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Abstract 

Background:  The prognosis of hepatocellular carcinoma (HCC) patients remains poor. Identifying prognostic mark-
ers to stratify HCC patients might help to improve their outcomes.

Methods:  Six gene expression profiles (GSE121248, GSE84402, GSE65372, GSE51401, GSE45267 and GSE14520) were 
obtained for differentially expressed genes (DEGs) analysis between HCC tissues and non-tumor tissues. To identify 
the prognostic genes and establish risk score model, univariable Cox regression survival analysis and Lasso-penalized 
Cox regression analysis were performed based on the integrated DEGs by robust rank aggregation method. Then 
Kaplan–Meier and time-dependent receiver operating characteristic (ROC) curves were generated to validate the 
prognostic performance of risk score in training datasets and validation datasets. Multivariable Cox regression analysis 
was used to identify independent prognostic factors in liver cancer. A prognostic nomogram was constructed based 
on The Cancer Genome Atlas (TCGA) dataset. Finally, the correlation between DNA methylation and prognosis-related 
genes was analyzed.

Results:  A twelve-gene signature including SPP1, KIF20A, HMMR, TPX2, LAPTM4B, TTK, MAGEA6, ANX10, LECT2, 
CYP2C9, RDH16 and LCAT was identified, and risk score was calculated by corresponding coefficients. The risk score 
model showed a strong diagnosis performance to distinguish HCC from normal samples. The HCC patients were 
stratified into high-risk and low-risk group based on the cutoff value of risk score. The Kaplan–Meier survival curves 
revealed significantly favorable overall survival in groups with lower risk score (P < 0.0001). Time-dependent ROC anal-
ysis showed well prognostic performance of the twelve-gene signature, which was comparable or superior to AJCC 
stage at predicting 1-, 3-, and 5-year overall survival. In addition, the twelve-gene signature was independent with 
other clinical factors and performed better in predicting overall survival after combining with age and AJCC stage by 
nomogram. Moreover, most of the prognostic twelve genes were negatively correlated with DNA methylation in HCC 
tissues, which SPP1 and LCAT were identified as the DNA methylation-driven genes.

Conclusions:  We identified a twelve-gene signature as a robust marker with great potential for clinical application in 
risk stratification and overall survival prediction in HCC patients.
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Background
Hepatocellular carcinoma (HCC) is one of the most 
common malignant solid tumors and the fourth leading 
cause of cancer-related deaths worldwide [1]. There were 
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approximately 841,000 new cases of HCC and 782,000 
deaths in 2018. The incidence and mortality continue to 
increase for both sexes. Surgical resection is the most 
effective treatment to cure early stage HCC, but most 
patients are first diagnosed at an advanced stage which 
missed the best time for surgical treatment. Although 
chemotherapy, radiotherapy, liver transplantation and 
other potentially curative treatment have achieved a vari-
ety of therapeutic effects and prolonged survival period, 
the prognosis of HCC remains poor due to the high rate 
of recurrence and intrahepatic spread [2]. Those high-
risk HCC patients with potentially poor outcomes must 
be monitored and adopt timely and effective treatments 
to prolong survival and improve quality of life [3]. There-
fore, it is an urgent need for effective prediction markers 
to accurately assess the prognosis of HCC patients.

Prognostic models based on parameters including 
clinical baseline characteristics to molecular biomark-
ers for HCC have been constructed in several previous 
studies [4]. A prognostic score by using positive tumor 
markers (alpha-fetoprotein (AFP), fucosylated AFP and 
des-gamma-carboxy prothrombin) showed a useful pre-
dictive prognostic value in HCC patients treated with 
transcatheter arterial chemoembolization [5]. But the 
characteristic of tumor markers, depended on tumor 
burden, limits their value in diagnosing early stage 
tumors. With the developments in gene chips and high-
throughput sequencing, gene signature based on mRNA 
expression levels have shown great potential in predict-
ing HCC prognosis. The abnormal expression levels of 
single gene such as SEC62 [6], SHP-1 [7], RING1 [8], 
AGBL2 [9] have been reported to be independent prog-
nostic factors for HCC patients. Moreover, a risk‐coef-
ficient model based on a multigene mRNA expression 
signature has been identified to be an independent prog-
nostic factor for overall survival (OS) and could stratify 
patients into high- and low-risk group with significantly 
different OS [10–12]. These gene signatures could be 
used for the preclinical and clinical treatment for HCC 

patients. However, additional gene signatures are needed 
for accurate prognosis of HCC because of complexity and 
heterogeneity of this disease.

In the current study, six sets of differentially expressed 
genes (DEGs) from different Gene Expression Omni-
bus (GEO) datasets were integrated to identify overlap-
ping DEGs. Functional annotation assessment with Gene 
Ontology (GO) annotation and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
ses were conducted with the overlapping DEGs. Uni-
variable and Lasso-Cox regression analysis were applied 
to identify overall survival-related DEGs and propose 
a prognostic risk score model to stratify HCC patients. 
Besides, independent prognostic factors of OS were iden-
tified by multivariable Cox survival analysis. We finally 
identified twelve-gene signature as a robust marker with 
great potential in risk stratification and OS prediction in 
HCC patients.

Methods
Study population
In present study, we searched and downloaded mRNA 
expression chip data of HCC tissues from the GEO 
database by using the keywords of “hepatocellular car-
cinoma” and “Homo sapiens”. Six microarray data-
sets (GSE121248, GSE84402, GSE65372, GSE51401, 
GSE45267 and GSE14520 (based on the GPL571 plat-
form) were obtained for DEGs analysis. Details of the 
GEO datasets used in this study are shown in Table  1. 
RNA-sequencing data of 371 HCC tissues and 50 normal 
tissues normalized by log2 transformation were acquired 
from The Cancer Genome Atlas (TCGA) for analyz-
ing the integrated DEGs from the six GEO datasets and 
building gene prognostic models. GSE14520 datasets 
(based on the GPL3921 platform) included 216 HCC 
tissues with complete clinical information and mRNA 
expression data for external validation of the prognostic 
gene signature. After excluding TCGA cases with incom-
plete clinical information, 233 HCC patients along with 

Table 1  Details of the GEO datasets included in this study

Datasets References Platform Sample size 
(tumor/control)

Application

GSE121248 Hui et al. GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 107 (70/37) Identification of DEGs

GSE84402 Cheng et al. GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 28 (14/14) Identification of DEGs

GSE65372 Hoshida et al. GPL14951 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 54 (39/15) Identification of DEGs

GSE51401 Kong et al. GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 64 (30/34) Identification of DEGs

GSE45267 Hsieh et al. GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 87 (46/41) Identification of DEGs

GSE14520 Wang et al. GPL571 [HG-U133A_2] Affymetrix Human Genome U133A 2.0 Array 41 (22/19) Identification of DEGs

GSE14520 Wang et al. GPL3921 [HT_HG-U133A] Affymetrix HT Human Genome U133A Array 445 (225/220) Validation of DEGs



Page 3 of 18Ouyang et al. Cancer Cell Int          (2020) 20:207 	

their complete age, gender, sex, tumor grade, American 
Joint Committee on Cancer (AJCC) pathologic tumor 
stage, vascular invasion, OS status and time informa-
tion were included for univariable and multivariable Cox 
regression analysis. Mutation data were obtained from 
the cBioPortal for Cancer Genomics [13].

Processing of gene expression data
To integrated gene expression chip data downloaded 
from the GEO datasets, we firstly conducted background 
correction, quartile normalization for the raw data fol-
lowed by log2 transformation to obtain normally distrib-
uted expression values. The DEGs between HCC tissues 
and non-tumor tissues were identified using the “Limma” 
package in R [14]. The thresholds of absolute value of the 
log2 fold change (logFC) > 1 and adjusted P value < 0.05 
were adopted. Mean expression values were applied for 
genes with multiprobes. Then, we used the robust rank 
aggregation (RRA) method to finally identify overlapping 
DEGs (P < 0.05) from the six GEO datasets.

Construction of a potential prognostic signature
To identify the prognostic genes, we firstly sifted 341 
patients from the TCGA Liver Hepatocellular Carcinoma 
(TCGA-LIHC) cohort with follow-up times of more than 
30 days. Then, univariable Cox regression survival analy-
sis was performed based on the overlapping DEGs. A 
value of P < 0.01 in the univariable Cox regression analy-
sis was considered statistically significant. Subsequently, 
the prognostic gene signature was constructed by Lasso‐
penalized Cox regression analysis [15], and the optimal 
values of the penalty parameter alpha were determined 
through 10-times cross-validations by using R package 
“glmnet” [16]. Based on the optimal alpha value, a twelve-
gene prognostic signature with corresponding coeffi-
cients was selected, and a risk score was calculated for 
each TCGA-LIHC patient. Next, the HCC patients were 
divided into two or three groups based on the optimal 
cutoff of the risk score determined by “survminer” pack-
age in R and X-Tile software. To assess the performance 
of the twelve-gene prognostic signature, the Kaplan–
Meier estimator curves and the C-index comparing the 
predicted and observed OS were calculated using pack-
age “survival” in R. Time-dependent receiver operating 
characteristic (ROC) curve analysis was also conducted 
by using the R packages “pROC” [17] and “survivalROC” 
[18]. Then, the GSE14520 datasets with complete clinical 
information was used to validate the prognostic perfor-
mance of twelve-gene signature. The GSE14520 external 
validation datasets was based on the GPL3921 platform 
of the Affymetrix HT Human Genome U133A Array 
Plate Set (HT_HG-U133A, Affymetrix, Santa Clara, CA, 
United States).

Independence of the prognostic gene signature from other 
clinical parameters in TCGA​
The risk score and other clinical variants, including age, 
body mass index (BMI), sex, tumor grade, the AJCC 
pathologic tumor stage, vascular invasion, residual tumor 
status and AFP value, were analyzed by univariable Cox 
regression analysis. Next, we conducted a multivari-
able Cox regression model that combined the risk score 
and the above clinical indicators (P value < 0.2) to assess 
the predictive performance. The univariable and mul-
tivariable Cox regression analysis were performed with 
TCGA-LIHC patients (n = 234) that had complete clini-
cal information.

Building and validating a predictive nomogram
A composite nomogram [19] was constructed based on 
all independent prognostic parameters previous screened 
to predict the probability of 1-year, 3-year and 5-year OS 
using the “rms” package in R software. The time-depend-
ent area under the ROC curve (AUC) was calculated to 
determine the discriminatory ability of the above prog-
nostic parameters. Then we used a calibration curve to 
visualize the performance of the nomogram with the 
observed rates at corresponding time points. Based on 
the total number of points of the nomogram, the patients 
were also stratified into two or three groups according to 
the optimal cutoffs. The Kaplan–Meier survival curves 
for the different groups were then plotted.

Functional enrichment analysis of DEGs 
and prognosis‑related genes
To detect potential biological functions and involved 
signaling pathways of DEGs, GO and KEGG enrichment 
analyses were performed by DAVID. Only P value < 0.05 
was considered statistically significant. In addition, the 
protein‐protein interaction (PPI) network was applied to 
explore potential interactions mRNAs via the STRING 
database and was visualized via Cytoscape v.3.7.1.

The correlation between DNA methylation 
and prognosis‑related genes
The DNA methylation data of 371 HCC tissues and 50 
normal tissues were acquired from TCGA database. The 
average DNA methylation beta-value for all CpG sites 
of a gene was calculated as the DNA methylation value 
for that gene. To examine the relationship between DNA 
methylation level and the corresponding mRNA expres-
sion value, the “MethylMix” package in R was utilized 
[20]. MethylMix identifies differential and functional 
DNA methylation by using a beta mixture model to 
identify tumor samples with different DNA methylation 
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compared to normal tissue. Functional DNA methylation 
refers to a significant negative correlation between meth-
ylation and gene expression of a particular gene.

Statistical analysis
R software 3.5.0 was used for all statistical analyses. Cate-
gorical variables were analyzed by the χ2 or Fisher’s exact 
test. Continuous variables were analyzed using Student’s 
t-test for paired samples. Two groups of boxplots were 
analyzed using the Wilcoxon-test. The heatmap of the 
DEGs was visualized using the “pheatmap” [21] package 
in R with zero-mean normalization. Kaplan‐Meier sur-
vival curves were built and hazard ratio (HR) with 95% 
confidence interval (CI) were calculated by log-rank tests. 
Correlations among the individual genes in the signature 
were assessed by Pearson correlation coefficients. All sta-
tistical tests were two-sided, P < 0.05 was considered sta-
tistically significant.

Results
Identification of DEGs
The overall data processing workflow is shown in Fig. 1. 
Before identifying the DEGs, the six microarray data-
sets were normalized (Fig.  2a; Additional file  1: Figure 
S1A–F). As previously mentioned, details of the GEO 

datasets used in this study were presented in Table  1. 
Hierarchical clustering analysis demonstrated differences 
in DEGs expression patterns between tumor and non-
tumor tissues (Fig.  2b; Additional file  1: Figure S1A–F). 
Volcano plots were generated to show the distribution 
of the DEGs (Fig.  2c; Additional file  1: Figure S1A–F). 
Next, we integrated the six sets of DEGs between tumor 
and non-tumor tissues by RRA method. Finally, a total of 
175 overlapping DEGs, including 55 upregulated and 120 
downregulated genes, were identified (Additional file  2: 
Table S1). The top 20 overlapping upregulated and down-
regulated DEGs in the six datasets are showed in Fig. 2d.

Functional enrichment and PPI network analysis 
of the DEGs
To further analyze biological information from the 
upregulated and downregulated overlapping DEGs 
(logFC > 1, P value < 0.05), GO enrichment analysis was 
performed respectively through the online DAVID tool. 
Concerning biological processes, the downregulated 
DEGs were significantly enriched in oxidation–reduction 
process, immune response and proteolysis. The upregu-
lated DEGs were significantly enriched in cell division, 
mitotic nuclear division and G1/S transition of mitotic 
cell cycle. Enrichment analysis of cellular compartment 

Fig. 1  Flowchart describing the process used to identify and validate the prognostic gene signature of hepatocellular carcinoma
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Fig. 2  Identification of DEGs in liver cancer between tumor and normal tissues. a Normalization of GSE84402 dataset. b Representative heatmap of 
GSE84402 dataset shows that the DEGs can effectively differentiate tumors from normal tissues. c Volcano plot of GSE84402 dataset. d Heatmap of 
each expression microarray. The heat map of top 20 upregulated (red) and downregulated (green) DEGs identified by the robust rank aggregation 
method with the 6 GEO datasets. The value in each column represents the value of LogFC
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and molecular functions and the corresponding distribu-
tions are shown in Fig. 3. KEGG pathway analysis showed 
that the DEGs were mainly enriched in metabolic path-
ways, chemical carcinogenesis, biosynthesis of antibiot-
ics, retinol metabolism and cell cycle (Additional file  3: 
Figure S2A, Additional file 4: Table S2).

The PPI network of the DEGs was constructed by 
using the STRING database. A total of 400 nodes and 
4238 edges were obtained and analyzed in the PPI 
network. Then, the top 25 candidate hub genes were 

identified with the cytoHubba plugin by using MCC 
method from Cytoscape (Figure S2B). Module analysis 
identified significant clustering modules in the PPI net-
work. As illustrated in Figure S3A-C, the three highest-
scoring functional clusters of modules were selected by 
the MCODE app (module 1, MCODE score = 70.421; 
module 2, MCODE score = 11.12; module 3, MCODE 
score = 6.121). KEGG pathways of each module were 
determined and are showed in Additional file 5: Figure 
S3.

Fig. 3  GO analysis of integrated DEGs in hepatocellular carcinoma. a Upregulated DEGs with the top 15 enriched GO terms. b Downregulated 
DEGs with the top 15 enriched GO terms. c Distribution of upregulated DEGs for different GO-enriched functions. d Distribution of downregulated 
DEGs for different GO-enriched functions
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Identification of survival‑related DEGs and establishment 
of the twelve‑gene prognostic signature
A total of 341 TCGA-LIHC samples with a follow-up 
period > 30  days were included from 365 TCGA-LIHC 
patients for subsequent survival analyses. The baseline 
characteristics of these patients were listed in Table  2. 

Based on the univariable Cox regression model, 80 of 
total 175 DEGs were considered to be significantly cor-
related with OS, including 35 upregulated DEGs and 45 
downregulated DEGs (P < 0.01). Then, Lasso penalized 
Cox regression analysis was performed, and a prognos-
tic twelve-gene signature was identified, consisting of 

Table 2  Baseline characteristics of TCGA-LIHC patients

Clinical features Number (%) Clinical features Number (%)

Follow-up time (months) 26.7 ± 23.9 AJCC stage

Survival status  Stage I 170 (46.6%)

 Alive 235 (64.4%)  Stage II 84 (23.0%)

 Dead 130 (35.6%)  Stage III 83 (22.7%)

Age 59.7 ± 13.4  Stage IV 4 (1.1%)

Sex  Not applicable 24 (6.6%)

 Male 246 (67.4%) T classification

 Female 119 (32.6%)  T1 180 (49.3%)

History of other malignancy  T2 91 (24.9%)

 No 331 (90.7%)  T3 78 (21.4%)

 Yes 34 (9.3%)  T4 13 (3.6%)

History of neoadjuvant treatment  TX 1 (0.3%)

 No 363 (99.5%)  Not applicable 2 (0.5%)

 Yes 2 (0.5%) N classification

History of radiation treatment  N0 248 (67.9%)

 No 238 (65.2%)  N1 4 (1.1%)

 Yes 4 (1.1%)  NX 112 (30.7%)

 Not applicable 123 (33.7%)  Not applicable 1 (0.3%)

History of chemotherapy M classification

 No 222 (60.8%)  M0 263 (72.1%)

 Yes 14 (3.8%)  M1 3 (0.8%)

 Not applicable 129 (35.3%)  MX 99 (27.1%)

History of ablation embolization Grade

 No 230 (63.0%)  G1 55 (15.1%)

 Yes 13 (3.6%)  G2 175 (47.9%)

 Not applicable 122 (33.4%)  G3 118 (32.3%)

History of hepatic carcinoma risk factory  G4 12 (3.3%)

 No history of primary risk factors 91 (24.9%)  Not applicable 5 (1.4%)

 Alcohol consumption 115 (31.5%) Vascular invasion

 Hepatitis B 102 (27.9%)  No 205 (56.2%)

 Hepatitis C 55 (15.1%)  Micro 90 (24.7%)

 Non-alcoholic fatty liver disease 19 (5.2%)  Macro 16 (4.4%)

 Hemochromatosis 6 (1.6%)  Not applicable 54 (14.8%)

 Other 30 (8.2%) Relapse

 Not available 18 (4.9%)  No 172 (47.1%)

Residual tumor  Yes 94 (25.8%)

 RO 320 (87.7%)  Not applicable 99 (27.1%)

 R1 17 (4.7%) Histological diagnosis

 R2 1 (0.3%)  Hepatocellular carcinoma 355 (97.3%)

 RX 20 (5.5%)  Fibrolamellar carcinoma 3 (0.8%)

 Not applicable 7 (1.9%)  Hepatocholangiocarcinoma 7 (1.9%)
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secreted phosphoprotein 1 (SPP1), annexin10 (ANXA10), 
leukocyte cell-derived chemotaxin 2 (LECT2), kinesin 
family member 20A (KIF20A), hyaluronan mediated 
motility receptor (HMMR), TTK, melanoma antigen A6 
(MAGEA6), lysosomal protein transmembrane 4 beta 
(LAPTM4B), cytochrome P450 family 2 subfamily C 
member 9 (CYP2C9), retinol dehydrogenase 16 (RDH16), 
lecithin-cholesterol acyltransferase (LCAT) and targeting 
protein for xenopus kinesin-like protein 2 (TPX2) (Addi-
tional file 6: Figure S4, Additional file 7: Table S3).

To validate different expressions of the twelve genes 
between tumor and non-tumor tissue, 369 HCC tis-
sues and 160 normal tissues were compared using Gene 
Expression Profiling Interactive Analysis (GEPIA, http://
gepia​.cance​r-pku.cn/). The mRNA expression levels of 
SPP1, KIF20A, HMMR, LAPTM4B and TPX2 were sig-
nificantly increased in HCC tissues, while the levels of 
ANX10, CYP2C9, LCAT and RDH16 were significantly 
decreased (Fig. 4a). ROC analysis showed well prognos-
tic performance of the twelve-gene signature (Fig.  4b). 
The Kaplan–Meier survival curves revealed that the 
upregulated gene with lower expression levels have bet-
ter survival period, while the downregulated genes were 
positive correlation with survival period (P value < 0.05; 
Additional file  8: Figure S5). Besides, correlation analy-
sis indicated that TPX2 and TTK had a strong positive 
correlation (r = 0.89, P < 0.001), and that KIF20A and 
ANXA10 had a moderate negative correlation (r = − 0.47, 
P < 0.001) (Fig. 4c; Additional file 9: Table S4). Of the 365 
TCGA-LIHC patients included in the mutation analysis, 
88 (23.6%) presented with alterations in the twelve genes. 
Amplification was the most common type of muta-
tion among the upregulated genes especially LAPTM4B 
(Fig. 4d). Typical IHC of twelve genes (except LCAT and 
MAGEA6, not included in the database) in tumor and 
normal liver tissues are shown in Additional file 10: Fig-
ure S6.

Then the risk score was calculated for each patient 
incorporating the corresponding coefficients as fol-
lows: [(− 0.0627) × Expression value of ANXA10] +  
[(− 0.03552) × Expression value of CYP2C9] +  
[(− 0.02365) × Expression value of LCAT] + [(− 0.02237)  
× Expression value of LECT2] + [(− 0.01796) × Expres-
sion value of RDH16] + [(0.0015) × Expression value of 
LAPTM4B] + [(0.0386) × Expression value of KIF20A] +  
[(0.05124) × Expression value of SPP1] + [(0.05284) ×  
Expression value of MAGEA6] + [(0.05377) × Expres-
sion value of TPX2] + [(0.0565) × Expression value of 
HMMR] + [(0.09788) × Expression value of TTK]. Sub-
sequently, the included 341 TCGA-LIHC patients were 
stratified into two (cutoff value = 1.74) or three (cutoff 
values = 1.58 and 2.11) groups. The Kaplan–Meier sur-
vival curves revealed significantly favorable OS in the 

groups with lower risk score (P < 0.0001) (Fig.  5e, f ). 
Time-dependent ROC curve and C-index analyses were 
applied to evaluate the prognostic values of the twelve-
gene risk scores and were then compared with those of 
the AJCC stage (Fig. 5g–i). The AUCs for the 1-, 3-, and 
5-year OS predictions for the risk score were 0.77, 0.73, 
and 0.72, respectively. The AUCs for the 1-, 3-, and 5-year 
OS predictions for the AJCC stage were 0.63, 0.64, and 
0.61, respectively. The C-index of the risk score was 0.653 
(95% CI 0.606–0.700), while that of the AJCC stage was 
0.591 (95% CI 0.544–0.638).

External validation of the prognostic performance 
of the twelve‑gene signature
To validate the classification performance of the twelve-
gene prognostic signature with different data platforms, 
we used the GSE14520 cohort, which included 216 HCC 
patients, as an external dataset. Similarly, the patients 
each received exclusive risk score and were stratified into 
two or three groups based on cutoff value calculated by 
X-Tile. The Kaplan–Meier survival curves showed sig-
nificant difference in the OS among the groups. Low-
risk group had obviously better outcomes than high-risk 
or middle-risk groups (Fig.  6e, f ). Moreover, the AUCs 
for the 1-, 3-, and 5-year OS predictions for the risk 
score were 0.63, 0.68 and 0.66, respectively, which show 
comparable prognostic power with the AJCC stage 
(Fig. 6g–i). The C-index of the risk score was 0.614 (95% 
CI 0.549–0.679), while that of the AJCC stage was 0.622 
(95% CI 0.573–0.671). External validation suggested that 
the twelve-gene signature continued to perform well at 
predicting OS in HCC patients.

Generation and validation of the diagnostic performance 
of the twelve‑gene signature
As for training datasets (TCGA-LIHC) of 371 HCC sam-
ples and 50 normal samples, we established a diagnostic 
model with twelve genes by using the logistic regression 
analysis to distinguish HCC from normal tissue. Exclu-
sive diagnostic score was calculated by corresponding 
coefficients as follows: 1.5343 + [(− 0.0198) × Expres-
sion value of ANXA10] + [(− 0.01206) × Expression 
value of CYP2C9] + [(− 0.04958) × Expression value of 
LCAT] + [(0.00453) × Expression value of LECT2] + 
 [(− 0.01166) × Expression value of RDH16] + [(0.00351)  
× Expression value of LAPTM4B] + [(0.06177) × Expres-
sion value of KIF20A] + [(− 0.00863) × Expression  
value of SPP1] + [(0.00155) × Expression value of  
MAGEA6] + [(− 0.14711) × Expression value of TPX2]  
+ [(0.12204) × Expression value of HMMR] + [(0.03522) ×  
Expression value of TTK]. The model showed a strong 
diagnosis performance of 92.5% sensitivity and 100% 
specificity to distinguish HCC from normal samples in 

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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Fig. 4  Validation of expression and alteration of the twelve genes in hepatocellular carcinoma. a Expression of the twelve genes were validated in 
369 HCC tissues (red) and 160 normal tissues (gray) with GEPIA. b ROC analysis revealed a well diagnostic performance of the twelve genes with 
HCC. c Correlation analysis among the twelve genes. d Genetic alterations of the twelve genes in HCC. Data were obtained from the cBioportal
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TCGA datasets (AUC = 0.988) (Fig.  7a, b), while 95.5% 
sensitivity and 90.7% specificity in the GSE14520 datasets 
(AUC = 0.962) of 225 HCC samples and 220 normal sam-
ples (Fig. 7d, e). Unsupervised hierarchical clustering of 
twelve genes could also differentiate HCC from normal 
tissue with high sensitivity and specificity (Fig. 7c, f ).

Correlation with clinicopathological characteristics 
and prognostic factor
Among the 233 patients included in TCGA-LIHC cohort 
with complete clinical information, a higher risk score 
was found to be significantly correlated with female sex, 
advanced tumor grade, vascular invasion and higher AFP 
(Table  3). Moreover, the univariable and multivariable 
Cox regression analyses indicated that the risk score and 
AJCC stage were both independent prognostic factors for 
OS (Table 4).

Building and validating a predictive nomogram 
from the TCGA‐LIHC cohort
The 233 TCGA-LIHC patients with complete clinical 
information were adopted to build a prognostic nomo-
gram. Risk score, age and AJCC stage were used as 
parameters in the nomogram (Fig. 8a). The AUCs of the 
1-, 3-, and 5-year OS predictions for the nomogram were 
0.76, 0.74, and 0.75, respectively (Fig. 8g–i). The C-index 
of the nomogram was 0.711 (95% CI 0.642–0.78), while 
that for the AJCC stage was 0.567 (95% CI 0.508–0.626). 
Thus, the nomogram was superior to the risk score or 
AJCC stage in predicting OS of HCC. The patients were 
stratified into two or three groups based on median or 
cutoff values generated by X-Tile according to the scor-
ing of the nomogram. The Kaplan–Meier curves showed 
significant difference in the OS among groups (Fig. 8e, f ). 
Those with lower scores experienced significantly bet-
ter survival period (P < 0.0001). Calibration plots showed 

Fig. 5  Evaluation of the prognostic performance of the twelve-gene signature in TCGA-LIHC dataset. a Distribution of the risk score and survival 
data. Alive cases showed in blue, dead cases showed in yellow. b Distribution of the risk score. c Heat map of the twelve gene expression in the 
TCGA-LIHC dataset. d Calibration plot of the twelve-gene signature for predicting the probability of survival at 1-, 3-, and 5-years. e, f Kaplan–Meier 
survival curves of the risk score model. g–i Time-dependent ROC curve of risk score model for 1-, 3-, and 5-year overall survival predictions in 
compare with AJCC stage
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that the nomogram performed well at predicting OS in 
HCC patients (Fig. 8d).

Validation of the DNA methylation pattern of twelve‑gene 
signature
Based on the DNA methylation data and the paired 
gene expression data of twelve genes in 371 HCC tis-
sues, functional DNA methylation analyses showed that 
six genes, including SPP1, RDH16, LAPTM4B, LCAT, 
CYP2C9 and LECT2, had a significantly strong nega-
tive correlation between with gene expression and DNA 
methylation, and four genes (HMMR, KIF20A, TPX2 and 
TTK) showed moderate or weak correlation (Fig.  9b, e, 
Additional file 11: Figure S7), while the methylation data 
involving ANXA10 and MAGEA6 were lacked. Besides, 

the beta mixture model had identified SPP1 and LCAT 
as the DNA methylation-driven genes, which the gene 
expression value was significantly affected by DNA meth-
ylation events. A significantly low DNA methylation were 
noted for SPP1 relative to high expression levels in tumor 
tissues, while high DNA methylation and low expression 
for LCAT (P < 0.0001) (Fig. 9).

Discussion
For decades, many studies have strived to elucidate the 
pathogenesis and epidemiology of HCC. Although great 
improvement on surgical and medical therapy has been 
made, the prognosis of HCC remains poor, which has 
resulted in a heavy disease burden on a global scale. 
Lacking of efficient detection methods on the early stage 

Fig. 6  External validation of the prognostic performance of the twelve-gene signature in GSE14520 dataset. a Distribution of the risk score and 
survival data. Alive cases showed in yellow, dead cases showed in blue. b Distribution of the risk score. c Heat map of the twelve gene expression 
in the GSE14520 dataset. d Calibration plot of the twelve-gene signature for predicting the probability of survival at 1-, 3-, and 5-years. e, f Kaplan–
Meier survival curves of the risk score model. g–i Time-dependent ROC curve of risk score model for 1-, 3-, and 5-year overall survival predictions in 
compare with AJCC stage
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attributes to the progression of the disease. Moreover, 
HCC is a highly heterogeneous disease in that survival 
times vary significantly among patients with similar 
TNM stages. Consequently, screening an efficient prog-
nostic marker that dynamically reflect the biological 
progression of the tumor would be important for indi-
vidualized prevention and treatment of HCC.

The present study aimed to identify an effective prog-
nostic marker to stratify HCC patients and predict the 
outcome of HCC. In our current study, a total of 175 
overlapping DEGs between HCC tissues and non-tumor 
tissues were identified from six GEO datasets after inte-
grating by the RRA method. Eighty prognosis-related 
genes were sifted out from TCGA datasets by using uni-
variable Cox regression methods, which were then sub-
jected to Lasso regression with tenfold cross-validation. 
Finally, a novel twelve-gene signature was determined. 
The risk score of each case was calculated based on the 
above model, which stratified HCC patients into high- 
or low-risk groups. The twelve-gene signature was an 
independent prognostic factor of HCC according to the 
Kaplan–Meier survival curves analysis and ROC analysis 
and verified by TCGA datasets and GSE14520 dataset, 

and it was comparable or superior to AJCC stage at pre-
dicting 1-, 3-, and 5-year OS. In addition, the twelve-gene 
signature was independent with other clinical factors and 
performed better in predicting OS in combination with 
age and AJCC stage in a nomogram.

To date, many studies have explored the prognos-
tic role of gene signatures in predicting the outcome 
of HCC. The effect of clinical practice based on gene 
expression profiles has shown that gene signatures might 
be a promising high-throughput molecular identifica-
tion method [22–24]. In that regard, Liu et al. [25] identi-
fied a four‐gene metabolic signature and Xiang et al. [26] 
identified seven-senescence-associated gene signature 
for predicting OS in HCC. Good predictive performance 
was obtained in their respective studies. However, our 
12-gene signature had a higher 1-year, 3-year, and 5-year 
AUC than the above two gene signatures, which makes it 
more conducive to clinical application in several clinical 
important settings (Additional file 12: Figure S8). Some-
times, patients with similar clinicopathological features, 
such as AJCC stage, may have distinct outcomes, which 
might due to the heterogeneity of the different epigenetic 
and genetic backgrounds in tumor subtypes. Therefore, 

Fig. 7  The diagnostic performance of the twelve-gene signature in distinguishing HCC from normal samples. Crosstab of diagnostic prediction 
model for training (a) and validation (d) dataset. ROC curves of the diagnostic prediction models with the twelve genes for training (b) and 
validation (e) datasets. c, f Unsupervised hierarchical clustering of twelve genes in the diagnostic prediction model for training (e) and validation (f) 
datasets
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the combined use of the twelve gene prognostic signature 
and AJCC stage might be benefit to identify high-risk 
patients who should receive more medical supports.

The initiation and progression of HCC is a complex 
and multistage process regulated by both genetic and 
epigenetic alterations. DNA methylation, as a central 
epigenetic modification, would facilitate tumor develop-
ment if it was dysfunctional, such as hypomethylation 
of oncogenes and hypermethylation of tumor suppres-
sor [27, 28]. In present study, most of the prognostic 
twelve genes were negatively correlated with DNA meth-
ylation in HCC tissues. As the DNA methylation-driven 
genes identified by the beta mixture model, SPP1 was 

hypomethylated and expressed at a higher level in HCC 
than in normal tissues, while LCAT was hypermethyl-
ated and low expression. Those results could be a valida-
tion and extension of the research initiated by Long et al. 
[28]. They found that the models consisting of SPP1 and 
LCAT were good at predicting HCC diagnosis, prognosis 
and recurrence. However, the marker involving in more 
pathogenic pathways not just DNA methylation might 
guide better clinical due to the complex biological pro-
cess related with HCC pathogenesis.

The five of twelve-gene signature were downregulated 
in HCC tissues and identified as protective genes, includ-
ing ANXA10, CYP2C9, LCAT, LECT2 and RDH16. 

Table 3  Correlation of clinicopathologic characteristics and the twelve-gene signature in HCC

Characteristics TCGA-LIHC GSE14520

Low risk
N = 176

High risk
N = 57

P Low risk
N = 94

High risk
N = 121

P

Follow-up time (mouths) 31.49 ± 25.24 21.85 ± 18.99 0.009 47.51 ± 18.72 34.36 ± 22.00 0.000

Risk score 1.23 ± 0.35 2.05 ± 0.25 0.000 0.54 ± 0.22 1.29 ± 0.29 0.000

Age (years) 0.565 0.282

  ≤ 60 88 (50.0%) 26 (45.6%) 73 (77.7%) 101 (83.5%)

  > 60 88 (50.0%) 31 (54.4%) 21 (22.3%) 20 (16.5%)

Sex 0.008 0.595

 Female 50 (28.4%) 27 (47.4%) 14 (14.9%) 15 (12.4%)

 Male 126 (71.6%) 30 (52.6%) 80 (85.1%) 106 (87.6%)

BMI (kg/m2) 0.664

  < 25 93 (52.8%) 32 (56.1%) – –

 ≥ 25 83 (47.2%) 25 (43.9%) – –

G stage 0.000

 G1 + G2 111 (63.1%) 17 (29.8%) – –

 G3 + G4 65 (36.9%) 40 (70.2%) – –

Residual tumor 0.905

 R0 166 (94.3%) 54 (94.7%) – –

 Non-R0 10 (5.7%) 3 (5.3%) – –

AJCC stage 0.089 0.006

 I + II 150 (85.2%) 43 (75.4%) 81 (86.2%) 85 (70.2%)

 III + IV 26 (14.8%) 14 (24.6%) 13 (13.8%) 36 (29.8%)

Vascular invasion 0.000

 No 129 (73.3%) 23 (40.4%) – –

 Yes 47 (26.47%) 34 (59.6%) – –

AFP (ng/ml) 0.002 0.001

 < 300 144 (81.8%) 35 (61.4%) 64 (68.1%) 54 (44.6%)

  ≥ 300 32 (18.2%) 22 (38.6%) 30 (31.9%) 67 (55.4%)

Multinodular 0.214

 No – – 78 (83.0%) 92 (76.0%)

 Yes – – 16 (17.0%) 29 (24.0%)

Cirrhosis 0.575

 No – – 9 (9.6%) 9 (7.4%)

 Yes – – 85 (90.4%) 112 (92.6%)
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ANXA10 is one of 13 annexins members of superfam-
ily of calcium-dependent phospholipid-binding proteins 
[29]. Downregulation of ANXA10 is associated with 
worse pathological stage and poor prognosis in liver can-
cer [30, 31]. Previous study has identified it as a prognos-
tic biomarker of perihilar and distal cholangiocarcinoma 
but not intrahepatic  cholangiocarcinoma, the gene pro-
motes extrahepatic cholangiocarcinoma metastasis by 
facilitating the epithelial-mesenchymal transition via 
the PLA2G4A/PGE2/STAT3 pathway [32]. CYP2C9, a 
gene involved in drug absorption, distribution, metabo-
lism and excretion, was downregulated in HCC tissue in 
part due to the de-differentiation of cancer cells [33]. It 
is associated with loss of liver-specific functions. LACT 
plays an important role in many cancers and was hyper-
methylated and downregulated in HCC compared with 
non-tumor tissue [34]. LECT2, a chemokine-like chemo-
tactic factor, plays a protective anti-inflammatory role 
in the liver with β-catenin-induced tumorigenesis, and 
downregulated LECT2 expression results in the pres-
ence of inflammatory infiltrates, tumor progression and 

metastatic disease [35]. This protective effect is mainly 
targeted both tumoral hepatocytes and the hepatic 
immune microenvironment by inhibiting the Wnt path-
way [36]. RDH16 is strongly express in normal liver tis-
sue and is involved in retinoic acid metabolism, cellular 
proliferation, differentiation, and apoptosis [37]. The level 
of RDH16 expression is inversely associated with tumor 
size, microsatellite formation, thrombus and OS in HCC 
patients [38].

The seven of the twelve genes were upregulated in HCC 
tissue and were associated with poor survival, including 
SPP1, KIF20A, HMMR, TTK, MAGEA6, LAPTM4B and 
TPX2. The SPP1 gene, located on chromosome 4 in locus 
4q13.22 [39], encodes a secreted chemokine-like glyco-
phospho protein, named as the glycoprotein osteopontin. 
The biological functions of osteopontin are diverse [40]. 
It is overexpressed during the development and pro-
gression of different cancers, and has been suggested as 
a potential prognostic biomarker and therapeutic target 
[41]. KIF20A accumulates in the nucleus during the G2 
phase of the cell cycle [42], and contributed to cellular 
proliferation, apoptosis and metastasis by regulating vari-
ous signaling pathways, such as the E2F-retinoblastoma 
protein-p16 pathway and the PI3K/Akt signaling path-
ways. Intracellular HMMR participates in mitotic spindle 
pole formation and cytokinesis [43]. Overexpression of 
HMMR is associated with cancer growth, migration, and 
poor prognosis in various cancers, including HCC, via its 
stimulation of the hyaluronan-HMMR signaling cascade 
in addition to its oncogenic activities as noted above [44]. 
TTK is essential for the mitotic checkpoint and improper 
chromosome attachments [45]. Elevated TTK level 
facilitates chromosome instability and aneuploidy, thus 
contributing to cancer cell proliferation and invasion 
[46]. The essential role of TTK in HCC carcinogenesis 
by promoting cell survival and invasion via activation of 
Akt/mTOR and MDM2/p53 signaling pathways, and the 
regulation of miR-21 via TGF-β [47]. MAGEA6 is gen-
erally expressed in the male testis, but is re-activated in 
many tumor cells. MAGEA6 and TRIM28 was combined 
to form a cancer-specific ubiquitin ligase that inhibited 
AMPK signaling pathway and induced the stemness 
maintenance and self‐renewal of HCC stem cells [48]. 
LAPTM4B was originally found to be overexpressed 
in HCC tissue, and it has inverse correlation with HCC 
differentiation. Evidences suggested that the overexpres-
sion of LAPTM4B may promote malignant transforma-
tion and enhance the metastasis and recurrence of HCC 
via activating AKT signaling pathway and some proto-
oncogenes such as c-myc, c-jun and c-fos [49, 50]. TPX2 
is a nuclear proliferation microtubule-associated protein 
that can regulate spindle formation and stabilize spin-
dle microtubules by promoting chromatin microtubule 

Table 4  Univariate and  multivariate Cox regression 
analysis of TCGA-LIHC patients

Characteristics Univariate Cox Multivariate Cox

HR (95%CI) P HR (95%CI) P

Risk score 2.948 (1.752–4.961) 0.000 2.349 (1.289–4.279) 0.005

Age (years)

  < 60 1 1

  ≥ 60 1.535 (0.923–2.552) 0.099 1.593 (0.935–2.714) 0.086

Sex

 Female 1

 Male 0.673 (0.405–1.119) 0.127 1.023 (0.588–1.779) 0.936

BMI (kg/m2)

 < 25 1 – –

  ≥ 25 1.214 (0.738–1.999) 0.445 – –

G stage

 G1 + G2 1 1

 G3 + G4 1.536 (0.930–2.536) 0.094 1.364 (0.791–2.352) 0.265

Residual tumor

 R0 1 – –

 Non-R0 1.328 (0.413–4.278) 0.634 – –

AJCC stage

 I + II 1 1

 III + IV 2.271 (1.321–3.904) 0.003 2.219 (1.215–3.734) 0.008

Vascular invasion

 No 1 1

 Yes 1.760 (1.048–2.958) 0.033 1.266 (0.730–2.196) 0.401

AFP (ng/ml)

  < 300 1 – –

  ≥ 300 1.171 (0.668–2.054) 0.581 – –
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nucleation. Targeted silencing of TPX2 inhibited cell via-
bility, disturbed cell cycle process and induced apoptosis 
of HCC cells by inhibiting the PI3K/AKT signaling trans-
duction pathway.

Although we have identified prognosis-related gene 
signature which showed potentially substantial clini-
cal significance, the present study had certain limita-
tions. Considering the great heterogeneity of HCC, 
some important candidate genes affecting tumor prog-
nosis might have been excluded before constructing the 
prognostic model, which could have decreased the per-
formance of the model in the TCGA cohort. Moreover, 
the mechanisms of post‐curative recurrence and metas-
tasis (the major obstacles of HCC survival) might also 
help explain the relative low diagnostic performance, but 
the clinical follow-up information, including post‐cura-
tive recurrence and metastasis data, were lacking in our 

included samples. In addition, the twelve-gene prognos-
tic signature needs to be investigated by experimental 
verification, and evaluated for clinical application using 
multicenter randomized controlled studies.

Conclusions
In conclusion, we identified a prognostic twelve gene 
signature via comprehensive bioinformatics analysis 
with TCGA and GEO liver cancer cohorts. It could 
effectively stratify HCC patients into high- and low-risk 
group and independently predict the survival of HCC 
patients. Our finding indicated that the twelve gene sig-
nature may help facilitate personalized cancer manage-
ment in the clinical setting. We therefore recommend 
using this classifier as a molecular diagnostic test to 
evaluate the prognostic risk in HCC patients.

Fig. 8  Validation of the nomogram in predicting overall survival of the TCGA-LIHC cohort. a A prognostic nomogram predicting 1-, 3-, and 5-year 
overall survival of HCC. b Distribution of the nomogram score. c Distribution of the nomogram score and survival data. Alive cases showed in blue; 
dead cases showed in yellow. d Calibration plot of the nomogram for predicting the probability of survival at 1-, 3-, and 5-years. e, f Kaplan–Meier 
survival curves of the nomogram. g–i Time-dependent ROC curve of the nomogram for 1-, 3-, and 5-year overall survival predictions in compare 
with AJCC stage
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