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Abstract 

Background:  Aberrant DNA methylation patterns are involved in the pathogenesis of papillary renal cell carcinoma 
(pRCC). This study aimed to investigate the potential of methylation-driven genes as biomarkers in determining the 
prognosis of pRCC by bioinformatics analysis.

Methods:  DNA methylation and transcriptome profiling data were downloaded from The Cancer Genome Atlas 
database. Methylation-driven genes (MDGs) were obtained using MethylMix R package. A Cox regression model was 
used to screen for pRCC prognosis-related MDGs, and a linear risk model based on MDG methylation profiles was 
constructed. A combined methylation and gene expression survival analysis was performed to further explore the 
prognostic value of MDGs independently.

Results:  A total of 31 MDGs were obtained. Univariate and multivariate Cox regression analysis identified eight 
genes (CASP1, CD68, HOXD3, HHLA2, HOXD9, HOXA10-AS, TMEM71, and PLA2G16), which were used to construct a 
predictive model associated with overall survival in pRCC patients. Combined DNA methylation and gene expression 
survival analysis revealed that C19orf33, GGT6, GIPC2, HHLA2, HOXD3, HSD17B14, PLA2G16, and TMEM71 were signifi-
cantly associated with patients’ survival.

Conclusion:  Through the analysis of MDGs in pRCC, this study identified potential biomarkers for precision treatment 
and prognosis prediction, and provided the basis for future research into the molecular mechanism of pRCC.
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Background
Renal cell carcinoma (RCC), a common malignant tumor 
in the urinary system, accounts for 2–3% of human can-
cers [1]. Papillary renal cell carcinoma (pRCC) represents 
the second most common pathological subtype of RCC, 
accounting for 18.5% [2, 3]. According to morphological 

characteristics, pRCC is usually divided into two main 
subtypes: type 1 and type 2 [4]. Studies have proved 
that type 2 pRCC tumors are more aggressive and have 
a worse prognosis than clear cell renal cell carcinoma 
(ccRCC) [5]. Compared with ccRCC patients, patients 
with metastatic pRCC usually have a worse prognosis [6]. 
Currently, pathological and clinical grading and staging 
still act as the main prognostic factor [7]. In recent years, 
with the development of molecular biology technology 
and bioinformatics, new biomarkers have the potential to 
be used as prognostic factors for different types of cancer, 
including pRCC. For instance, some studies have found 
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that CYP4A11 expression is a potential poor prognostic 
factor for RCC [8], while others have detected long non-
coding RNAs that might serve as prognostic biomarkers 
for pRCC [9], and some alternative splicing events also 
correlate with pRCC prognosis [10]. Therefore, finding 
new molecular markers to predict the clinical outcome of 
pRCC is of great significance for understanding pRCC’s 
molecular pathological characteristics, prognosis, and 
treatment.

Epigenetic modification plays an essential role in the 
development of human cancer [11]. Methylation, one of 
the most important epigenetic modifications, is involved 
in many cellular processes, including cell differentiation, 
genome stability, and gene imprinting [12], and it inti-
mately relates with tumorigenesis [13]. Changes in DNA 
methylation can provide important evidence for the early 
diagnosis and prognosis of cancer, and offer new ideas 
for further clinical applications. Some previous studies 
have explored the relationships between methylation-
driven genes and the prognosis of certain cancers, such 
as esophageal squamous cell carcinoma [14], lung adeno-
carcinoma [15], and bladder cancer [16], but currently, 
there is no such report for pRCC.

The Cancer Genome Atlas (TCGA) is an open-source 
database on cancer genes [17], from which researchers 
around the world can obtain and analyze relevant data. 
MethylMix, an algorithm based on R programming [18, 
19], can identify disease-specific hypermethylated and 
hypomethylated genes. In this study, we extracted meth-
ylation and RNA expression data of pRCC patients from 
the TCGA database, obtained the methylation-driven 
genes related to pRCC using the MethylMix algorithm, 
and then constructed a Cox survival prediction model to 
evaluate the prognosis of pRCC, aiming at finding inde-
pendent prognostic biomarkers, and exploring the cor-
relation between abnormal DNA methylation and pRCC 
genome level to provide the scientific basis for personal-
ized diagnosis and treatment.

Methods
Data acquisition and analysis
We downloaded the methylation data and transcriptom-
ics data from KIRPs in the TCGA database. Methyla-
tion data were obtained from 276 tumor samples and 45 
adjacent non-tumor samples from the Illumina Human 
Methylation 450  k platform; transcriptome profile data 
were from 289 tumor samples and 32 adjacent non-
tumor samples without isoform expression and miRNA 
expression quantification. First, we normalized the 
downloaded data and analyzed the differences using the 
limma package of R software [20] to obtain differentially 
expressed genes (DEGs) and differentially methylated 
genes (DMGs), and then used the MethylMix package 

for integrated analysis. MethylMix is a statistical pack-
age of R software that can find methylation-driven genes 
by integrating DNA methylation data and RNA expres-
sion data. Using the MethylMix algorithm, we calculated 
the correlation between the gene methylation level and 
gene expression and obtained the methylation-driven 
genes after constructing a β-mixed model with a filtra-
tion of|logFC| > 0.5, P < 0.05, and Cor < − 0.3. TCGA data 
are publicly available without permission from the ethics 
committee.

Functional enrichment, pathway analysis, and genetic 
alteration analysis
After obtaining the methylation-driver genes, to further 
understand the biological functions of these selected 
genes, we conducted Gene Ontology (GO) analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis [21] using the clusterpro-
filer package of R software [22]. GO analysis includes 
the molecular function (MF), biological process (BP), 
and cellular component (CC) [23]. We set P < 0.05 as the 
cutoff and visualized the results using Goplot [24]. The 
cBio Cancer Genomics Portal (cBioPortal) is an essential 
online platform for analyzing cancer genomics data [25]. 
We used cBioPortal to investigate the genetic alterations 
of methylation-driven genes in pRCC patients (TCGA, 
PanCancer Atlas).

Prognostic model construction and survival analysis
To analyze the relationship between methylation-driven 
genes and prognosis, we conducted a survival analysis 
based on these methylation-driven genes via the sur-
vival package after combining the clinical data and prog-
nosis of pRCC in TCGA. Only patients with complete 
survival information were included. We screened the 
prognosis-related methylation-driven genes with P < 0.05 
and constructed a predictive model by multivariate Cox 
regression analysis. The risk score of each patient was cal-
culated based on the model. The patients were separated 
into high-risk and low-risk groups after obtaining the 
median risk score, and the time-dependent receiver oper-
ating characteristic (ROC) curve was used for testing. 
The Kaplan–Meier survival curve was used to evaluate 
the overall survival rate of patients in high and low-risk 
groups. The log-rank test was used to determine whether 
the overall survival rate differed between the high-risk 
group and the low-risk group. P < 0.05 was considered 
statistically significant. In addition, we performed joint 
survival analysis of the methylation-driven gene level and 
gene expression level in pRCC patients to further identify 
key genes related to prognosis, and obtain the patient’s 
joint survival curve via the survival R package.
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Results
Data acquisition and analysis
In the present study, the methylation data analyzed 
were collected from 321 samples, including 276 tumor 
samples and 45 non-tumor samples. Gene expression 
data were obtained from 321 samples, including 289 
tumor samples and 32 non-tumor samples. Both DEGs 
and DMGs were analyzed using the limma package of R 
software (Additional file 1). The data were then merged 
using the MethylMix package. Altogether, 31 meth-
ylation-driven genes were obtained (Table  1, Fig.  1). 
Figure  1 shows that four methylation-driven genes 
(ADAM28, AHNAK2, GIPC2, and GYPC) have sig-
nificant negative correlations between methylation and 
gene expression levels. 

Functional enrichment, pathway and genetic alteration 
analysis of methylation‑driven genes
GO enrichment analysis revealed that methylation-
driven genes were mainly enriched on multiple BP, MF, 
and CC terms (Fig. 2, Table 2). According to the P value 
from low to high, the top BP terms were cytolysis, the 
killing of cells of other organism, disruption of cells of 
other organism, and demethylation. In MF, the top terms 
were steroid dehydrogenase activity, anion transmem-
brane transporter activity, and oxidoreductase activity. In 
CC, Z disc, I band, and blood microparticle were the top-
ranking terms. Pathway enrichment analysis showed that 
genes were closely related to the taurine and hypotau-
rine metabolism pathway and Salmonella infection path-
way (Table  3). The cBioPortal tool was used to analyze 
31 methylated genes for genetic alterations. As shown 

Table 1  Methylation-driven genes

Gene Normal mean Tumor mean LogFC P value Cor Cor P value

AHNAK2 0.80029 0.416044 − 0.94379 5.37E − 24 − 0.57876 6.70E − 26

HRH1 0.544689 0.294975 − 0.88484 5.82E − 24 − 0.38988 2.22E − 11

HRG 0.522776 0.789381 0.59453 2.59E − 23 − 0.33909 8.47E − 09

JPH2 0.235062 0.112414 −1.06422 2.89E − 22 − 0.37387 1.62E − 10

SLC4A9 0.479872 0.713725 0.572717 6.78E − 22 − 0.35973 8.57E − 10

APOL1 0.477775 0.267652 − 0.83597 2.32E − 21 − 0.34269 5.75E − 09

CASP1 0.396953 0.210789 − 0.91317 2.67E − 20 − 0.49442 2.69E − 18

GGT6 0.426959 0.665606 0.64057 3.09E − 20 − 0.33194 1.80E − 08

RDH5 0.638209 0.320082 − 0.99559 3.66E − 20 − 0.42865 1.13E − 13

CD68 0.530169 0.367352 − 0.52929 3.72E − 20 − 0.35661 1.22E − 09

GCKR 0.765666 0.540347 − 0.50283 6.32E − 19 − 0.35733 1.13E − 09

APOBEC3C 0.185781 0.082609 − 1.16923 1.06E − 18 − 0.60805 4.30E − 29

LINC00944 0.831985 0.530775 − 0.64846 1.06E − 18 − 0.46232 6.47E − 16

C19orf33 0.437952 0.215921 − 1.02027 4.00E − 18 − 0.3937 1.36E − 11

CMTM3 0.342488 0.143439 − 1.25562 6.58E − 17 − 0.39415 1.28E − 11

ADAM28 0.74307 0.42393 − 0.80967 2.72E − 16 − 0.64063 4.68E − 33

HHLA2 0.662209 0.341074 − 0.9572 5.35E − 16 − 0.47839 4.46E − 17

HOXD9 0.480952 0.68171 0.503265 7.76E − 16 − 0.42839 1.18E − 13

HOXA10-AS 0.15125 0.098828 − 0.61395 1.25E − 15 − 0.45093 3.96E − 15

TTTY15 0.063782 0.192718 1.595264 1.47E − 14 − 0.38672 3.31E − 11

ZNF233 0.221283 0.434761 0.974332 8.90E − 14 − 0.4618 7.04E − 16

HOXD3 0.419182 0.655494 0.645008 9.57E − 14 − 0.33546 1.25E − 08

GIPC2 0.379961 0.229483 − 0.72747 1.00E − 13 − 0.5739 2.11E − 25

KDM5D 0.05324 0.237807 2.159199 1.34E − 13 − 0.32883 2.49E − 08

HSD17B14 0.303245 0.525014 0.791874 7.49E − 13 − 0.65209 1.45E − 34

SLC16A5 0.305615 0.45648 0.578838 1.11E − 10 − 0.61938 2.03E − 30

TMEM71 0.591421 0.308036 − 0.94109 1.60E − 10 − 0.65122 1.89E − 34

GYPC 0.310257 0.213077 − 0.54209 9.91E − 10 − 0.53728 6.78E − 22

IL12RB2 0.504344 0.315692 − 0.67589 1.25E − 08 − 0.50024 9.33E − 19

EIF1AY 0.108578 0.182552 0.74958 1.90E − 06 − 0.40683 2.40E − 12

PLA2G16 0.053717 0.088753 0.724419 3.68E − 06 − 0.36133 7.13E − 10
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in Fig.  3, RDH5 and HHLA2 were the most common 
altered genes. Of the 274 samples, 186 (68%) samples had 
genetic alterations, and the changes were mainly mRNA 
upregulation.

Prognostic model construction and survival analysis
A total of 14 genes related to pRCC prognosis were 
detected using univariate Cox regression analysis. Next, 
we selected the linear combination of the methylation 
of the eight genes to construct the predictive model via 
multivariate Cox regression analysis. The relative coeffi-
cients weighted in the multivariate Cox regression were 
as follows: survival risk score = (−5.8122) × methyla-
tion value of CASP1 + (−7.457) × methylation value of 
CD68 + 1.9948 × methylation value of HHLA2 + 2.988 × meth-
ylation value of HOXD9 + 4.6693 × methylation 
value of HOXA10-AS + (−1.6449) × methylation 
value of HOXD3 + 1.4863 × methylation value of 

TMEM71 + 5.4692 × methylation value of PLA2G16 
(Table 4). Among these genes, the methylation levels of 
CASP1, CD68, and HOXD3 negatively correlated with 
a risk score, and the remaining five positively correlated 
with a risk score. The Kaplan–Meier survival curve 
indicated a statistical difference in survival between 
the high and low-risk groups (Fig.  4). The ROC curve 
in a risk scoring model was used to evaluate its pre-
dictive performance. The area under the curve (AUC) 
of the prognostic risk assessment model for the eight 
methylation-driven genes was 0.835 at 3 years of over-
all survival (Fig. 5), suggesting the model is able to pre-
dict the prognostic risk in pRCC patients. Meanwhile, 
we also recorded patient’s risk score, survival status, 
and methylation of eight genes (Fig.  6). After adjust-
ing parameters, including age, gender, and pathologi-
cal stage, the risk score was found to be an independent 

Fig. 1  Identification of methylation-driven genes in pRCC. a Heat map of methylation-driven genes in pRCC. The color from green to red shows a 
trend from hypomethylation to hypermethylation. b–e The correlation between methylation and gene expression in methylation-driven genes. f–i 
The methylation degree when comparing cancer samples to normal samples in pRCC. The histogram represents the distribution of methylation in 
tumor samples. The black line above the figure demonstrates the distribution of methylation levels in normal samples
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Fig. 2  Functional enrichment analysis of methylation‑driven genes in pRCC. a The circle indicates the correlation between the top 11 
methylation‑driven genes and their gene ontology terms. b The outer circle represents the expression (logFC) of methylation‑driven genes 
in each enriched GO (gene ontology) term: red dots on each GO term indicate upregulated methylation‑driven genes and blue dots indicate 
downregulated methylation‑driven genes. The inner circle indicates the significance of GO terms (log10‑adjusted P values)

Table 2  Functional enrichment analysis of methylation-driven genes associated with papillary renal cell carcinoma

If there were more than five terms in this category, the first five terms were selected based on the P value

Category ID Term P value

BP GO:0019835 Cytolysis 0.001519

BP GO:0031640 The killing of cells of other organism 0.00361

BP GO:0044364 Disruption of cells of other organism 0.00361

BP GO:0070988 Demethylation 0.004578

BP GO:0048704 Embryonic skeletal system morphogenesis 0.007946

CC GO:0030018 Z disc 0.013994

CC GO:0031674 I band 0.016283

CC GO:0072562 Blood microparticle 0.017152

CC GO:0061702 Inflammasome complex 0.019008

CC GO:0043034 Costamere 0.025712

MF GO:0033764 Steroid dehydrogenase activity, acting on the CH-OH group of donors, NAD 
or NADP as acceptor

0.0007

MF GO:0016229 Steroid dehydrogenase activity 0.00102

MF GO:0008509 Anion transmembrane transporter activity 0.00949

MF GO:0016616 Oxidoreductase activity, acting on the CH-OH group of donors, NAD or 
NADP as acceptor

0.011235

MF GO:0016614 Oxidoreductase activity, acting on CH-OH group of donors 0.012911
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predictor using multivariate Cox regression analysis 
(Fig.  7). Joint survival analysis of gene expression and 
methylation showed that methylation and expres-
sion of C19orf33, GGT6, GIPC2, HHLA2, HOXD3, 
HSD17B14, PLA2G16, and TMEM71 were significantly 
correlated with the prognosis of pRCC patients (Fig. 8). 
Hypermethylation and low expression of HOXD3 
and HSD17B14 indicate high survival, while hyper-
methylation and low expression of C19orf33, GGT6, 
GIPC2, HHLA2, PLA2G16, and TMEM71 suggests low 
survival.

Discussion
The molecular mechanism of pRCC tumorigenesis 
remains unclear. In-depth research on the molecu-
lar pathogenesis of pRCC, as well as early detection of 
prognostic markers and specific driven genes for the 
disease, is of great significance for improving patient 
prognosis and developing new drugs. Epigenetics refers 
to the phenomenon of heritable and reversible changes in 
gene expression caused by non-DNA sequence changes. 
Increasing studies show that epigenetic modification 
closely relates to the occurrence and development of 
cancer [26]. Because epigenetic changes are reversible, 
they have more potential as new therapeutic targets than 
mutations in the DNA sequence. Multiple studies dem-
onstrate the correlation between epigenetic changes and 
tumor prognosis, which indicates that they may be a fac-
tor in predicting tumor prognosis. For instance, Zhang 
et al. [27] found that the reduced expression of ZNF671 
caused by hypermethylation is associated with poor 
prognosis in multiple solid tumors. Gao et al. [28] estab-
lished a predictive risk model assessing the prognosis of 
patients with lung squamous cell carcinoma by studying 
the abnormal methylation sites of key genes with a poor 
prognosis. Therefore, it is necessary to explore the rela-
tionship between pRCC-related epigenetic changes and 
the patient’s prognosis.

In this study, we found DEGs and DMGs between 
tumor samples and adjacent non-tumor samples, and 
further identified prognostic biomarkers associated 
with methylation-driven genes. We analyzed methyla-
tion and gene expression using the MethylMix package 
and detected 31 methylation driven-genes. GO analysis 
indicates that the methylation-driven genes in pRCC are 

mainly enriched in steroid dehydrogenase activity, anion 
transmembrane transporter activity, and oxidoreductase 
activity in MF. In CC, these genes are enriched on the 
Z disc and I band. In addition, in BP, enrichment is pri-
marily seen in the regulation of cytolysis and demethyla-
tion. Pathway enrichment shows that methylation-driven 
genes closely relate to taurine and hypotaurine metabo-
lism. These terms reflect gene-to-gene interactions at 
the functional level and indicate that gene dysfunction 
may be due to abnormal DNA methylation in different 
samples.

To further investigate the relationship between 
methylation-driven genes and patients with pRCC, we 
analyzed the relationship between abnormal DNA meth-
ylation and patient’s survival via the survival R package. 
Eight candidate genes were identified from 31 methyla-
tion-driven genes and a predictive risk model was con-
structed. Using this risk model, we successfully divided 
the pRCC samples into high-risk and low-risk groups. 
As shown in Fig. 4, the 4-year survival rate in the high-
survival group was nearly 90%, while that of the low-
survival group was about 70%. Survival after 8 years in 
the high-survival group was about 70%, while survival 
in the low-survival group was only about 40%. Survival 
analysis showed a significant difference in overall sur-
vival between the two groups. The results show that a risk 
model consisting of eight methylation-driven genes can 
effectively predict the prognosis of patients with pRCC. 
Furthermore, the results also showed that the AUC of 
the ROC curve of eight gene signatures predicting 3-year 
survival was 0.835. Multivariate Cox analysis showed that 
the model’s risk score might be used as an independent 
prognostic factor for pRCC. We found good performance 
in the pRCC patients’ survival prediction using the risk 
assessment model constructed by the eight gene signa-
tures, but further research is necessary to validate these 
findings. These methylation-driven genes can serve as 
effective biomarkers or drug targets for early diagnosis 
and prognosis of pRCC patients. However, the influence 
of abnormal methylation data on patient survival is not 
comprehensive. Therefore, we combined methylation-
driven genes and corresponding gene expression data 
with patient survival for an integrated analysis. The 
results found that C19orf33, GGT6, GIPC2, HHLA2, 
HOXD3, HSD17B14, PLA2G16, and TMEM71 signifi-
cantly correlated with prognosis. Hypermethylation and 
low expression of HOXD3 and HSD17B14 led to high 
survival, while hypermethylation and low expression 
of C19orf33, GGT6, GIPC2, HHLA2, PLA2G16, and 
TMEM71 led to low survival.

HHLA2 is involved in the regulation of T cells [29, 
30]. Byers et  al. [31] found that HHLA2 expression is 
downregulated or deleted in pancreatic cancer tissues, 

Table 3  Pathway analysis of  methylation-driven genes 
associated with papillary renal cell carcinoma

ID Pathway P value

hsa00430 Taurine and hypotaurine metabo-
lism

0.016365

hsa05132 Salmonella infection 0.039306
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which may contribute to the immune escape of pancre-
atic cancer. In a colorectal cancer study [32], HHLA2 
expression in cancer tissues was higher than in adja-
cent tissues, and the expression level was significantly 

associated with the depth of invasion and CD8 + T 
cell infiltration status and could predict high mortality 
rates. This may be related to the specificity of different 
tumors. Our study found that the hypermethylation of 
HHLA2 leads to a poor prognosis. We speculate that 

Fig. 3  The genetic alteration of 31 genes in pRCC patients using the cBioPortal database
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the low expression caused by HHLA2 hypermethyla-
tion mediates the immune escape of pRCC.

HOXD3 mainly plays a role in regulating cell prolif-
eration and differentiation in the body [33, 34]. Other 
studies observed that HOXD3 overexpression serves as 
an independent risk factor for poor prognosis of breast 
cancer [35]. Joint survival analysis showed that over-
expression of HOXD3 was associated with poor prog-
nosis in patients with pRCC. This may occur because 
HOXD3 can regulate the downstream transfer of related 
molecules and adhesion molecules, such as integrin β3, 
urokinase plasminogen activator, and matrix metallopro-
teinases, and subsequently induce tumor angiogenesis, 
regulate tumor cell apoptosis, and enhance tumor cell 
invasion and metastasis [36]. PLA2G16 is a tumor sup-
pressor gene that can induce programmed cell death [37] 
and inhibit cell migration and invasion [38]. Jarrard et al. 
[39] observed that PLA2G16 methylation in urine and 
prostate tissues can detect the presence of prostate can-
cer, indicating that downregulation of the PLA2G16 gene 
may play an important role in multifocal prostate car-
cinogenesis. In our study, we observed that a high level 
of PLA2G16 gene methylation was associated with low 
survival in patients with pRCC.

A study by Wang et al. [40] showed that TMEM71 acts 
as an oncogene in glioblastoma multiforme and is asso-
ciated with an immune response. Joint survival analy-
sis observed that hypermethylation and low expression 
of TMEM71 were associated with poor prognosis in 
patients with pRCC. CASP1 belongs to the cysteinyl 
aspartate-specific proteases family and plays an impor-
tant role in the processes of inflammatory response [41] 
and cell pyroptosis [42]. In the risk model, the methyla-
tion level of CASP1 was negatively correlated with the 
risk score, indicating that the high expression of CASP1 
was a high-risk factor, which might be related to CASP1’s 
activation of IL-1β, inducing inflammation and immu-
nosuppression to promote tumor growth and metasta-
sis [43]. CD68 is a widely used macrophage marker that 
can be used to assess the extent of macrophage infiltra-
tion in tumor tissue [44]. The risk model showed that the 
expression level of CD68 was positively correlated with 
the risk score, which was consistent with the current lit-
erature reports [45], suggesting that tumor-associated 
macrophages might be involved in tumor progression in 
pRCC.

Currently, there are no studies on the role of HOXA10-
AS in pRCC. Some studies have shown that high expres-
sion of HOXA10-AS in lung adenocarcinoma [46] and 
glioma [47] can promote tumor progression. According 
to the risk model, hypermethylation and low expres-
sion of HOXA10-AS can increase patient survival risk, 
which may be related to the heterogeneity of different 

Table 4  Multivariate Cox regression analysis of  8 genes 
associated with  overall survival in  papillary renal cell 
carcinoma patients

ID Coef HR (95%CI) P value

CASP1 − 5.8122 0.002991 (9.19E − 06 − 0.973672) 0.048953

CD68 − 7.45701 0.000577 (1.00E − 05 − 0.033249) 0.000311

HHLA2 1.994774 7.350543 (0.931728 − 57.98953) 0.058376

HOXD9 2.988006 19.84608 (1.03704 − 379.7992) 0.047243

HOXA10-AS 4.66935 106.6284 (4.150071 − 2739.618) 0.004814

HOXD3 − 1.64487 0.193038 (0.030944 − 1.204217) 0.078236

TMEM71 1.486315 4.420773 (1.056385 −18.50011) 0.041844

PLA2G16 5.469168 237.2627 (19.32855 − 2912.458) 1.91E − 05

Fig. 4  Kaplan–Meier curve analysis for OS (overall survival) of pRCC 
patients using the 8 genes signatures

Fig. 5  Time-dependent ROC curves analysis for 3-year survival 
prediction by methylation-driven genes



Page 9 of 12Liu et al. Cancer Cell Int          (2020) 20:235 	

Fig. 6  Methylation-driven genes risk score analysis of pRCC. a Rank of risk score and distribution of groups. b The survival status of pRCC patients in 
different groups. c Heatmap of methylation profiles of the 8 key methylation-driven genes. The color from green to red shows an increasing trend 
from low levels to high levels

Fig. 7  Univariate and multivariate analyses of overall survival in pRCC patients of TCGA a Univariate analysis, b Multivariate analysis
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types of tumors. Kishibuchi et  al. [48] found that pro-
moter methylation of HOXD9 was significantly higher in 
thymic carcinoma than in thymoma and the thymus, and 
relapse‑free survival was significantly worse in tumors 
with a higher DNA methylation of HOXD9 in all of the 
thymic epithelial tumors. Similar to the results of this 
study, hypermethylation of HOXD9 was positively cor-
related with high risk score. However, the specific role 
of HOXD9 methylation in tumor progression needs to 
be further studied. These genes may become new targets 
for treating and improving the prognosis of patients with 
pRCC.

Currently, few studies on pRCC abnormal methyla-
tion genes have been reported. Compared with previous 
studies, we conducted a more comprehensive analysis of 
the methylation-driven genes in pRCC using the Methyl-
Mix algorithm. In addition, we analyzed the correlation 
between abnormal methylation sites and gene expression, 
providing accurate targets for further experimental veri-
fication. Our research subjects were retrieved from the 

TCGA database, which is an important tool for analyzing 
prognostic biomarkers. Although we have investigated 
the relationship between epigenetic changes and pRCC, 
the prediction of gene signatures for prognosis still needs 
to be verified by molecular biology experiments based on 
clinical samples in the future, and its specific molecular 
mechanism in pRCC requires further testing.

Conclusion
Using the transcriptome profile data and genomic meth-
ylation data of pRCC patients in the TCGA database, 
this study obtained 31 pRCC-related methylation-driven 
genes and constructed a prognostic survival model 
with eight methylation-driven genes (CASP1, CD68, 
HOXD3, HHLA2, HOXD9, HOXA10-AS, TMEM71, 
and PLA2G16). These eight genes may be involved in 
various processes related to pRCC, such as immune 
escape, inflammatory response, apoptosis and cell migra-
tion. Additionally, these genes have the potential to be 
markers or drug targets for early diagnosis and protocol 

Fig. 8  Kaplan–Meier survival curves for the joint survival analysis
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evaluation of pRCC. Although further experimental veri-
fication is needed, our findings provide essential bioin-
formatics and related theoretical foundations for future 
pRCC studies.
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