 19

 Positive 51 30 21

Tumor size, cm 0.005

 ≤ 5 49 35 14

 > 5 46 20 26

Tumor nodule number 0.01

 Solitary 57 39 18

 Multiple (≥ 2) 38 16 22

Cancer embolus 0.567

 Absence 62 36 16

 Presence 33 19 14

TNM stage 0.033

 Early (I & II) 52 35 17

 Late (III & IV) 43 20 23

Differentiation grade 0.550

 Well 67 39 28

 Poor 28 16 12
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General survival (OS). Survivorship Disease (DFS) is 
regared as the period elapsed between performed surgery 
and tumor development.

Immunohistochemical staining and antibodies
Tissue samples from 95 cases of hepatocellular car-
cinoma were used in formalin and paraffin embedded 
for NUF2 and BLM immunohistochemistry. NUF2 and 
BLM antibodies for staining of immunochemistry were 
obtained from ABCAM (ab230313 and ab62206). After 
defrost, moisture, and embolism, samples were mixed 
with NUF2’s primary immunoglobulin antibodies 
and BLM antibodies and then incubated at night at 4 
(dilution ratio 1: 1000). Finally, all sections were evalu-
ated by comparing the staining of each sample of can-
cer cells from the liver and the normal sample under a 
microscope. The positive cell score and color intensity 
determine the overall score. The degree of intensity of 
the coloration is as bellow: 0: no coloration. 1: slightly 
yellowish in the background, 2: yellow and brown. 3: 
Brown. The positive result of the cell is as follows: 0 
degree: 0–5%; 1 degree: 6–25%; 2 degree: 26–50%; 3 
degree: 51–75%; 4 degree: > 75%. The overall result of 
immunochemistry was calculated as a positive degree 
of x-cell staining intensity. The overall score is divided 
by four levels: 0 means negative (−), 1–4 defined as 

positive weakness (+), 5–8 stand for positive (++) and 
9–12 regared strongly positive (+++).

Statistical analysis
All data analyses were conducted with edgeR. Evalu-
ation of patient samples were evaluated using Pierson 
correlation coefficients. Survival rate calculated using 
Cox proportional hazard model. Survival curves were 
calculated by the Kaplan–Meier method.

Results
Identification of DEGs
Identification of the DEGs in HCC samples demon-
strated that there were 1844 up-regulated DEGS and 
213 down-regulated DEGS, based on R/edgeR. The 
heat map of the DEGs (top 50 up-regulated and down-
regulated genes according to the LogFC) is shown as an 
example (Fig. 1).

GO and KEGG pathway enrichment
The enriched GO terms were totally separated in three 
groups biological process (BP), cellular component 
(CC) and molecular function (MF). The result of GO 
enrichment showed DEGs participated in lots of sig-
nificant biology processes, such as extracellular region, 

Fig. 1  Heatmap of top 50 up-regulated and down-regulated genes with the highest LogFC
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sequence-specific DNA binding, extracellular space 
and transcriptional activator activity. KEGG pathways 
enrichment demonstrated DEGs were mapped on the 
several important pathways, including cell cycle and 
neuroactive ligand-receptor interaction (Fig. 2).

PPI analysis and biomarker selection
26 hub genes were screened from the PPI network for 
their hub degree ≥ 5. Among these hub genes, CDK1 
showed the highest node degree, which was 22. We illus-
trated the Circos map of the hub genes to disclose their 
location on the chromosome and the links with oth-
ers (Fig.  3). Besides, 5 genes including SPC25, MCM2, 
NUF2, AURKA and BLM were screened from the RFE-
RF method. The accuracy of five candidate biomarkers 
for predicting prognosis reaches 0.89 (Fig. 4).

Risk score survival model of 5 biomarkers
The risk score model was carried out by multivari-
ate Cox regression model. The coefficients of the result 
were used as the weight for each gene to create a risk 
score model. Risk score = (0.3497 × expression level of 
SPC25) + (0.0995 × expression level of MCM2) + (0.0327 × expres-
sion level of NUF2) + (0.0369 × expression level of 
AURKA) + (-0.3185 × expression level of BLM). The risk 
score model was examined in the testing group and full 
dataset with KM curve and P value (Figs. 5 and 6). The 
patients with higher risk scores had the worse survival 
compared with lower ones (Fig.  7). Risk score had the 
negative correlation with overall survival (OS). The anal-
ysis suggested risk score model can be considered as an 
independent clinical feature for OS of the patients with 
HCC.

Fig. 2  GO terms and KEGG pathways enrichment of DEGs with FDR < 0.1. (a Biological_processes, b Cellular_component, c Molecular_function, D. 
KEGG pathways)
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Overexpression of NUF2 and BLM imply poor survival 
in patients with HCC
To ascertain the prognostic value of NUF2 and BLM, We 
performed a KM analysis, and all results are detailed in 
Fig. 8. Hyper Expression of NUF2 and BLM shown low-
est OS and DFS. Next, Cox relative risk model is used 
to examine Whether NUF2 and BLM can become inde-
pendent diagnostic influence factor for 95 patients suf-
fering from liver cancer in our center. Results show poor 
prognosis in patients with high expression of NUF2 
and BLM (Fig. 8). Multivariate analysis showed that the 
expression NUF2 and BLM (HR 2.35, 95% CI 1.06–6.11, 
P < 0.05) were independent predictors of the operating 
system. Therefore, we can think that nuf2 and BLM can 
provide independent prediction for liver cancer patients.

Discussion
Although many gene products affecting liver cancer have 
been discovered, the molecular mechanisms underlying 
the occurrence and development of HCC are still unclear. 

Thereafter, it is useful to improve the diagnosis in 
patients with liver cancer by detecting the vital signs that 
contribute to the diagnosis and treatment of liver can-
cer [20]. These changes can control the global regulatory 
mechanisms that lead to collaboration between different 
metabolic pathways and different signals. Therefore, the 
cross-interaction genes examined from these associated 
pathways could be the major biomarkers of HCC.

In this study, HCC RNA expression profiles were down-
loaded for HCC and DEGs were examined. A number of 
1844 regular genes were extracted from tumor samples 
and 213 regular genes were obtained from subcancerous 
liver tissue, which were assigned to a compact PPI net-
work. Then select pivotal genes based on RFE-RF predic-
tor accuracy and node degree in the PPI network [21]. A 
number of 100 pivotal genes were detected. KEGG analy-
sis of the enrichment pathway implied that these pivotal 
genes were remarkably enriched in 22 pathways includ-
ing pathways in the cell cycle and interaction between 
neuron receptor receptors, which were Reported to be 

Fig. 3  Circos Map of hub genes in PPI analysis, including 8 layers. From outside to inside: chromosome; hub genes with C-score > 10; hub genes 
with C-score ≥ 5; hub genes with C-score < 5; LogFC of hub genes; expression in normal tissues; expression in tumor tissues; PPI interaction links



Page 7 of 12Guo et al. Cancer Cell Int          (2020) 20:251 	

ramarkbaly related to the occurrence of liver cancer [10, 
22]. We then categorized 100 survival genes through ran-
dom survival forests, the most important biomarkers are 
SPC25, MCM2, NUF2, AURKA and BLM.

Some studies have recently shown that unregulated 
SPC25 is associated with the carcinogenic process and 
malignant patterns of certain tumors. The regulation of 
SPC25 is found in colorectal and gastric cancers [23]. It 
acts as a gene systematically linked to liver cancer, asso-
ciated with early recurrences after curative resection 
[24]. Many clinical parameters such as advanced tumor 
score, advanced stage, and poor prognosis in malignan-
cies are highly related with MCM2 [25–27]. In addition, 
their study revealed that the cytoplasmic compound 
MCM2-gp70 associated with protein phosphatase 2A 
(PP2A) interferes with the PP2A-DNA-PK reaction and 
promotes apoptosis caused by DNA damage by activat-
ing p53 by DNA-PK [28]. NUF2 has been discovered to 

participate in cancerous tumors of many types of human 
tumors. Previous studies suggest that depletion of NUF2 
by specific siRNAs inhibit proliferation and induce 
apoptosis in non-small cell and ovarian cancer cells [23, 
29, 30]. Similarly, a reduction in NUF2 inhibited tumor 
growth caused by apoptosis in human tumor cells [31]. 
In addition, NUF2 played a key role in pancreatic can-
cer profiles by regulating RNA lnc RNA 339813 [32]. It 
has been shown that Aurka was involved in many can-
cers and was aneuploidy and genetic instability [33, 34]. 
The main functional partner proteins include inhibitors 
of MYCN, NFKBa, AKT1, RALA, P53 and BRCA1 [33, 
35–40]. AURKA regulates the phosphorylation of these 
important carcinogenic proteins leading to their respec-
tive pathways. Other evidence of PLA, FAK and Src [41]. 
Bloom syndrome (Bloom’s Syndrome, BLM), a member 
of the Recase helase family, is one of the essential vac-
cines required for the metabolic processes of DNA, 

Fig. 4  The relationship between variables and accuracy in RFE-RF predictor, with the fivefolds cross-validation
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Fig. 5  Performance of the risk score model in training (n = 239) and testing (n = 130) groups, examined by Keplan-meier method

Fig. 6  Performance of risk score model in full dataset (n = 369), examined by Keplan-meier method
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including recombination, redundancy, and repair of 
DNA. DNA. It is known that the level of BLM expres-
sion is regulated differently during cell cycle stages and is 
expressed at high levels in cancer cells. Since BLM abnor-
malities are associated with genome instability, evidence 
accumulates in various cancers [42–44]. Previous studies 
have also revealed that the role of BLM in p53 is binding 
in the Chk1 pathway [45].

Conclusions
We collected a highly reliable database of hepatocel-
lular carcinoma and used these datasets to build a 
survival prediction model based on the above 5 genes 
through multi-variable Cox regression. This risk score 
predicted patients at high risk of mortality indepen-
dently. Immunohistochemical experiments were per-
formed, and the results shown that NUF2 may play 
an pivotal role in promoting the occurrence and 

Fig. 7  Performance validation of risk score model. a Risk score distribution, b survival time of the patients, sorted by risk score, c expression pattern 
of five prognostic biomarkers in 369 patients
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development of liver cancer, but the mechanism needs 
more research to demonstrate and and this is what we 
are doing. Our current work aims to provide the fresh 
methods for the clinical application of gene expression 
profiling in HCC, Especially in the future, this method 
will be applied to individualized prediction of disease 
and precision medicine, But the reliability and accuracy 
of this risk assessment must be verified through more 
forward-looking studies.
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