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Abstract 

Background:  Stomach adenocarcinoma (STAD) is the fifth most prevalent cancer in the world and ranks third among 
cancer-related deaths worldwide. The tumour microenvironment (TME) plays an important role in tumorigenesis, 
development, and metastasis. Hence, we calculated the immune and stromal scores to find the potential prognosis-
related genes in STAD using bioinformatics analysis.

Methods:  The ESTIMATE algorithm was used to calculate the immune/stromal scores of the STAD samples. Func‑
tional enrichment analysis, protein–protein interaction (PPI) network analysis, and overall survival analysis were then 
performed on differential genes. And we validated these genes using data from the Gene Expression Omnibus data‑
base. Finally, we used the Human Protein Atlas (HPA) databases to verify these genes at the protein levels by IHC.

Results:  Data analysis revealed correlation between stromal/immune scores and the TNM staging system. The top 
10 core genes extracted from the PPI network, and primarily involved in immune responses, extracellular matrix, and 
cell adhesion. There are 31 genes have been validated with poor prognosis and 16 genes were upregulated in tumour 
tissues compared with normal tissues at the protein level.

Conclusions:  In summary, we identified genes associated with the tumour microenvironment with prognostic impli‑
cations in STAD, which may become potential therapeutic markers leading to better clinical outcomes.
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Background
Stomach adenocarcinoma (STAD) is ranked as the 
fifth-most commonly diagnosed cancer and the third 
leading cause of cancer-related deaths worldwide as 
per the statistics of GLOBOCAN 2018 [1], with an esti-
mated 679,100 new cases and 498,000 deaths occurring 
in China in 2015 [2]. Around 90–95% of all stomach 
cancers are adenocarcinoma. They are subdivided into 

cardia and non-cardia gastric cancers, respectively, 
based on whether the tumour is located near the gas-
tro-oesophageal junction (cardia) or away from it [3]. 
Worldwide, the incidence rate of STAD is the high-
est in Asia, and among the Asian countries, China has 
the maximum incidence rate of STAD, accounting for 
49.9% of global STAD cases [4]. In European countries, 
the 5-year survival rate varies from ~ 10 to 30% [5], and 
in China, from 30.2 to 35.9% [6]. To better understand 
the impact on tumour genetic composition of clinical 
outcomes, genome-wide gene expression repertoires, 
such as The Cancer Genome Atlas (TCGA) have been 
established to explore and discover large cohorts 
around the world [7]. Although extensive research has 
been conducted on the mechanism of the occurrence 
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and development of STAD, the aetiology and pathogen-
esis of STAD still remain to be elucidated [8]. Hence, 
considering the high morbidity and mortality of STAD, 
it is essential to explore molecular markers that have a 
prognostic value of influencing the immune response 
from STAD patients.

The cells within the tumour microenvironment (TME) 
are an important component of the tumour tissue. An 
increasing number of evidences has elucidated the clinic 
pathological significance of TME in the prediction of 
treatment effects [9, 10]. The TME is the cellular milieu 
where the tumour is located. It consists of immune cells, 
mesenchymal cells, endothelial cells, along with inflam-
matory mediators and extracellular matrix (ECM) mol-
ecules [11, 12]. The cells and molecules in the TME 
are in a dynamic process, reflecting the evolutionary 
nature of cancer and jointly promoting immune escape, 
growth, and metastasis of tumours [13, 14]. Immune 
cells and stromal cells are the two main types of non-
tumour components and considered to be of great value 
in the diagnosis and prognosis of tumours [7]. Therefore, 
understanding the molecular composition and function 
of TME are essential for the effective management of 
cancer progression and immune response in STAD. With 
the advent of the era of big data biology, bioinformatics 
analysis of large amounts of data has been made possi-
ble through a combination of biology, computer science, 
and information technology [15]. Its rapid development 
provides researchers with a more user-friendly and con-
venient platform to guide the implementation of basic 
experiments [16]. In 2013, Yoshihara et  al. designed an 
algorithm called ESTIMATE to estimate stromal cells 
and immune cells in malignant tumour tissues with 
expression data. In this algorithm, the authors obtained 
immune and stromal scores to predict the TME by calcu-
lating the expression characteristics of specific molecular 
biomarkers in immune and stromal cells [17]. In addi-
tion, they used estimate scores to comprehensively evalu-
ate the immune and stromal scores. In recent years, the 
ESTIMATE algorithm has been reported to be applied 
to glioblastoma [7], clear cell renal cell carcinoma [18], 
and colon cancer [19], thereby demonstrating the valid-
ity of this big-data based algorithm. However, there is no 
detailed analysis of the immune, stromal, and estimate 
scores of stomach adenocarcinoma.

In this study, the TME-related genes were obtained 
from the stomach adenocarcinoma datasets in TCGA 
database and the ESTIMATE algorithm was used to ana-
lyse the corresponding immune/stromal/estimate scores. 
Some core genes were obtained through the analysis of 
functional annotations and gene networks. Finally, the 
STAD dataset from the Gene Expression Omnibus (GEO) 

database was used to validate the acquired core genes, 
revealing their potential roles in the treatment of STAD.

Methods
Raw data
RNA-seq data for STAD patients were downloaded from 
TCGA database (https​://tcga-data.nci.nih.gov/tcga/), the 
gene expression profile was measured experimentally 
using the Illumina HiSeq2000 RNA Sequencing plat-
form by the University of North Carolina TCGA genome 
characterization centre. Clinical data such as age, TNM 
staging, gender, survival-time, and status were also 
downloaded from the cBioportal website (http://www.
cbiop​ortal​.org/). We calculated the stromal/immune/
estimate scores of the samples using the ESTIMATE 
algorithm (https​://r-forge​.r-proje​ct.org). The GSE84433 
dataset from the GEO database was used for validation. 
The Human Protein Atlas (http://www.prote​inatl​as.org) 
was used to validate the immunohistochemistry of genes 
with prognostic values. Direct links to the immunohisto-
chemistry images from the Human Protein Atlas are pro-
vided in the following:

Gene Normal Tumor

BCHE https​://www.prote​inatl​
as.org/ENSG0​00001​14200​
-BCHE/tissu​e/stoma​
ch#img

https​://www.prote​inatl​as.org/
ENSG0​00001​14200​-BCHE/
patho​logy/stoma​ch+cance​
r#img

CNN1 https​://www.prote​inatl​
as.org/ENSG0​00001​30176​
-CNN1/tissu​e/stoma​
ch#img

https​://www.prote​inatl​as.org/
ENSG0​00001​30176​-CNN1/
patho​logy/stoma​ch+cance​
r#img

CPED1 https​://www.prote​inatl​
as.org/ENSG0​00001​06034​
-CPED1​/tissu​e/stoma​
ch#img

https​://www.prote​inatl​as.org/
ENSG0​00001​06034​-CPED1​/
patho​logy/stoma​ch+cance​
r#img

CYP1B1 https​://www.prote​inatl​
as.org/ENSG0​00001​38061​
-CYP1B​1/tissu​e/stoma​
ch#img

https​://www.prote​inatl​as.org/
ENSG0​00001​38061​-CYP1B​1/
patho​logy/stoma​ch+cance​
r#img

SELP https​://www.prote​inatl​
as.org/ENSG0​00001​74175​
-SELP/tissu​e/stoma​ch#img

https​://www.prote​inatl​as.org/
ENSG0​00001​74175​-SELP/
patho​logy/stoma​ch+cance​
r#img

VIP https​://www.prote​inatl​
as.org/ENSG0​00001​46469​
-VIP/tissu​e/stoma​ch#img

https​://www.prote​inatl​as.org/
ENSG0​00001​46469​-VIP/
patho​logy/stoma​ch+cance​
r#img

Differential expression analysis
Differential expression analysis was performed on the 
count matrix of the sample using the R package, DESeq2. 
The screening conditions for the differential genes were: 
Fold Change > | ±1.5|, adjusted p-values (padj) < 0.05. 
Heat maps of differential genes were drawn using the 
R-package, pheatmap.
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Enrichment analysis and PPI network
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) tool [20] was used to per-
form functional enrichment analysis of the differentially 
expressed genes (DEGs), the corresponding biological 
processes (BP), cell components (CC), and molecular 
functions (MF) were identified using Gene Ontology 
(GO) and the signalling pathways involved were identi-
fied using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG). The protein–protein interaction (PPI) network 
was constructed using the Search Tool for the Retrieval 
of Interacting Genes (STRING) database [21], and the 
core genes were identified using the CytoHubba plug-
in in Cytoscape software [22]. Module analysis for the 
detection of interaction networks was performed using 
the Molecular Complex Detection  (MCODE) plug-in in 
the Cytoscape platform.

Survival analysis
The survival curve is shown using the Kaplan–Meier 
curve, which is drawn using the R packages survival and 
survminer. This relationship was verified using a log-rank 
test. These analyses illustrate the relationship between 
differential genes and overall patient survival.

Results
Stromal and immune scores are associated with the TNM 
staging system and survival prognosis
We downloaded the RNA-seq gene expression matrix 
and clinical information data from 380 patients with 
STAD from TCGA database. Of all the samples, 63.9% 
were male and 36.1% were female, and 62.9% were white, 
19.7% Asian, 14.2% were not reported, while others were 
black or African–American. The proportion of patients 
with T1–T2 and T3–T4 was 27.7% (n = 108) and 72.3% 
(n = 272), respectively. The proportion of patients with 
N0–N1 and N2–N3 was 58.4% (n = 221) and 41.6% 
(n = 159), respectively. Patients with M0 and M1 reached 
92.7% (n = 343) and 7.3% (n = 37), respectively. The 
stromal scores and immune scores of all samples were 
obtained by ESTIMATE algorithm, and the score ranges 
were − 1832.01 to 2038.29 and − 1541.7 to 2619.69, 
respectively. From the aspect of tumour infiltration depth 
(T), the median stromal and immune scores in T1 stage 
are the lowest, and the order for stromal median score 
from T2 to T4 is: T2 < T3 < T4, order of immune scores 
is: T3 < T2 < T4, but the difference between them is not 
obvious (Fig.  1a). From the aspect of lymph node stag-
ing (N), the relationships between the median stromal 
and immune scores of the four stages were similar (with-
out statistical significance) namely: N3 > N1 > N2 > N0, 
N1 > N3 > N2 > N0 (Fig.  1b). Finally, in terms of distant 

metastasis (M), the stromal and immune median scores 
are in the same order: M1 > M0, without statistical sig-
nificance (Fig.  1c). From these data, it can be seen that 
there is an intense correlation between stromal/immune/
estimate scores and the TNM staging system.

To analyse the potential relationship between the stro-
mal/immune/estimate scores and the overall survival of 
the samples, we divided all samples into high and low 
score groups based on the positive/negative stromal/
immune/estimate scores. The Kaplan–Meier survival 
curve showed that the high score group of the stromal 
scores has a lower survival rate than the low score group 
(Fig. 1d, p = 0.0032 in log-rank test). Similar phenomena 
were observed in the high and low score groups of the 
immune/estimate scores (Fig.  1e, p = 0.0505 in log-rank 
test, Fig. 1f, p = 0.0359 in log-rank).

Differential expression and enrichment analysis of STAD 
cases based on stromal and immune scores
To reveal the relationship between the stromal and/or 
immune scores and the gene expression profile of the 
samples, we performed differential analysis of all RNA-
seq data from 380 STAD cases in TCGA database. The 
heat map of the high/low scores of the stromal/immune 
scores revealed differential gene expression profiles 
between the samples, in which 772 up-regulated genes 
and 211 down-regulated genes (fold change > |± 1.5|, 
padj < 0.05) were obtained based on the difference in 
stromal scores, simultaneously, 1182 up-regulated genes 
and 434 down-regulated genes (fold change > |± 1.5|, 
padj < 0.05) were obtained based on the differential analy-
sis of immune scores (Fig. 2a). As can be seen from the 
Venn diagram (Fig.  2b), there are 245 identical up-reg-
ulated genes and 103 identical down-regulated genes 
(Additional file 1: Table S1).

We performed functional enrichment analysis on the 
obtained 348 differential genes (245 up-regulated genes 
and 103 down-regulated genes), including GO: BP, GO: 
CC, GO: MF, and KEGG pathway analysis. Sorting by 
− Log10 (p-value), we list the top 10 terms of each sec-
tion. GO functions are mainly enriched in inflammatory 
and immune responses, extracellular matrices, and hepa-
rin binding (Fig. 2c–e), while KEGG pathways are mainly 
enriched in neuroactive ligand-receptor interaction and 
insulin secretion (Fig. 2f ).

Survival analysis of differential genes
To analyse the potential role of differential genes in the 
overall survival of STAD patients, we downloaded STAD 
clinical data and gene expression data from the cBiopor-
tal website. Among all the differential genes, the high 
expression of 82 genes was associated with poor overall 
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Fig. 1  Stromal, immune, and estimate score distribution and survival analysis of STAD samples. a Score distribution of T staging. The violin plot 
shows a correlation between the T stage of STAD and the stromal score level. b Score distribution of N staging. The violin plot showed no significant 
association between the N stage and stromal/immune scores (p > 0.05). c Score distribution of M staging. The violin plot showed no significant 
association between the M stage and stromal/immune scores (p = 0.54 and p = 0.36, respectively). d From the survival curve, we can see that 
the high stromal score is related to the poor overall survival (p = 0.0032). e Similarly, high immune scores are associated with poor overall survival 
(p = 0.0505). f Estimate score is also related to overall survival (p = 0.0359)
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Fig. 2  Differential and functional enrichment analysis of gene expression matrices in STAD samples. a Heat maps of the differential genes with 
stromal scores and immune scores of high score groups and low score groups (padj < 0.05, fold change > |±1.5|). b Venn diagram of consensus 
genes differentially expressed genes between the stromal and immune cell groups. c–f Top 10 GO terms from enrichment analysis and KEGG 
pathway analysis of up-regulated consensus genes
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survival, and low expression of 9 genes (Fig.  3, p < 0.05) 
showed good overall survival (Additional file 2: Table S2).

PPI network analysis of genes with prognostic values
To analyse the interrelationship between genes with 
prognostic value, we used the STRING network tool to 
construct a PPI network of genes with prognostic values. 
Core genetic analysis of the PPI network was performed 
using the CytoHubba plugin in Cytoscape software. The 
top 10 core genes extracted from the PPI network are: 
CADM3, CARTPT, KCNA1, ADCYAP1R1, GPR88, 
SPARCL1, GFRA2, VIP, ACKR1, and MYL9, the core 
score is up to 47,964 (Additional file  3: Table  S3), the 
module contains 62 nodes and 317 edges (Fig.  4a). At 
the same time, we used Cytoscape’s MCODE plug-into 

perform a modular analysis of the differential genes. 
CARPTT and SYNPO2 modules were identified through 
module analysis. The CARTPT module contains 17 
points and 66 edges, while the SYNPO2 module contains 
9 points and 21 edges. In the CARTPT module, CARTPT, 
KCNA1, and SPARCL1 have higher degree values, while 
in the SYNPO2 module, SYNPO2 and FLNC have higher 
degree values (Fig. 4b).

We performed functional enrichment analysis on 
the genes mined by the PPI network module. There 
are four terms of the biological process: regulation of 
heart/muscle contraction, regulation of ryanodine-
sensitive calcium-release channel activity, neuronal 
action potential, G-protein coupled receptor signalling 
pathway (Fig.  4c). There are six terms of the cellular 

Fig. 3  Survival analysis of differential genes. The Kaplan–Meier survival curves show the correlations between the expression levels of differential 
genes and the overall survival times (p < 0.05 in Log-rank test)
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component: Z disc, actin cytoskeleton, cytoskeleton, 
fascia adherents, focal adhesion, and plasma membrane 
(Fig. 4d). The molecular function contains seven terms: 
cytoskeletal protein binding, receptor activity, muscle 
alpha-actinin binding, protein binding, neuropeptide 
hormone activity, structural constituent of muscle, 
and actin binding (Fig. 4e). There are four terms of the 

KEGG pathway: cAMP signalling pathway, focal adhe-
sion, arrhythmogenic right ventricular cardiomyopathy 
(ARVC), and dilated cardiomyopathy (Fig. 4f ).

Fig. 4  PPI network analysis of differential genes. a The network was constructed using the CytoHubba plug-in in Cytoscape, and the core gene 
scores were calculated using the Maximal Clique Centrality (MCC) method. The deeper the colour of the node, the higher the score. b Module 
analysis of PPI network. c Biological process, d cellular component, e molecular function, f KEGG pathways
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Using the GEO database to verify genes with prognostic 
values
To reveal whether the differential genes from TCGA 

database have an equal prognostic value in other STAD 
cases, we downloaded the GSE84433 expression data-
set and clinical data from the GEO database, which 

Fig. 5  Validation of prognostic genes using data from the GEO database. Similar to TCGA results, in the GEO data analysis, high gene expression is 
associated with poor overall survival (p < 0.05 in Log-rank test)

Table 1  Genes that influence the overall survival of STAD in both TCGA and GEO

Italic genes have been reported to be associated with the overall survival prognosis of STAD

Categories Gene symbols

Membrane ACKR1, ADGRB3, CHRNA3 [23], CYP1B1 [24], FLNC [25], 
PLIN4, PLN, RNF150, SELP [26], TACR2

Extracellular region ANGPTL1 [27], BCHE, C7, CARTPT [28], CPXM2 [29], PRG4, VIP

Extracellular matrix OMD [30], MGP [31], KERA, SFRP2 [32], SPARCL1 [33]

Cytoplasm PDLIM3 [34], MYL9 [35], FHL1 [36], DES, SYNC, CPED1

Protein binding, DNA binding HAND2, CNN1 [37], BNC2
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contained 357 samples. A total of 31 genes (Additional 
file  4: Table  S4) with high expression and poor prog-
nosis were verified (Fig. 5), and 16 genes have not been 
reported to be associated with a poor prognosis for 
STAD (Table 1). These genes may be potential genes for 
poor prognosis of STAD and may provide some reference 
value for the treatment of STAD in the future.

Prognostic gene validation using clinical tissue samples
To further confirm the reliability of the obtained genes 
with prognostic values, we used IHC to detect the pro-
tein expression of 31 genes in normal tissues and tumour 
tissues. The results showed that compared with normal 
tissues, sixteen proteins (ANGPTL1, BCHE, BNC2, 
CHRNA3, CNN1, CPED1, CYP1B1, FHL1, MYL9, 
PDLIM3, PRG4, RNF150, SELP, SPARCL1, SYNC, VIP) 
were significantly overexpressed in tumour tissues (Fig. 6, 
p < 0.05). The IHC map of the other 10 genes is shown in 
Additional file 5: Figure S1.

Discussion
In this paper, the ESTIMATE algorithm [17] was used to 
calculate the stromal/immune scores of RNA-seq data 
of STAD in TCGA database. Subsequently, the STAD 
samples were divided into high and low score groups 
according to the stromal/immune scores. Through differ-
ential and downstream analysis, 82 high expression genes 
related to poor prognosis and 9 low expression genes 
related to good prognosis were obtained. Then, 31 of the 
above genes were verified by the data in the GEO data-
base, and 15 genes have been reported to be linked to the 
overall survival in STAD.

First, we obtained 245 up-regulated genes and 103 
down-regulated genes by analysing the differences 
between high- and low-score group samples. Following 
functional enrichment analysis of the up- and down-reg-
ulated genes, it was found that many genes are associated 
with the TME, which is consistent with previous studies 
reporting the important roles of immune cells and stro-
mal cells in the TME [38–41]. A total of 10 core genes 
were extracted from the PPI network, and a module anal-
ysis was performed. The functional enrichment analysis 
of these genes revealed them to be mainly related to the 
immune and inflammatory response.

Next, we performed survival analysis on the differ-
ential genes. High expression of 91 genes was linked to 
poor overall survival. The above genes were validated 
using data from stomach adenocarcinoma patients in the 
GEO database, and 31 genes with poor prognosis were 
obtained, which could be used as potential biomarkers 
for future treatment of STAD. Combined with the PPI 

network, we focused on the two genes CARTPT and 
SPARCL1, which have the highest degree value. The full 
name of CARTPT is CART prepropeptide, and this gene 
encodes a preproprotein that is proteolytically processed 
to generate multiple biologically active peptides. These 
peptides play a role in appetite, energy balance, main-
tenance of body weight, reward and addiction, and the 
stress response. Expression of a similar gene transcript 
in rodents is up-regulated following administration of 
cocaine and amphetamine. Mutations in this gene are 
associated with susceptibility to obesity in humans [42, 
43]. In the gastrointestinal mucosa, CART expression 
was mainly identified in gastrin-producing G cells, but 
the physiological function of CART in gastrointestinal 
endocrine cells has not been elucidated [44, 45]. SPARC1 
is a member of the SPARC family, a member of the extra-
cellular matrix glycoprotein, and is involved in many 
physiological functions [33]. It has been shown to be 
down-regulated in a variety of cancers and can be used 
as a negative regulator of cell growth and proliferation. 
With the promotion of invasion and tumour formation, 
changes in SPARC expression are associated with disease 
progression and poor prognosis [46, 47].

In addition, we performed IHC analysis on prognostic 
genes, and further confirmed gene expression patterns at 
the protein level based on the human protein map. The 
results showed that these 16 genes were highly expressed 
in STAD, suggesting that most of these genes may play a 
carcinogenic role in STAD.

There have been many experimental studies on the cor-
relation between gene expression and survival of STAD 
patients, but the size of the subjects is generally small, 
lacking a more comprehensive analysis of STAD and its 
microenvironment [48, 49]. With the rapid development 
of sequencing technology, more and more tumour data-
bases have been developed, such as TCGA, GEO, and 
can be used free of charge [50, 51]. They facilitate the 
large-scale and comprehensive analysis of data. The TME 
plays an important role in the development of tumours 
and affects their occurrence, growth, and metastasis [52–
55]. Based on immunological and stromal cell analysis 
of STAD samples, we obtained TME-related genes with 
prognostic value, providing potential value for future 
treatment of STAD.

Conclusions
In summary, the ESTIMATE algorithm was used to 
obtain immune/stromal scores for SA samples in TCGA 
database, which in turn yielded some prognostic genes 
associated with the TME. These genes were validated 
using data from the GEO database and may help outline 
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the prognosis of STAD patients. Among them, the unre-
ported genes could become potential biomarkers for 
STAD. In addition, research on the prognostic role of 
the overall gene set may provide significant information 
on their clinical applicability. Finally, further research 

on these genes may provide new insights into the TME 
in STAD with the potential of yielding better clinical 
outcomes.

Fig. 6  IHC analysis and RNA expression analysis of genes with prognostic values. a Differentially expressed proteins of genes with prognostic values 
in STAD and normal tissues in The Human Protein Atlas database. b RNA expression of genes with prognostic values between STAD and normal 
tissues in The Human Protein Atlas database. Significance tested by t-test (****p < 0.0001; num(N), Normal sample size; num(T), Tumor sample size)
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