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Abstract 

Background:  We aimed to identify differentially expressed pseudogenes and explore their potential functions in four 
types of common gynecological malignancies (e.g., cervical squamous cell carcinoma, ovarian serous cystadenocarci-
noma, uterine corpus endometrial carcinoma, and uterine carcinosarcoma) using bioinformatics technology.

Materials and methods:  We identified up-regulated and down-regulated pseudogenes and built a pseudogene-
miRNA-mRNA regulatory network through public datasets to explore their potential functions in carcinogenesis and 
cancer prognosis.

Results:  Among the 63 up-regulated pseudogenes identified, LDHAP5 demonstrated the greatest potential as a can-
didate pseudogene due to its significant association with poor overall survival in ovarian serous cystadenocarcinoma. 
KEGG pathway analysis revealed that LDHAP5 showed significant enrichment in MicroRNAs in cancer, Pathway in 
cancer and PI3K-AKT signaling pathway. Further analysis revealed that EGFR was the potential target mRNA of LDHAP5, 
which may play an important role in ovarian serous cystadenocarcinoma.

Conclusions:  LDHAP5 was associated with the occurrence and prognosis of ovarian serous cystadenocarcinoma, and 
thus shows potential as a novel therapeutic target against such cancer.
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Background
Gynecological malignancies account for a large propor-
tion of tumors in women and seriously endanger female 
health. It is estimated that there will be approximately 
13,800 new cases of uterine cervical cancer, 65,620 cases 
of uterine corpus cancer, and 21,750 cases of ovarian can-
cer in the United States in 2020, and with 4290, 12,590 
and 13,940 possible deaths, respectively [1]. Advanced 

gynecological malignancies usually exhibit poor progno-
sis due to a lack of effective treatment in controlling dis-
tant metastasis [2]. However, most current clinical drugs 
are non-specific, and their therapeutic effects are limited 
[3]. Therefore, the identification of novel biomarkers of 
gynecological tumors to improve drug efficacy and pro-
long survival remains urgent.

The term pseudogene was first conceived by Jacp 
et  al. [4]. Pseudogenes usually originate from paralo-
gous functional genes (“parent gene”), but have lost 
the capacity to encode functional proteins due to the 
accumulation of mutations (e.g., frameshift muta-
tions, early or delayed stop codons) [5]. Pseudogenes 
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initially received little attention until PTEN pseudogene 
1 (PTENP1) was found to share the same microRNA 
response elements (MREs) as its homologous func-
tional parent gene, PTEN [6].

With the advancement of next-generation sequenc-
ing (NGS), approximately 20,000 pseudogenes have been 
discovered in the human genome, and the role of pseu-
dogenes as long non-coding RNAs (lncRNAs) in the 
development of disease has been revealed [7–9]. Cur-
rent research suggests that pseudogenes mainly regulate 
gene expression at the post-transcriptional level through 
two pathways [10]. Firstly, pseudogenes can be used as 
competitive endogenous RNAs (ceRNAs) to competi-
tively bind miRNAs with the coding gene, thereby posi-
tively regulating gene expression [11–13]. For example, 
PTENP1 can competitively bind miRNA-17, miRNA-
21, miRNA-19, and other miRNAs through the ceRNA 
mechanism, thereby increasing parent gene (PTEN) 
expression by preventing miRNA-induced degradation 
[6]. Secondly, pseudogenes can play a negative role in the 
regulatory pathway, whereby they complete with their 
parent genes to destabilize RNA binding proteins (RBPs), 
resulting in a decrease in parent gene expression [14].

In the current study, we identified differentially 
expressed pseudogenes in four gynecological malignan-
cies using the pseudogene database dreamBase, and then 
constructed a pseudogene-miRNA-mRNA regulatory 
network to further explore their potential functions and 
mechanisms in gynecological malignancies.

Materials and methods
Screening for dysregulated pseudogenes in four 
gynecological malignancies
We obtained RNA-seq data of pseudogenes in 32 human 
cancer from the online database dreamBase (http://rna.
sysu.edu.cn/dream​Base/panca​ncer.php?SClad​e=mamma​
l&SOrga​nism=hg38) [15] |Log2FC| > 2.0 was set as cutoff 
to identify differentially expressed pseudogenes. R v 3.5.1 
and EXCEL v2016. were used to further analyze their 
expression landscape.

Prognostic analysis of up‑regulated expressed 
pseudogenes
Gene Expression Profiling Interactive Analysis (GEPIA) 
(http://gepia​.cance​r-pku.cn/) was used to evaluate prog-
nostic values (overall survival) of up-regulated pseudo-
genes in 32 kinds of common human cancer [16]. The 
group thresholds were as follows: the group cut-off was 
‘Median’, the ‘cutoff-high’ and ‘cutoff-low’ were 50%, axis 
units were ‘Months’, and P value < 0.05 was considered 
statistically significant.

Screening for pseudogene‑ regulated miRNAs 
and miRNA‑target mRNAs
The public online datasets of starBase v-2.0 and miR-
TarBase were used to identify pseudogene-binding 
miRNAs and miRNA-target mRNAs, respectively [17, 
18]. The network of pseudogenes-miRNA-mRNA was 
constructed using Cytoscape v-3.7.2 [19].

KEGG pathways and gene oncology (GO) enrichment 
analysis of target mRNAs
The list of miRNA-target genes was imported into the 
STRING v-11.0, and the top five significantly GO terms 
and KEGG pathways were selected according to the 
values of false discovery rate (FDR), and then were vis-
ualized by GraphPad PRISM Version 6.02 [20].

Construction of protein–protein interaction network 
and identification of hub genes
STIRNG v-11.0 was used to construct the regulatory 
network of protein–protein, and then visualized by 
Centiscape plugin of Cytoscape v-3.7.2 [19–21]. The 
top 10 hub genes were identified according to the val-
ues of Degree unDir.

Hub genes expression and mutations analysis
Hub genes expression and mutations analysis in ovarian 
serous cystadenocarcinoma were analyzed using the 
online cBioPortal database [22]. 489 patients (TCGA, 
Nature 2011) with ovarian serous cystadenocarcinoma 
were selected for further analysis. The select genomic 
profiles were as follows: ‘Mutations’; ‘Putative copy-
number alterations (GISTIC)’; ‘mRNA/miRNA expres-
sion Z-scores (all genes)’, and the Z-scores threshold 
were ± 2. Finally, OncoPrint was obtained under the 
guidance of online database at c-BioPortal.

Identification of potential target gene of LDHAP5
Pearson correlation analysis between LDHAP5 and 
the top 10 hub genes expression in ovarian serous cys-
tadenocarcinoma was performed using GEPIA [16]. 
Kaplan–Meier overall survivals of target genes were 
analyzed by Kaplan–Meier Plotter [23]. The mRNA 
expression levels of 10 hub genes in TCGA patients 
were further measured using Oncomine Main database 
[24].

Results
Identification of dysregulated pseudogenes in four 
common gynecological malignancies
According to epidemiological statistics, cervical squa-
mous cell carcinoma, ovarian serous cystadenocar-
cinoma, uterine corpus endometrial carcinoma, and 
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Fig. 1  Identification of differentially expressed pseudogenes in four types of gynecological malignancies. a Venn diagram of 63 up-regulated 
pseudogenes in four gynecological malignancies. b Heat map of 63 frequently up-regulated pseudogenes in 32 types of human cancer. Red 
represents up-regulated genes and green represents down-regulated genes. Values in boxes represent |log2 FC| values
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uterine carcinosarcoma remain lethal diseases in 
women [1]. To explore the potential role of pseudo-
genes in carcinogenesis and cancer prognosis of four 
gynecological malignancies, we used the public dream-
Base database to identify differentially expressed pseu-
dogenes. As shown in Fig. 1a and Table 1, we identified 
63 up-regulated and 0 down-regulated pseudogenes 
simultaneously in the four gynecological malignan-
cies after preliminary screening. We then measured 
the expression levels of the 63 up-regulated pseudo-
genes in 32 types of human cancer (Fig.  1b). After 
removal of pseudogenes that were not highly expressed 
in the 32 types of human cancer, 40 pseudogenes were 

identified as playing potential roles in gynecological 
malignancies.

Prognostic analysis of up‑regulated pseudogenes in 32 
types of human cancer
We next explored the prognostic values of the 40 up-
regulated pseudogenes in the 32 kinds of human cancer 
using GEPIA. As shown in Fig.  2, KRT8P3, KRT8P45, 
and LDHAP5 predicted poor overall survival in ovar-
ian serous cystadenocarcinoma (HR = 1.3, P = 0.046; 
HR = 1.3, P = 0.019; HR = 1.3, P = 0.03, respectively), 
FTLP14 predicted poor unfavorable prognosis in uter-
ine corpus endometrioid carcinoma (HR = 2.6, P = 0.018) 
No other pseudogenes that were significantly correlated 
with poor prognosis in the four types of gynecological 
malignancies.

Investigation of pseudogene‑miRNA‑mRNA regulatory 
network
By searching the starBase v2.0 database, only LDHAP5 
had its corresponding miRNAs. The specific charac-
teristics of the nine retrieved miRNAs are shown in 
Table-S1. In addition, as shown in Table-S2, only hsa-
miR-181d-5p, hsa-miR-181c-5p, hsa-miR-7-5p, hsa-
miR-543, hsa-miR-151a-5p, and hsa-miR-181b-5p 
had their own target genes. In total, 148 miRNA tar-
get genes, which were validated by at least one of three 

Table 1  Numbers of  down-regulated pseudogenes 
among four types of common gynecological malignancies 
from dreamBase

Tumor types Numbers of down-
regulated 
pseudogenes

Cervical and endocervical cancer 140

Uterine carcinosarcoma 0

Ovarian serous cystadenocarcinoma 0

Uterine corpus endometrioid carcinoma 103

Fig. 2  Prognostic values of 40 upregulated pseudogenes in 32 kinds of human cancer using GEPIA. Red represents poor outcome, green represents 
good prognosis, yellow represents neutral outcome (hazard ratio = 1), and light blue represents insufficient sample size at these custom thresholds. 
Values in boxes are P-values. P-values less than 0.05 were considered statistically significant. GEPIA: gene expression profiling interactive analysis
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robust method (i.e., reporter assay, western blot, and 
quantitative-real-time polymerase chain reaction (qRT-
PCR)), were identified via miRTarBase. The pseudo-
gene-miRNA-mRNA network was constructed using 
Cytoscape v_3.7.2 (Fig. 3a).

KEGG pathway and gene oncology (GO) enrichment 
analysis of miRNA target mRNAs
The 148 miRNA target genes were imported into STRING 
v-11.0, with GO and KEGG pathway enrichment analy-
sis then performed under the operational guidance of the 
website. We selected the top five significantly enriched 
GO terms and KEGG pathways according to false discov-
ery rate (FDR) values. The top five Biological Process (BO), 
Molecular Function (MO) and Cellular Component (CO) 
and their corresponding FDR values are shown in Fig. 3b. 
The top five significantly enriched KEGG pathways were 
MicroRNAs in cancer (hsa05206, FDR = 4.32E−26), Path-
way in cancer (hsa05200, FDR = 6.77E−18), PI3K-AKT 
signaling pathway (hsa04151, FDR = 9.95E−16), Endocrine 
resistance (hsa01522, FDR = 9.95E−16), and Foxo signal-
ing pathway (hsa04068, FDR = 2.65E−15) (Fig.  3c). These 
findings confirmed that the LDHAP5 pseudogene may 
mediate the occurrence and progression of ovarian serous 
cystadenocarcinoma.

EGFR as target mRNA of LDHAP5 in ovarian serous 
cystadenocarcinoma
We used the Centiscape plugin of Cytoscape v-3.7.2 to vis-
ualize the regulatory protein–protein network constructed 
using STRING v-11.0 (Fig. 4). The top 10 hub genes (i.e., 
TP53, MYC, EGFR, PTEN, HRAS, SIRT1, TNF, RELA, 
KRAS, and CREB1) were then identified based on Degree 
unDir values (Table 2). We further explored the sequence 
mutations and copy-number alterations of the 10 hub 
genes in ovarian serous cystadenocarcinoma using cBio-
portal. The group (TCGA, Nature 2011) which contained 
489 patients was selected. However, only 361 patients 
(64.6%) were suitable for further analysis. The mutation fre-
quencies of the 10 hub genes were TP53 (96%), MYC (34%), 
EGFR (9%), PTEN (14%), HRAS (9%), KRAS (24%), SIRT1 
(10%), TNF (24%), RELA (11%) and CREB1 (10%), respec-
tively (Fig.  5). Pearson correlation analysis showed that 
EGFR (R = 0.16, P = 0.00072), PTEN (R = 0.098, P = 0.043), 
SIRT1 (R = 0.094, P = 0.013), RELA (R = 0.18, P = 0.00013) 
and CREB1 (R = 0.16, P = 0.00094) were significantly 

correlated with LDHAP5 expression in ovarian serous 
cystadenocarcinoma (Table 3). Using the Oncomine Main 
database, only EGFR (fold-change = 1.192, P = 0.001), 
PTEN (fold-change = 1.214, P = 0.007), and CREB1 (fold-
change = 1.723, P = 1.66E−04) mRNAs were more highly 
expressed in TCGA ovarian patients (n = 594) than in 
normal patients (n = 8) (Fig. 6a). We further analyzed the 
prognostic values (overall survival) of the five hub genes 
in ovarian serous cystadenocarcinoma using Kaplan–
Meier plotter (Table  4, Fig.  6b). Only EGFR was signifi-
cantly correlated with poor outcome (HR = 1.51, 95% CI 
1.15–2, P = 0.0033) in ovarian serous cystadenocarcinoma, 
whereas SIRT1 predicted a good outcome (HR = 0.75, 95% 
CI 0.57–1, P = 0.047). Thus, according to the pseudogene-
miRNA-mRNA regulatory mechanism, we concluded that 
LDHAP5 may play potential roles in ovarian serous cystad-
enocarcinoma by targeting EGFR.

Discussion
With deepening research, we continue to gain a better 
understanding of pseudogenes. Currently, there are two 
major pseudogene classifications. Firstly, pseudogenes 
can be divided into three categories based on differences 
in structure and origin, i.e., duplicated, unitary, and pro-
cessed pseudogenes, respectively. Duplicated pseudo-
genes are caused by mutations of the gene coding region 
or regulatory region in the process of genome DNA tan-
dem replication or chromosome unequal exchange [25]. 
Unitary pseudogenes cannot be transcribed or translated 
because of spontaneous mutations in the coding or reg-
ulatory regions of a single copy gene with coding func-
tion [26]. Both duplicated and unitary pseudogenes are 
collectively called unprocessed pseudogenes. Processed 
pseudogenes are formed by the random integration of 
mRNA transcripts into cDNA and lose their normal 
functions due to improper insertion sites or sequence 
mutations [27, 28]. Secondly, pseudogenes can be classi-
fied based on their functions into pseudogenes that can 
be transcribed, pseudogenes that cannot be transcribed, 
and pseudogenes that can encode short-chain peptides 
or truncated proteins. These pseudogenes play important 
roles in carcinogenesis and cancer prognosis [29–31].

Centered on the ceRNA hypothesis, our research 
focused on pseudogenes that can be transcribed into 
mRNA. We used the pseudogene-miRNA-mRNA regu-
latory network to identify pseudogenes that may play 

(See figure on next page.)
Fig. 3  Regulatory pseudogene-miRNA-mRNA network and enrichment analysis of 148 miRNA target mRNAs. a Pseudogene-miRNA-mRNA 
network constructed by Cytoscape v-3.7.2. b 148 miRNA target mRNAs were divided into three functional groups: i.e., biological processes, cellular 
components, and molecular functions. Top five GO enriched terms are shown according to FDR values. c Top five KEGG pathways are shown 
according to the FDR values. GO Gene Oncology, FDR false discovery rate
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Fig. 4  Construction of protein–protein interaction network of 148 target genes of LDHAP5 using STRING v-11.0
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potential roles in common gynecological malignancies 
and to explore their related mechanisms.

The initial goal of our study was to discover pseudo-
genes that were differentially expressed in four common 
gynecological malignancies. However, we only found 
three and one significantly up-regulated pseudogenes 
that predicted poor prognosis in ovarian serous cystad-
enocarcinoma and uterine corpus endometrioid carci-
noma after Kaplan–Meier survival analysis. We selected 
LDHAP5 as the candidate pseudogenes as it had corre-
sponding miRNAs. There are two reasons accounting 
for the lack of pseudogenes. Firstly, many pseudogenes 

remain unidentified. Initially, pseudogenes were consid-
ered as “junk” or “fossil” DNA, and many methods were 
developed to avoid their detection [32–36]. The second 
possibility is that the current ceRNA hypothesis is not 
yet perfect, and further analysis is needed to build a more 
comprehensive regulatory network [37].

In our study, 148 potential target mRNAs were identi-
fied. Functional enrichment analysis showed the top five 
significantly enriched gene sets were MicroRNAs in can-
cer (hsa05206), Pathway in cancer (hsa05200), PI3K-AKT 

Table 2  The ten hub genes with their characters identified 
by cytoscape v-3.7.2

Gene name Betweenness unDir Closeness unDir Degree unDir

TP53 3022.961 0.006211 77

MYC 2046.146 0.005882 67

EGFR 999.453 0.005348 53

PTEN 813.2333 0.005348 53

HRAS 604.1613 0.005291 51

KRAS 636.6394 0.005208 48

SIRT1 272.0242 0.004808 37

TNF 406.4497 0.004808 36

RELA 260.4591 0.004785 35

CREB1 479.3882 0.004651 32

Fig. 5  Genetic mutation analysis of 10 hub genes in ovarian serous cystadenocarcinoma (TCGA, Nature 2011). Onco-Print of c-Bioportal displays 
mutation types and their corresponding proportions of 10 hub genes in ovarian serous cystadenocarcinoma. TCGA: The Cancer Genome Atlas

Table 3  Pearson correlation analysis between  LDHAP5 
and  ten hub genes expression in  ovarian serous 
cystadenocarcinoma using GEPIA

GEPIA Gene expression profiling interactive analysis

Gene names R P

TP53 − 0.022 0.65

MYC 0.0044 0.93

EGFR 0.16 0.00072

PTEN 0.098 0.043

HRAS 0.089 0.065

KRAS 0.0073 0.88

SIRT1 0.094 0.013

TNF 0.038 0.43

RELA 0.18 0.00013

CREB1 0.16 0.00094
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signaling pathway (hsa04151), Endocrine resistance 
(hsa01522), and Foxo signaling pathway (hsa04068). 
Interestingly, epithelial ovarian cancer, bladder cancer, 

lung cancer, and colorectal cancer were enriched in the 
MicroRNAs in cancer pathway (hsa05206). The PI3K-
AKT signaling pathway has been researched extensively 

Fig. 6  EGFR as the potential target gene of LDHAP5. a Expression levels of five candidate genes in TCGA ovarian samples (n = 594) using Oncomine 
Main database. b Prognostic values (overall survival) of five potential target genes in ovarian serous cystadenocarcinoma using Kaplan–Meier Plotter
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and plays an important role in a variety of cancers. Stud-
ies have shown that activated AKT mediates various 
downstream reactions, including cell survival, growth, 
proliferation, cell migration, and angiogenesis via phos-
phorylation of a range of intracellular proteins [38, 39]. 
More significantly, studies have shown that EGFR is dys-
regulated in many solid tumors, and PI3K-AKT signal-
ing can be used as a downstream regulatory pathway for 
EGFR to mediate the occurrence and progression of dis-
ease, as confirmed in many cancers [40, 41].

Our research has several limitations. Specially, our con-
clusions are primarily based on the analysis of existing 
databases. To further confirm the role of the LDHAP5 
pseudogene at the in vivo and in vitro level, we need to 
construct ovarian cancer cell lines that differentially 
express LDHAP5, with clinical pathological specimens 
from ovarian cancer patients also used to verify our find-
ings. EGFR antagonists (e.g., gefitinib, lapatinib, erlotinib) 
have been used in a variety of cancers, including pancre-
atic, small cell lung, and colorectal cancer [42–44]. Once 
our research is successfully validated, it may be used in 
ovarian cancer in the future. With continuing research, 
more pseudogene functions and corresponding mecha-
nisms will be revealed, which could help in the identifi-
cation of novel biomarkers, development of specific drug 
design, and the adoption of personalized treatment in the 
future.

Conclusions
This study is the first to report on the high expression 
of the LDHAP5 pseudogene in ovarian serous cystad-
enocarcinoma, which may lead to poor prognosis via its 
targeting of EGFR. Thus, LDHAP5 may serve as a new 
therapeutic target, and improve the prognosis of patients 
with ovarian cancer in the future.
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