
Ashrafizadeh et al. Cancer Cell Int          (2020) 20:277  
https://doi.org/10.1186/s12935-020-01349-x

REVIEW

Flaming the fight against cancer cells: 
the role of microRNA‑93
Milad Ashrafizadeh1  , Masoud Najafi2  , Reza Mohammadinejad3  , Tahereh Farkhondeh4   
and Saeed Samarghandian5* 

Abstract 

There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have 
been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making 
resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsi-
ble for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that 
affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation 
of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. 
Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. 
MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show 
how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or 
oncosuppressor function of miR-93.
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Introduction
Cancer is defined as a process that cells undergo uncon-
trolled proliferation due to abnormal alterations in 
genetic material. It seems that both internal and exter-
nal factors are involved in generation of cancer [1]. It 
has been demonstrated that the enhanced proliferation 
of cancer cells continues in spite of inhibition of external 
or internal factors [2]. Accumulating data demonstrates 
that genetic alterations are mainly responsible for the 
generation of cancer [3]. During cell proliferation, there 
are certain points that regulate cell division. Induction 
of cancer results in lack of response to these modulators 
[4, 5]. This nonstop proliferation produces benign and 
malignant tumor cells that would compete for nutritional 
sources with normal cells [6]. The metastasis nature of 

cancer cells defines them as malignant or benign. Can-
cer cells are capable of moving to the various organs and 
tissues of body via lymphatic chain. This mechanism is 
known as metastasis. The malignant tumor cells are able 
to significantly invade other tissues and organs while 
benign tumor cells are restricted to a certain location [7, 
8]. In respect to the potential role of genetic alterations 
in induction of cancer, investigation of genetic material 
reveals that microRNAs (miRs) play a remarkable role in 
cancer progression and migration [9–12].

MiRs are short non-coding RNA molecules with the 
length of 19–24 nucleotide bases capable of gene regu-
lation at the post-transcriptional level [13, 14]. After the 
discovery of miRs in 1993 in Caenorhabditis elegans, 
much attention was made towards them to identify and 
determine their location in genome [15–17]. It appears 
that this focus on miRs emanates from their criti-
cal role in regulation of important biological processes 
including programmed cell death (both apoptosis and 
autophagy) [18, 19], cell growth and division [20, 21], cell 
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differentiation [22, 23] and metabolism [24]. A growing 
body of evidence demonstrates that miRs recognize their 
target genes by binding to the 3′-untranslated region [25–
27]. Based on the role of miRs in biological processes, 
abnormal expression of miRs is associated with develop-
ment of a number of pathologic events such as cancer 
[28, 29], cardiovascular diseases [30, 31] and neurologi-
cal disorders (NDs) [32, 33]. The alteration in expression 
leads to the application of miRs as biomarkers for iden-
tification of various pathological conditions, particularly 
cancer. For instance, miR-141 is one of the potential miRs 
involved in suppressing the malignancy and invasion of 
laryngeal cancer cells that undergo down-regulation in 
this cancer [34]. MiR-132 is capable of significant reduc-
tion in the viability and proliferation of renal carcinoma 
cells [35]. These studies highlight this fact that identifica-
tion of miRs and their subsequent targeting is a promis-
ing strategy in treatment of cancer as a life-threatening 
condition [36].

Biogenesis of microRNAs
It seems that a number of stages should be performed to 
produce a mature miR from a long primary transcript. 
First of all, RNA polymerase II/III synthesizes a hairpin 
structure known as primary-miR (pri-miR) [37]. Next, 
RNase III family enzymes (Dicer and Drosha) use pri-
miR as a substrate to produce precursor-miR (pre-miR) 
with a length of about 70 nucleotide bases [38]. After 
the translocation of pre-miR into cytoplasm via Expor-
tin-5 (Exp5), Dicer enzymes lead to the formation of a 
short mature miR [39]. This mature miR is not active and 
should follow a variety of other stages to be activated. 
The entering of mature miR into miR-induced silenc-
ing complex (miRISC) by transactivation-responsive 
RNA-binding protein (TRBP) results in the interaction 
between DICER and Argonaute (Ago) proteins. Now, the 
mature miR is active and miRISC complex chooses a sin-
gle strand of mature miR to bind to the target gene lead-
ing to the translation inhibition or degradation [40, 41].

MicroRNA and cancer development
Cancer progression is caused by several changes in 
oncogenes and tumor-suppressor genes during several 
years [42]. Numerous studies have indicated a main role 
for miRNAs in the cancer pathogenesis [42]. miRNAs 
can affect cancer progression through regulation of cell 
growth and apoptosis [42]. The miRs are used as bio-
markers for assessing cancer prognosis and drug efficacy 
[42]. Many miRs act as oncogenes or tumor suppressors 
in the cancers process [42]. Thus, the increasing knowl-
edge on these miRs helps us in cancer therapy [42].

Expression alteration of microRNAs in cancer
Overall, miRs are divided into two major categories 
known as oncosuppressor and oncogenesis miRs. As 
it is obvious, oncosuppressor miRs are involved in sup-
pressing the migration and invasion of cancer cells, 
whereas oncogenesis miRs contribute to the progres-
sion and proliferation of cancer cells [42]. There is the 
third type of miRs known as apoptomiR that can regu-
late the apoptotic cascade in cancer cells [43]. In tumor 
cells, the expression of these miRs undergoes altera-
tions. It has been demonstrated that tumor cells are 
able to enhance the expression of oncogenesis miRs and 
reduce the expression prolife of oncosuppressor miRs to 
ensure their malignancy and invasion [44–47]. MiR-152 
is an oncosuppressor miR that enhances the potential of 
chemotherapy by sensitizing cancer cells to apoptotic cell 
death [48]. MiR-205-5p is another oncosuppressor miR 
involved in inhibition of proliferation of breast cancer 
cells [49]. It is held that the down-regulation of oncosup-
pressor miRs occurs during cancer growth and metasta-
sis [50, 51].

MicroRNA‑93: a brief introduction
Accumulating data demonstrates that miR-93 plays a 
significant role in both physiological and pathological 
conditions. Several studies have been conducted to show 
the down-regulation/upregulation of miR-93 in diseases 
and health. A recent study shed some light on the role 
of miR-93 in NDs. It is held that miR-93 contributes to 
the inflammation by affecting the proliferation of micro-
glia and blood levels of miR-93 are considered as reliable 
indexes for diagnosis and prediction of functional recov-
ery of acute ischemic stroke [52, 53]. The upregulation 
of miR-93 occurs in cerebral cortex and hippocampus 
after transient brain injury [54, 55]. These alterations 
show the potential of miR-93 of being used as a prog-
nosis signature of transient brain injury [56]. Besides, 
the expression of miR-93 elevates in the postischemic 
brain [57]. In respect to the involvement of miR-93 in 
ischemic injury, application of miR-93 inhibitor is associ-
ated with attenuation of the injury by enhancing the anti-
oxidant defense system through nuclear factor erythroid 
2-related factor 2 (Nrf2) signaling pathway [58]. A grow-
ing body of evidence exhibits that miR-93 predisposes to 
immune system disorders by stimulation of secretion of 
cytokines, chemokines and growth factors [59, 60]. Fur-
thermore, miR-93 is able to reduce the expression of sig-
nal transducer and activator of transcription 3 (STAT3) 
to suppress neuroinflammation and consequently, NDs 
[61]. MiR-93 involves in amelioration of cardiovascu-
lar diseases. It appears that miR-93 considerably pro-
motes perfusion recovery and angiogenesis resulting 
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in improvement of peripheral arterial diseases [62, 63]. 
MiR-93 also is capable of targeting macrophages (mac-
rophage M2 polarization) in elevating angiogenesis and 
arteriogenesis in PAD [64]. Pharmacological and genetic 
manipulations of miR-93 are of importance in treatment 
of pathological conditions [65, 66]. Taking everything 
into account, it seems that miR-93 has an efficient role in 
preserving health condition and its abnormal expression 
is associated with pathologic events. In the next sections, 
we discuss the impact of miR-93 expression in cancer 
cells.

MiR‑93 in cancer malignancy
Lung cancer
Lung cancer is one of the most challenging problems 
worldwide with high morbidity and mortality [67]. In 
spite of huge advancement in diagnosis and treatment of 
lung cancer, the patients with this life-threatening disor-
der still have a low 5-year survival rate [68, 69]. In respect 
to the involvement of genetic factors in generation of 
lung cancer, targeting miRs is of importance in its treat-
ment. Circular RNAs (circRNAs) are a kind of transcripts 
which produce a covalently closed continuous loop [70, 
71]. It is held that circRNAs are able to sponge miRs that 
is due to their miRNA target sites such as Ago2 protein 
[72–75]. Based on the vital role of circRNAs in regula-
tion of biological processes, they are of interest in treat-
ment of pathological conditions, particularly cancer [52, 
76–79]. In the case of lung cancer, circCRI-M1 remark-
ably diminishes the invasion and malignancy of tumor 
cells. Due to the Ago2 protein, this circRNA is capable of 
sponging the miR-93 that in turn, enhances the expres-
sion of leukemia inhibitory factor receptor, as a tumor 
suppressor leading to the reduced metastasis and viabil-
ity of lung cancer cells [80]. As one of the potential tar-
gets of circRNAs, miR-93-5p is affected by circRNF13 in 
lung cancer cells. CircRNF13 is capable of reducing the 
proliferation and viability of lung cancer cells by down-
regulation of miR-93-5p through interacting with Ago2 
[81]. Non-small cell lung cancer (NSCLC) is responsi-
ble for more than third-to-fourth of lung cancers [82]. 
Although much improvement has been made in the diag-
nosis and treatment of this life-threatening disorder, it is 
still one of the leading causes of death. MiR-93-5p acts 
as a biomarker in NSCLC. The expression of this miR 
suggested to be higher in NSCLC patients compared to 
the healthy ones. Besides, its high expression is associ-
ated with poor prognosis and low survival of patients 
with NSCLC. This is due to the stimulatory impact of 
miR-93-5p on the migration, proliferation, and inva-
sion of NSCLC cells [83]. Based on the role of PI3K/Akt 
pathway in cancer progression, this molecular pathway 
is considered as a downstream mediator of miR-93. In 

order to elevate the malignancy and invasion of NSCLC 
cells, miR-93 downregulates the expression of tumor sup-
pressor genes including LKB1, PTEN and CDKN1A to 
stimulate PI3K/Akt signaling pathway and subsequently, 
ensure the migration and proliferation of these tumor 
cells [84]. Neural precursor cell expressed developmen-
tally downregulated gene 4-like (NEDD4L) is considered 
as a NEDD4-like E3 ubiquitin ligase [85]. The main func-
tion of NEDD4L is the regulation of ion channel recep-
tors and transporters [86, 87]. However, accumulating 
data demonstrates that NEDD4L is capable of modula-
tion of a number of signaling pathways such as tumor 
growth factor-β (TGF-β) [88–91]. It is held that NEDD4L 
undergoes down-regulation in lung cancer [88]. MiR-93 
prevents the expression of NEDD4L to stimulate EMT 
via TGF-β upregulation [92]. Wnt signaling pathway is 
suggested to be involved in the modulation of cell prolif-
eration and cell differentiation [93, 94]. These important 
roles have made Wnt signaling pathway as a vital target in 
cancer therapy [95, 96]. Zinc and ring finger 3 (ZNRF3) is 
an inhibitor of Wnt signaling pathway [97]. In lung carci-
noma, ZNRF3 reduces the expression of Wnt pathway to 
inhibit the proliferation of tumor cells. Given the role of 
miR-93 as an oncogenesis miR, this miR inhibits ZNRF3 
to ensure the viability of tumor cells [98]. MiR-93 is a bio-
marker of NSCLC as its expression elevates in the tissues 
of patients with NSCLC [99].

The disabled homolog 2 (DAB2) is a tumor suppressor 
gene encoding a mitogen-responsive phosphoprotein. 
The expression of DAB2 undergoes down-regulation 
in various cancers and lung cancer is among them [62, 
100–104]. Based on the role of miR-93 in enhancing the 
malignancy of lung cancer cells, this miR downregulates 
the expression of DAB2 to promote the proliferation and 
malignancy of these tumor cells [105].

Esophageal cancer
Esophageal cancer [106] is one of the most malignant 
cancers and claim the seventh place among other malig-
nant tumors [107]. Both environmental and genetic fac-
tors contribute to the progression of EC [108, 109]. It has 
been demonstrated that miRs can promote the prolifera-
tion and viability of EC cells [110]. Hence, manipulation 
of miRs can reduce the malignancy of EC cells. A syn-
thetic circRNA resistant to the digestion with RNase R, 
suppressed the expression of miR-93 as an oncogenesis 
miR in EC and resulted in diminished proliferation and 
migration, and enhanced apoptosis of tumor cells [111]. 
PTEN plays a significant role in modulation of cell cycle 
and proliferation. It seems that PTEN exerts an anti-
tumor impact since its expression undergoes down-regu-
lation during cancer progression [112, 113]. Investigation 
of molecular pathways demonstrates that miR-93-5p 
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enhances the malignancy and proliferation of EC cells by 
down-regulation of PTEN/PI3K/Akt axis and its down-
stream targets p21 and cyclin D1 [114]. MiR-93 can be 
considered as a potential biomarker of EC as its expres-
sion enhances in EC cells [115].

Osteosarcoma
Osteosarcoma (OS) is a malignant tumor among ado-
lescents [116]. The capability of OS cells in metastasis to 
neighboring cells and tissues leads to the high death and 
minimal 5-year survival rate among the patients [117, 
118]. Long non-coding RNAs (lncRNAs) are another 
member of non-coding RNAs with the ability of regulat-
ing miRs [119, 120]. It seems that the enhanced expres-
sion of lncRNA AWPPH is associated with upregulation 
of miR-93-3p and subsequently, an increase occurs in the 
viability and proliferation of OS cells [121]. By induction 
of miR-93-3p/FZD7 axis, lncRNA AWPPH upregulates 
the expression of Wnt/β-catenin signaling pathway to 
enhance the migration and invasion of tumor cells [121].

Cervical cancer
Cervical cancer is at the second place after breast cancer 
among gynecological malignancies and negatively affects 
the women’s health [122]. Fortunately, we have witnessed 
a remarkable decrease in the incidence rate of cervical 
cancer due to the powerful tools in diagnosis and fur-
ther therapy of this disorder [123, 124]. B cell transloca-
tion gene 3 (BTG3) inhibition is a promising strategy by 
tumor cells to decrease the efficacy of radiotherapy [125]. 
Moreover, BTG3 is considered as a tumor suppressor and 
its inhibition enhances the malignancy of cervical can-
cer cells [126]. There is a reverse relationship between 
miR-93 and BTG3 expression in cervical cancer cells. By 
down-regulation of miR-93-5p, an increase occurs in the 
expression profile of BTG3 to stimulate apoptosis and 
reduce proliferation and metastasis [127].

Brain tumors
It is held that miR-93 can be used as a prognostic sig-
nature of primary central nervous system lymphoma 
(PCNSL). This is due to the impact of this miR on the 
various genes. It appears that miR-93 is able to affect a 
number of factors such as programmed cell death 1 
ligand 2 (PDCD1LG2) associated with cancer immuno-
therapy, G-protein coupled receptor 137C (GPR137C) 
and mitogen-activated protein kinase 2 (MAPK2). Inves-
tigation of miR-93 expression prolife reveals that patients 
with low expression of miR-93 have poor prognosis that 
is maybe due to its impact on PDCD1LG2. This study 
demonstrates that miR-93 can be considered as a reli-
able biomarker for prediction of prognosis of patients 
with PCNSL [128]. Gliomas are one of the most common 

malignant tumors of brain with high aggressiveness 
[129, 130]. The World Health Organization (WHO) has 
divided gliomas into four grades (I, II, III and IV) and 
it has been shown that grade IV is more common com-
pared to the other grades [131]. Genetic alterations are 
partially responsible for the generation and progres-
sion of gliomas. LncRNA MEG3 involves in induction 
of apoptotic cell death in glioma cells and reducing their 
proliferation and viability by down-regulation of miR-93 
[132]. As a downstream target of PTEN, PI3K/Akt sign-
aling pathway is affected by miR-93 to ensure the malig-
nancy of glioma cells. It is held that the expression of 
miR-93 undergoes upregulation in the tissues of patients 
with gliomas and is associated with clinicopathologic 
grade and overall survival of patients. The activated miR-
93 inhibits PTEN, PH domain leucine rich repeat protein 
phosphatases (PHLPP) and forkhead box O3 (FOXO3) 
by targeting 3/-UTR. The inactivation of these pathways 
leads to the induction of PI3K/Akt that significantly 
enhances the malignancy of glioma cells [133].

Prostate cancer
Bioinformatics analysis shows that miR-93-5p functions 
as an oncogensis miR during prostate cancer progression. 
Accumulating data demonstrates that suppressing the 
expression of miR-93-5p is associated with a decrease in 
proliferation, migration and invasion of prostate cancer 
cells, while an increase occurs in apoptosis [134]. Disa-
bled homolog 2 (DAB2) participates in modulation of 
cancer progression by targeting a number of molecular 
pathways such as Akt and ERK1/2. It has been reported 
that stimulation of Akt and ERK1/2 remarkably elevates 
the malignancy and proliferation of prostate cancer cells 
and exerts anti-apoptotic impact [135–137]. Based on 
the role of miR-93 in enhancing the malignancy of tumor 
cells, this miR reduces the expression of DAB2 to upreg-
ulate Akt and ERK1/2 signaling pathways [138]. On the 
other hand, great tea (Camellia sinensis) has high anti-
tumor activity [139]. It seems that inhibition of miR-93 
and simultaneous administration of great tea is a poten-
tial strategy in treatment of prostate cancer, since great 
tea upregulates the expression of DAB2 to inhibit Akt 
and ERK1/2 signaling pathways [138]. It is held that the 
expression of miR-93 is higher in tumor cells compared 
to the normal cells making it an appropriate prognos-
tic signature [140]. There a number of genes that are 
affected by miR-93 and TGFBR2, ITGB8 and LATS2 are 
among them. Accumulating data demonstrates that these 
three genes are responsible for proliferation and inva-
sion of cancer cells [141–143]. As an oncogenesis miR, 
miR-93 elevates the proliferation, invasion and metasta-
sis of prostate cancer cells by enhancing the expression 
of TGFBR2, ITGB8 and LATS2 [144]. Capicua (CIC) is 
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a HMG box-containing transcriptional repressor that 
plays a significant role in preservation of homeosta-
sis [145–147]. Interestingly, studies have revealed the 
potential role of CIC in pathogenesis of different cancers 
[148–150]. However, CIC reduces the proliferation and 
malignancy of prostate cancer cells. As an oncogenesis 
miR, miR-93 activates miR-106b/miR-375 to downregu-
late CIC-CRABP1 leading to the enhanced proliferation 
and migration of prostate cancer cells [151].

Hepatocellular carcinoma
A growing body of evidence demonstrates that hepato-
cellular carcinoma cell (HCC) is a public health difficulty 
in both developing and developed countries [152, 153]. 
It is held that the deregulation of lncRNAs is respon-
sible for generation of cancers, particularly HCC and 
contributes to their malignancy [154–158]. Besides, the 
resistance of HCC cells to chemotherapy reduces the 
efficiency of anti-tumor drugs. Expression investigation 
of lncRNA SNHG16 in both HCC cell lines and tissue 
revealed the minimal expression of SNHG16. Enhanc-
ing the expression of lncRNA SNHG16 demonstrated 
the reduced expression of miR-93 that in turn dimin-
ishes tumor growth in vivo and suppresses 5-fluorouracil 
(5-FU) resistant [159]. Multiple studies have shed some 
light on the impact of lncRNA LINC00472 in cancer 
malignancy. It seems that upregulation of this lncRNA 
diminishes the viability and proliferation of breast cancer 
cells and its low expression is associated with poor prog-
nosis of patients with breast cancer [160–162]. Moreover, 
reduced expression of lncRNA LINC00472 enhances the 
migration and invasion of colorectal cancer cells [163]. 
It appears that miR-93-5p is a target of LINC00472. 
In order to suppress the malignancy of HCC cells, this 
lncRNA down-regulates the expression of miR-93-5p/
PDCD4 axis to stimulate apoptotic cell death [164]. 
TP53INP1, CDKN1A and TIMP2 are able to regulate 
the proliferation and growth of tumor cells [165, 166]. It 
seems that exosomal miR-93 exerts stimulatory impact 
on the malignancy and invasion of HCC cells by down-
regulation of TIMP2/TP53INP1/CDKN1A axis [167]. 
Peroxisome proliferator-activated receptor gamma coac-
tivator-1 alpha (PPARGC1A) is suggested to be involved 
in generation of a number of disorders, particularly can-
cer [168, 169]. This factor contributes to the mitochon-
drial biogenesis and its expression undergoes inhibition 
in cancer cells [170, 171]. In respect to the anti-tumor 
activity of PPARGC1A, miR-93-5p suppresses its expres-
sion to enhance the proliferation and malignancy of HCC 
cells [172]. Programmed cell death 4 (PDCD4) induces 
programmed cell death to reduce the viability of cancer 
cells [173]. The expression of PDCD4 undergoes down-
regulation in a number of cancers [174]. This protein 

remarkably diminishes the invasion of tumor cells by 
EMT modulation [175]. Notably, miR-93 inhibits PDCD4 
by directly targeting its 3/-UTR resulting in enhanced 
migration of tumor cells via EMT stimulation [176, 177].

Breast cancer
Breast cancer is one of the leading causes of women’s 
death with high metastasis capability [178, 179]. There 
are a number of molecular signaling pathways involved 
in regulation of biological processes such as cell prolif-
eration and cell differentiation, and signal transducer 
and activator of transcription (STAT) is one of them 
[180, 181]. It has been revealed that STAT signaling path-
way undergoes deregulation in a variety of disorders, 
particularly cancer [182, 183]. It seems that STAT3 is a 
target of miR-93 in breast cancer cells. LncRNA H19 
inhibits the down-regulation of miR-93 to enhance the 
expression of STAT3 signaling pathway leading to the 
increased proliferation and metastasis of breast cancer 
cells [184]. Besides, the upregulation of exosomal miR-93 
in ductal carcinoma in situ (DCIS) patients is a prognos-
tic signature of breast tumors [185]. One of the trouble-
some problems faced in cancer therapy is the resistance 
of cancer cells to chemotherapeutic agents [186, 187]. 
Expression evaluation of miR-93 in breast cancer cell 
lines showed that miR-93 undergoes down-regulation in 
these tumor cells. Enhancing the expression of miR-93 is 
associated with high anti-tumor activity of chemothera-
peutic agents by reducing the expression of Bcl-2 and 
P-glycoprotein (P-gp) [188]. Accumulating data demon-
strates that miRs contribute to the stimulation of EMT 
in breast cancer [189–192]. Moreover, EMT mechanism 
induces drug resistance in cancer cells [193–196]. On the 
other hand, PTEN enhances the chance of drug resist-
ance by EMT induction [197, 198]. MiR-93 mediates the 
resistance of breast cancer cells into doxorubicin (DOX) 
by EMT induction via targeting PTEN [199]. Another 
study puts emphasis on the downstream target of PTEN, 
so that during breast cancer progression, PTEN upregu-
lation inhibits PI3K/Akt signaling pathway. However, 
miR-93 reduces the expression of PTEN to upregulate 
the expression of PI3K/Akt signaling pathway leading to 
the promotion of cell proliferation [200]. Previously, we 
mentioned that miR-93 induces drug resistance by acti-
vation of EMT mechanism. However, a study conducted 
by Xiang and colleagues provides controversial findings 
about the role of miR-93 in breast cancer. Based on the 
results of this study, miR-93-5p blocks both STAT3 and 
megakaryoblastic leukemia/myocardin-like 1 (MLK-1) 
as important regulators of cellular metabolism to sup-
press EMT resulting in reduced migration of breast can-
cer cells [201]. WNK lysine deficient protein kinase 1 
(WNK1) is ubiquitously expressed in all tissues essential 
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for embryogenesis [202–204]. WNK1 is capable of regu-
lation of angiogenesis, cell proliferation and cell survival 
via targeting various pathways such as Smad/Tgfb, Erk5/
MAPK and PI3K [205–207], demonstrating the potential 
role of WNK1 in tumorigenesis. By inhibition of WNK1, 
miR-93 diminishes the migratory capability and invasion 
potential of tumor cells [208].

Gastric cancer
Gastric cancer [209] is a malignant cancer with high 
prevalence worldwide that has higher incidence rate in 
Asia and Western countries [210–213]. MiR-93 can func-
tion as a biomarker for GC diagnosis since its expres-
sion undergoes upregulation during the metastasis of 
GC cells into lymph node [214]. A variety of molecular 
pathways have been recognized as determining factors 
in GC progression. Hippo signaling pathway is suggested 
to be involvement in modulation of a number of physi-
ological and pathological mechanisms including organ 
development, tissue regeneration and tumor suppression 
[215–217]. In respect to the role of Hippo signaling path-
way in regulation of cell proliferation and apoptosis, this 
pathway exerts anti-tumor activity [218]. The effect of 
Hippo pathway dysregulation on the metastasis and inva-
siveness of tumor cells have been detected [219]. Epige-
netic alterations are responsible for inhibition of MST1/2 
and large tumor suppressors 2 (LATS1/2) as vital compo-
nents of Hippo pathway during GC development [220]. 
Besides, protocadherin Fat4 (FAT4) is a main regulator 
of Hippo pathway that undergoes mutation in GC cells 
to ensure their proliferation and viability [221]. It is held 
that Hippo signaling pathway is one of the potential tar-
gets of miR-93-5p. Based on the oncogenesis effect of this 
miR on GC cells, it was found that during GC progres-
sion, upregulation occurs in the expression of miR-93-5p 
to suppress Hippo pathway via down-regulation of FAT4 
and LATS2 leading to the enhanced migration and inva-
siveness of these malignant cells [222]. However, another 
study conducted by Meng and colleagues provides con-
trast results about the effect of miR-93 on Hippo signal-
ing pathway. This study explains that miR-93-5p is able to 
promote the proliferation, migration and invasiveness of 
GC cells by stimulation of Hippo signaling pathway [223]. 
As it was mentioned, abnormal expression of JAK/STAT 
signaling pathway considerably elevates the malignancy 
of cancer cells [224, 225]. At the case of GC, a similar 
story occurs and miR-93 activates STAT3 signaling path-
way to enhance GC metastasis [226]. However, it seems 
that this effect of miR-93 on STAT pathway is mediated 
by another target. Type I interferon (IFN1) has been 
reported to have anti-tumor activity [227]. IFN-1 reduces 
the activity of STAT3 by binding to the type-I inter-
feron receptor 1 (IFNAR1) [228–230]. By inhibition of 

IFNAR1, miR-93-5p stimulates STAT3 signaling pathway 
to increase the malignancy and invasion of tumor cells 
[226]. On the other hand, lncRNA PTENP1 enhances 
the expression of PTEN (a tumor suppressor) to inhibit 
the proliferation and viability of GC cells. It seems that 
the stimulatory impact of lncRNA PTENP1 on PTEN is 
mediated by inhibition of miR-93 [231]. As it was men-
tioned, PDCD4 diminishes the viability and proliferation 
of tumor cells by stimulation of programmed cell death. 
The oncogenesis impact of miR-93 on GC cells is par-
tially mediated through suppressing PDCD4 [232].

Uterine cancer
Uterine cancer is one of the most common disorders of 
female reproductive system [233]. Obesity and bad life-
styles are the major risk factors of uterine cancer [234]. 
Based on the statistics of WHO, uterine cancer claims 
the fourth place among women’s cancer [152]. Abnormal 
expression of miR-93 occurs in patients with uterine can-
cer. These patients have a low expression of serum miR-
93 and its expression has an intimate relationship with 
pathological staging and lymph node metastasis. High 
expression of miR-93 is associated with good progno-
sis and high survival rate of patients with uterine cancer 
[235].

Adenoid cystic carcinoma
The primary lacrimal gland tumors have not high preva-
lence [236]. Adenoid cystic carcinoma (ACC) is suggested 
to be the most common form of malignant epithelial lac-
rimal gland tumors [237–239]. Radiotherapy and chemo-
therapy are the most frequent treatments of ACC [240, 
241]. However, we have not witnessed a huge decrease in 
its eradication and recurrence. So, genetic manipulation 
is of interest in its treatment. The expression of miR-93 is 
higher in ACC tissues compared to the healthy ones. It is 
held that miR-93 upregulation enhances the metastasis of 
these tumor cells and stimulates epithelial-to-mesenchy-
mal transition (EMT) via increasing the level of E-cad-
herin and reducing the level of N-cadherin [242]. Breast 
cancer metastasis suppressor 1 (BRMS1) has an intimate 
relationship with metastasis. Notably, BRMS1 exerts an 
inhibitory impact on the tumor cells by enhancing the 
expression of oncosuppresor miRs including miR-146a, 
-146b and -335 [243–246]. In the case of ACC, there is 
a reverse relationship between miR-93 and BRMS1L. 
Upregulation of miR-93 considerably diminishes the 
expression of BRMS1L to promote the malignancy and 
proliferation of cancer cells [242].

Pancreatic cancer
Pancreatic ductal adenocarcinoma still has a high mortal-
ity and morbidity worldwide demanding novel strategies 
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in its treatment [247–249]. Unfortunately, this kind of 
cancer is usually diagnosed at the advanced stages due 
to its special location and lack of sensitive approaches in 
its diagnosis [250]. Hence, studies should focus on treat-
ment of this life threatening disorder at the end stages. 
In respect to the flexibility and complexity of cancer, tar-
geting molecular pathway is the most important strat-
egy. Runt-related transcription factor (RUNX) is a vital 
gene involved in progression of pancreatic cancer cells. 
Expression analysis shows the high expression of RUNX2 
in pancreatic cancer tissues, while its expression is at the 
minimal level in healthy tissues [251]. Besides, it has been 
reported that RUNX3 contributes to the metastasis and 
migration of pancreatic cancer cells [252, 253]. A same 
story occurs for RUNX1, so that its expression under-
goes upregulation in pancreatic tumor cells associated 
with poor prognosis and high malignancy of pancreatic 
tumor cells [254–257]. These studies highlight this fact 
that RUNX genes have a potential in cancer progression. 
Interestingly, it seems that RUNX1 exerts its stimulatory 
impact on the migration and malignancy of pancreatic 
cancer cells by inhibition of miR-93 since the overexpres-
sion of miR-93 diminishes the migration and invasiveness 
of pancreatic cancer cells [258].

Renal carcinoma
Clear cell renal cell carcinoma (ccRCC) is the most fre-
quent type of renal carcinoma affecting a high population 
of men and women around the world. Although surgery 
is a common option in treatment of ccRCC, it seems that 
patients demonstrate recurrence and metastasis after 
surgical resection with low survival rate [259–262]. This 
has resulted the willingness of scientists into other treat-
ment options and it appears that anti-angiogenic agents 
are the most promising candidates. These agents can sup-
press the progression and malignancy of tumor cells with 
high capability [263–265]. Pigment epithelium derived 
factor (PEDF) has great anti-angiogenic activity benefi-
cial in cancer therapy [266, 267]. It is held that miR-93-3p 
enhances the malignancy of ccRCC cells by stimulation 
of angiogenesis through down-regulation of PEDF [209]. 
Although it has been shown that TGF-β contributes to 
the induction of cell cycle arrest, accumulating data dem-
onstrates that the resistance of cancer cells into TGF-β 
reverses its anti-tumor impact and this signaling pathway 
may enhance the progression of tumor cells [268–272]. 
The fundamental pathway involved in this function is 
various among different cancer types [273]. Mutations 
or deletions in Smad4 are responsible for promoting the 
progression of pancreatic cancer cells resistant to TGF-β 
[274]. However, TGF-β regulates an important axis in 
renal carcinoma cells that eventually reduces the pro-
liferation of these malignant cells. It is held that TGF-β 

upregulation significantly diminishes the expression of 
miR-93 that in turn, stimulates RBL2 leading to the cell 
cycle arrest [275].

Bladder cancer
Bladder carcinoma (BC) is supposed to be one of the 
malignant tumors of the urinary tract. In spite of the 
good prognosis of patients with BC, its incidence rate is 
still high [276]. Currently, Bacillus Calmette-Guerin is 
the best option for the treatment of BC [277]. Moreover, 
transurethral resectioning and chemotherapy are ben-
eficial in BC therapy [278–280]. However, the resistance 
of BC cells remarkably reduces the potential of chemo-
therapy [281, 282]. Increasing evidence suggests that 
abnormal expression of miRs is an important factor in 
BC metastasis and progression [283, 284]. It seems that 
inhibition of miR-93 is advantageous in enhancing the 
anti-tumor activity of cisplatin (CS) against BC cells via 
stimulation of DNA damage [285]. LASS2 exerts inhibi-
tory impact on BC cells and involves in chemo-sensitiza-
tion [286]. It has been demonstrated that miR-93 induces 
the resistance of BC cells into chemotherapy by inhibi-
tion of LASS2 protein [285].

Ovarian cancer
Ovarian cancer is a gynecological malignancy affecting 
a high population of women around the world with low 
5-survival rate [287, 288]. Unfortunately, there are no 
advanced and sensitive tools for early diagnosis of ovar-
ian cancer [289, 290]. So, treatment should be focused on 
using chemotherapeutic agents. In spite of the efficiency 
of chemotherapy, frequent application of these agents 
significantly reduces their capability in cancer therapy 
[291, 292]. As a consequence, scientists have had a spe-
cial view into plant-derived natural products as agents 
with high anti-tumor activity that can be applied as adju-
vant in cancer therapy [293–295]. Berberine (Brb) is a 
naturally occurring compound exclusively found in the 
members of Berberis family with high concentration in 
Berberis vulgaris [296]. This compound has a number 
of pharmacological activities such as antioxidant, anti-
inflammatory, anti-diabetic and anti-tumor [297]. A 
combination of Brb and cisplatin significantly sensitizes 
ovarian cancer cells into apoptotic cell death and cell 
cycle arrest by inhibition of miR-93 and consequently, 
stimulation of PTEN/Akt axis [298]. MiR-93 down-reg-
ulation is a potent biomarker of ovarian cancer with the 
sensitivity as much as 93% [299].

Colorectal cancer
Colorectal cancer (CRC) is considered as the third lead-
ing cause of death [300]. This life threatening disorder has 
high metastasis capability and there have been attempts 



Page 8 of 16Ashrafizadeh et al. Cancer Cell Int          (2020) 20:277 

to evaluate the molecular signaling pathways involved in 
its progression [301, 302]. It is held that lncRNA CA3-
AS1 is capable of reducing the malignancy of colorectal 
cancer cells by inhibition of miR-93 and consequently, 
induction of PTEN as a tumor suppressor [303].

MiR‑93 and angiogenesis
Angiogenesis is one of the most important mechanisms 
involved in delivering oxygen and nutrients to the tumor 
cells [304]. It seems that this mechanism plays a remark-
able role in a variety of stages of cancer such as prolif-
eration and migration [305]. Anti-angiogenic agents have 
demonstrated great potential in inhibition of malignancy 
and invasion of cancer cells [306, 307]. There are two 
major problems associated with inhibition of angiogen-
esis: A) it appears that the introduced anti-angiogenic 
drugs are capable of suppressing angiogenesis in a just 
a number of cancers, and B) some of the tumor cells 
are able to advance without angiogenesis enhancing the 
complexity of cancer [308]. So, elucidating the molecu-
lar pathways involved in angiogenesis is suggested to be 
beneficial in cancer therapy. Upregulation of miR-93-5p 
increases the angiogenesis capability of human umbilical 
vein endothelial cells (HUVECs) leading to the improve-
ment in blood vessel density, high proliferation and 
migration, and enhanced lumen formation and sprout-
ing [309]. The interesting point of this study is the role 

of molecular signaling pathways. Epithelial protein lost in 
neoplasm (EPLIN) is a cytoskeleton-associated protein 
that plays a significant role in supervising the cell motility 
and actin dynamics. It has been demonstrated that high 
expression of EPLIN is related to the reduced ability of 
HUVECs in migration and tubule formation [310]. As 
a consequence, based on the efficiency of miR-93-5p in 
enhancing the angiogenesis and cell motility of HUVECs, 
it seems that this miR exerts inhibitory impact on EPLIN 
[309].

Conclusion and remarks
This review provided a comprehensive discussion about 
the role of miR-93 in various cancer cell lines. Notably, 
all the studies conducted on the expression of miR-
93 in lung cancer demonstrate that its upregulation is 
associated with poor prognosis of patients with lung 
cancer. More importantly, these studies imply that miR-
93 is an oncogenesis miR in lung cancer that favors 
conditions into high proliferation and viability of lung 
cancer cells. The same story occurs in EC cancer. This 
miR not only serves as a biomarker during EC genera-
tion but also enhances the malignancy of cancer cells 
by inhibition of PTEN/PI3K/Akt signaling pathway. 
MiR-93/FZD7/Wnt axis is also important for promot-
ing the progression of OS cells. It is noteworthy that the 
studies involving in the role of miR-93 in EC, OS and 

Fig. 1  The involvement signaling pathways in the role of miR-93 in various cancers
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cervical cancers are low in number and more studies 
are required to clarify the oncogenesis or oncosuppres-
sor impact of miR-93. But these experiments highlight 
the oncogenesis impact of miR-93. Interestingly, accu-
mulating data demonstrates that miR-93 indirectly 
stimulates PI3K/Akt pathway to elevate the prolif-
eration and malignancy of brain tumors. In this way, 
miR-93 suppresses the expression of PTEN, PHLPP, 
and FOXO3. It seems that miR-93 affects much more 
molecular pathways in prostate cancer. Figure  1 obvi-
ously shows these pathways. LncRNAs play a signifi-
cant role in suppressing HCC. LncRNAs SNHG16 and 
LINC00472 exert inhibitory impact on the progression 

of HCC cells by down-regulation of miR-93. Investi-
gating the role of miR-93 elucidated two major down-
stream targets known as STAT3 and WNK1. These two 
pathways are involved in regulation of a number of bio-
logical processes. MiR-93 suppresses WNK1 to reduce 
breast cancer malignancy, while it enhances the expres-
sion of STAT3. Figure  1 demonstrates the signaling 
pathways involved in the effect of miR-93 on various 
cancers. Besides, miR-93 is able to affect angiogenesis 
in cancer progression. MiR-93 reduces the expres-
sion of EPLIN to enhance angiogenesis. Finally, there 
is more studies that are supporting the role of miR-93 
in cancer therapy [311–325], Table 1.  

Table 1  The studies supporting the involvement of miR-93 in cancer malignancy

In vitro/in vivo Effect on cancer Major results Refs.

Glioblastoma cells Oncogenesis MiR-93 enhances the malignancy and proliferation of glioblastoma cells 
by inhibition of autophagy via down-regulation of Beclin-1, ATG5, and 
ATG4B

[106]

EC cells Oncogenesis Reducing the capability of radiotherapy by inhibition of BTG3 [125]

HeLa and C‐33A cells cervical cancer tissues Oncogenesis LncRNA ZNF667 suppresses the invasion and malignancy of cancer cells by 
inhibition of miR-93-3p

[311]

Cisplatin-resistant A2780/DDP cell line Oncogenesis Inhibition of miR-93 by l-tetrahydropalmatine is beneficial in sensitizing of 
cancer cells to cisplatin-mediated apoptosis

[312]

Bladder cancer tissues and cells Oncogenesis Upregulation of miR-93 is related to the tumor stage and node stage via 
stimulation of PEDF

[313]

Cervical cancer and matched non-cancerous 
tissue samples 

Oncogenesis Overexpression of miR-93 and inhibition of CDKN1A is associated with poor 
prognosis of patients

[314]

Gastric cancer cells Oncogenesis By inhibition of TIMP2, miR-93 enhances the malignancy of gastric cancer 
cells

[315]

Primary colon cancer cells Oncogenesis By inhibition of miR-93, lncRNA LINC01567 reduces the proliferation an 
malignancy of cancer cells

[316]

Endometrial carcinoma tissues endometrial 
carcinoma cell lines HEC-1B and Ishikawa

Oncogenesis Enhancing the proliferation and malignancy of tumor cells by stimulation 
of EMT

[317]

Ovarian carcinoma cell lines OVCAR3, SKOV3/
DDP, and HO8910-PM

Oncogenesis MiR-93-5p down-regulates the expression of RhoC to elevate the invasive-
ness of cancer cells

[318]

Human colon cancer tissue and colorectal 
carcinoma cell lines

Oncosuppressor Diminishing the malignancy and migration of cancer cells by inhibition of 
Wnt signaling pathway

[319]

Hep-2 cells cancer tissues Oncogenesis MiR-93 binds to the 3/-UTR of cyclin G2 to inhibit its expression resulting in 
promoted proliferation of cancer cells

[320]

Breast cancer tissues Oncogenesis Overexpression of miR-93 occurs in triple negative breast cancer [321]

Rat model of mammary carcinogenesis Oncogenesis Upregulated miR-93 suppresses the expression of Nrf2 to enhance the 
tumorigenesis of breast cancer cells

[322]

Tumoral and nontumoral colon tissues Oncosuppressor A decrease occurs in the expression of miR-93 in colon cancer cells [323]

Early (recurrence within 12 months after 
surgery) and non-early relapse CRC patients 
CRC cells

Oncosuppressor Reducing the progression and growth of cancer cells down-regulation of 
VEGF, p21 and ERBB2

[324]

Cisplatin-resistant ovarian cancer cells Oncosuppressor Upregulation of miR-93 reduces the expression of PTEN to stimulate Akt 
signaling pathway leading to the sensitization of cancer cells to chemo-
therapy

[325]
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