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LncRNA ANRIL/miR‑7‑5p/TCF4 axis 
contributes to the progression of T cell acute 
lymphoblastic leukemia
Gang Li, Lan Gao, Jing Zhao, Dejun Liu, Hui Li and Min Hu* 

Abstract 

Background:  Antisense non-coding RNA in the INK4 locus (ANRIL) is of great importance in cell biological behaviors, 
and ANRIL functions in many kinds of cancers including leukemia. However, the mechanism of ANRIL in the progres-
sion of T-cell acute lymphoblastic leukemia (T-ALL) has not been clarified clearly.

Methods:  qRT-PCR was performed to detect ANRIL expression in T-ALL samples. T-ALL cell lines (MOLT4, CCRF-CEM 
and KOPT-K1) were used as the cell models. The function of ANRIL on T-ALL cells was investigated by CCK-8 assays, 
Transwell assays, and apoptosis experiments in vitro. qRT-PCR, Western blot, luciferase reporter assay and RIP assay 
were used to confirm the interactions between ANRIL and miR-7-5p, miR-7-5p and its target gene transcription factor 
4 (TCF4).

Results:  ANRIL was significantly up-regulated in T-ALL samples. Its knockdown markedly inhibited viability, migration 
and invasion of T-ALL cells, but its overexpression exerted the opposite effects. TCF4 was proved to be a target gene of 
miR-7-5p. ANRIL down-regulated miR-7-5p via sponging it and in turn up-regulated TCF4.

Conclusions:  LncRNA ANRIL can modulate malignant phenotypes of T-ALL cells, possibly by regulating miR-7-5p/
TCF4 axis, and it serves as a potential therapeutic target for T-ALL.
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Background
Acute lymphocytic leukemia (ALL), a common hema-
tological malignancy among children, accounts for 80% 
of the leukemia cases in children, and it also ranks the 
second most common acute leukemia in adults [1–3]. 
The 5-year survival rate in adults is approximately 30%–
50%, and that in children is about 90% [4, 5]. Patients 
with T-ALL suffer from high risks of recurrence due 
to acquired drug resistance [6]. The current treatment 
options for these patients are limited [7]. Hence, it is of 
great importance to probe the mechanism of T-ALL 

progression and provide new clues for the development 
of new drugs.

Long non-coding RNAs (lncRNAs) is deemed as a sort 
of endogenous non-protein coding transcripts exceeding 
200 nucleotides in length [8]. More and more evidence 
reveals that lncRNAs participate in the growth and devel-
opment of the human body as well as the tumorigenesis 
and progression of tumors [9, 10]. LncRNAs can work as 
oncogenes or tumor suppressors in various tumors, and 
their abnormal expression levels can be used as indicators 
for tumor occurrence, metastasis or recurrence [11, 12]. 
An enormous number of studies authenticate that the 
dysregulation of antisense non-coding RNA in the INK4 
locus (ANRIL) is related to the progression of multiple 
cancers [13–17]. For example, ANRIL promotes tumo-
rigenesis through up-regulation of EGFR1 expression in 

Open Access

Cancer Cell International

*Correspondence:  cailuanzh7@163.com
Department of Clinical Laboratory, Henan Provincial People’s Hospital, 
People’s Hospital of Zhengzhou University, Weiwu Road, No. 7, 
Zhengzhou, Henan 450003, China

http://orcid.org/0000-0003-3739-1108
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-020-01376-8&domain=pdf


Page 2 of 12Li et al. Cancer Cell Int          (2020) 20:335 

head and neck squamous cell carcinoma [16]; knockdown 
of ANRIL restrains the proliferation, migration and inva-
sion of liver cancer cells [17]. Besides, the significance of 
ANRIL in leukemia becomes increasingly prominent [18, 
19]. For instance, it is reportedly confirmed that ANRIL 
promotes proliferation and inhibits apoptosis of adult 
T-cell leukemia cells through cooperating with EZH 2 to 
activate NF-κB pathway [19]. However, ANRIL’s role in 
T-ALL and its mechanisms need further investigation.

MicroRNAs (miRNAs), small non-coding RNAs con-
taining 18-24 nucleotides, are endowed with the ability 
of post-transcriptional regulation via binding specifically 
to the 3′-untranslated region (3′-UTR) of target genes 
[20, 21]. Accumulating studies indicate that miRNAs 
participate in a diversity of cellular biological activities 
[22–24]. More than 50% of miRNA, situated in cancer-
related genomic regions, functions in carcinogenesis or 
tumor suppression [25]. MiR-7 can suppress BCR-ABL 
and inhibit the activity of PI3K/AKT pathway, suggest-
ing that miR-7 exerts the anti-cancer effect in chronic 
myeloid leukemia [26]. MiR-7-5p is a tumor suppressor 
in diverse cancers [27–31]. In gastric cancer, miR-7-5p 
suppresses the metastasis of cancer cells via inhibiting 
epidermal growth factor receptor signaling pathway [30]. 
In melanoma, miR-7-5p can repress the growth and inva-
sion of cancer cells via inhibiting the RelA/NF-κB signal-
ing pathway [31]. But little is known concerning whether 
miR-7-5p has an inhibitory effect on T-ALL and the reg-
ulatory mechanism.

Transcription factor 4 (TCF4) is abnormally expressed 
in many tumors, such as pancreatic cancer and leukemia 
[32–34]. TCF4 is fundamental to the biological behavior 
of cancer cells, targeting multiple oncogenes, like MYC, 
PRMT 5, CCND 1, CD44 and MMP-2, all of which are 
involved in the progression of tumors [35–40]. However, 
the role of TCF4 and its upstream regulatory mechanism 
in the progression of T-ALL are obscure.

Bioinformatics suggests that there are potential bind-
ing sites between ANRIL and miR-7-5p, miR-7-5p and 
3′UTR of TCF4. This work aimed to probe into the 
function of ANRIL/miR-7-5p/TCF4 axis in T-ALL and 
provide a theoretical foundation for the progression of 
T-ALL.

Materials and methods
T‑ALL patients and ethics statement
Clinical specimens (bone marrow tissues) were obtained 
from 27 patients newly diagnosed as T-ALL. Bone mar-
row tissues from 27 healthy cases served as the control 
group. All participants in this study signed informed con-
sent, and the study obtained the approval of the Clinical 
Ethics Committee of Henan Provincial People’s Hospital. 
The inclusion criteria for each patient were as follows: 

newly diagnosed T-ALL patients who visited Henan Pro-
vincial People’s Hospital from January 2015 to March 
2018 were included in the study; these patients were 
diagnosed according to classification of morphology, 
immunology, cytogenetics, and molecular biology. The 
exclusion criteria were: severe heart dysfunction, severe 
arrhythmia, severe lung dysfunction, severe hepatic or 
renal dysfunction; other solid tumor history. For T-ALL 
patients, flow cytometry analysis was used to make diag-
nosis and differentiation (positive for T cell antigens like 
CD2, CD3, CD4, CD7, CD8, positive for stem cell/pro-
genitor cell marker CD34 and CD38, and negative for 
myeloid antigens like CD13, CD14, CD15, CD33 and 
CD117). The patients’ group: 21 males and 6 females, 
with a median age of 28 years (range: 11–47 years). The 
healthy controls’ group: 17 males and 10 females, with 
a median age of 26  years (range: 7–49  years). The sam-
ples were obtained at the time of the diagnosis, and 
the enrolled patients had not received cancer-related 
treatments.

Cell culture
Human T-ALL cell lines (MOLT4 cells, CCRF-CEM cells, 
and KOPT-K1 cells) were available from the Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China). 
T lymphocytes from normal bone marrow tissues were 
used as normal control. All T-ALL cells were cultured 
in RPMI-1640 medium (Invitrogen, CA), supplemented 
with 10% fetal bovine serum (FBS, Hyclone, South Logan, 
UT) and 1% penicillin/streptomycin (Sigma-Aldrich, St. 
Louis, MO, USA) in 5% CO2 at 37 °C.

RNA isolation and quantitative real‑time polymerase chain 
reaction (qRT‑PCR)
Total RNA was isolated using TRIzol agent (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s 
instruction. RNA was synthesized into complementary 
DNA using a Prime Script RT kit (Takara, Otsu, Japan). 
ANRIL, miR-7-5p and TCF4 expression was detected 
by ABI 7500 Real-Time PCR system (Applied Biosys-
tems, USA). qRT-PCR was performed with the following 
cycling conditions: denaturation at 95 °C for 30 s, anneal-
ing at 60  °C for 30 s and extension at 72  °C for 15 s, 40 
cycles. GAPDH or U6 were used as internal references. 
Specific PCR primers were synthesized by Thermo Fisher 
Scientific (Shanghai, China). Primer sequences in this 
study were shown in Table 1. The relative expressions of 
the genes were calculated utilizing the 2−ΔΔCt method.

Cell transfection
GenePharma Co., Ltd (Shanghai, China) constructed the 
ANRIL overexpression plasmid (pcDNA-ANRIL), con-
trol plasmid (pcDNA-NC), short-hairpin RNA (shRNA) 
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targeting ANRIL (sh-ANRIL), shRNA negative control 
(sh-NC), miR-7-5p mimics and miR-7-5p inhibitors. 
Lipofectamine® 2000 (Invitrogen, Carlsbad, CA, USA) 
was used to perform transfection. ANRIL overexpression 
plasmid was transfected into MOLT4 cells to establish 
ANRIL overexpression model. sh-ANRIL was transfected 
into CCRF-CEM cells and KOPT-K1 cells to construct 
ANRIL knockdown expression models. The oligonu-
cleotides were transfected into T-ALL cells at a final 
concentration of 50  nM using the Lipofectamine® 2000 
following the manufacturer’s instructions. After transfec-
tion for 48 h, the transfection efficiency of cells in each 
group was detected by qRT-PCR.

Dual luciferase reporter assay
The target sequence of ANRIL was predicted through 
bioinformatics analysis. Wild type ANRIL (ANRIL-WT) 
or mutant ANRIL (ANRIL-MT) sequence was inserted 
into pmirGLO dual-luciferase miRNA target reporter 
vector (Promega, Madison, WI, USA). MOLT4 cells, 
CCRF-CEM cells and KOPT-K1 cells were inoculated 
in 24-well plates (5000 cells per well), and cultured for 
24  h. After that, ANRIL-WT or ANRIL-MT reporter 
was co-transfected into the cells with miR-7-5p mimics 
or control microRNA, respectively. Then the cell cul-
ture was continued for 48  h, and the luciferase activity 
of each group was determined using the Dual-Luciferase 
Reporter Assay System (Promega, Madison, WI, USA).

Cell proliferation assay
MOLT4 cells, CCRF-CEM cells and KOPT-K1 cells were 
inoculated in 96-well plates (1000 per well) and cul-
tured. On each day, each well was added with 10 μL Cell 
Counting Kit-8 (CCK-8; Dojindo, Kumamoto, Japan), and 

incubated for 2 h. After that, the absorbance of the cells 
was measured at 450 nm with a microplate reader (Bio-
Rad, Hercules, CA, USA). The absorbance of the cells was 
measured at the 24 h, 48 h, 72 h and 96 h, respectively. 
Finally, the proliferation curve was plotted.

Apoptosis assay
FITC Annexin V/Dead Cell Apoptosis Kit (Invitrogen, 
Shanghai, China) was used to detect the apoptosis of the 
cells. In brief, MOLT4 cells, CCRF-CEM cells and KOPT-
K1 cells were harvested, carefully rinsed twice using 
PBS and suspended in binding buffer. Next, 5 μL FITC 
Annexin V kit and 1 μL propidium iodide (PI) solution 
(100 μg/mL) were used to stain the cells (100 μL of cell 
suspension) for 30 min at room temperature in the dark. 
Then the cell apoptosis was detected by flow cytometry 
(Becton, Dickinson, Mountain View, USA).

Migration and invasion experiment
The migration experiment was performed with Tran-
swell chambers (8  μm pore diameter, Corning, NY, 
USA). 24  h after transfection, cells were harvested and 
resuspended with serum-free medium, and the cell den-
sity was modulated to 1 × 105/mL. Then 200 μL of the 
cell suspension was added into the upper compartment 
of the chamber, and medium containing 10% FBS was 
added into the lower compartment. Then the Transwell 
chamers were moved into the incubator and the cultured 
was continued. After 24 h, the migrated cells were meas-
ured through a microscope. For invasion experiments, 
Matrigel® (BD, Franklin Lakes, NJ, USA) was coated 
on the membrane of the Transwell chambers, and the 
remaining procedures were the same as that in the migra-
tion experiment.

Western blotting
1 × 106 cells were washed with PBS, and lysed using 
200 µl RIPA lysis buffer (Beyotime, Hangzhou, China). 
The supernatant was collected after high speed centrifu-
gation (16,000×g, 10 min, 4  °C) and the protein was dena-
tured by heating the samples in boiling water for 5 min. 
After quantifying the protein by the bicinchoninic acid 
(BCA) Protein Assay Kit (Boster, Wuhan, China), pro-
tein samples were separated by 10% sodium dodecylsul-
fate polyacrylamide gel electrophoresis (SDS-PAGE) and 
transferred into a nitrocellulose (NC) membrane (Mil-
lipore, MA, USA). Then, the NC membrane was blocked 
with defatted milk for 30 min at room temperature. Then 
the primary antibody was added on the NC membrane 
and incubated overnight at 4  °C. After that, the NC 
membrane was washed with TBST, followed by being 
incubated with the secondary antibody for 1  h at room 
temperature, and then developed chemiluminescence 

Table 1  The sequence for  PCR primer sequences 
and ANRIL shRNA and control shRNA

Gene Sequence

ANRIL F, 5′-CAA​CAT​CCA​CCA​CTG​GAT​CTT​AAC​A-3′

R, 5′-AGC​TTC​GTA​TCC​CCA​ATG​AGA​TAC​A-3′

miR-7-5p F, 5′-AAA​ACT​GCT​GCC​AAA​ACC​AC-3′

R, 5′-GCT​GCA​TTT​TAC​AGC​GAC​CAA-3′

U6 F, 5′-CTC​GCT​TCG​GCA​GCA​CAT​ATACT-3′

R, 5′-ACG​CTT​CAC​GAA​TTT​GCG​TGTC-3′

TCF4 F, 5′-CTT​CCT​CCA​AAC​CAG​CAA​CC-3′

R, 5′-CCC​AAC​ATT​CCT​GCA​TAG​CC-3′

GAPDH F, 5′-CGG​AGT​CAA​CGG​ATT​TGG​TCG​TAT​-3′

R:5′-AGC​CTT​CTC​CAT​GGT​GGT​GAA​GAC​-3′

Scramble shRNA sequence TCC​TAA​GGT​TAA​GTC​GCC​CTC​

ANRIL shRNA sequence GGU​CAU​CUC​AUU​GCU​CUA​U
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with ECL reagent (Millipore, Bedford, MA, USA). The 
antibodies used in this study were: anti-TCF4 antibody 
(ab185736, 1: 500, Abcam, Cambridge, UK), anti-β-actin 
antibody (ab179467, 1:2000, Abcam, Cambridge, UK), 
and Goat polyclonal Secondary Antibody to Rabbit IgG–
H&L (ab6940, 1:2000, Abcam, Cambridge, UK).

RNA immunoprecipitation (RIP) assay
RIP was performed using the Magna RIP RNA Binding 
kit (Millipore, Billerica, MA, USA). Briefly, cells were 
washed and cross-linked with 0.01% formaldehyde for 
15  min. Then the cells were added into the lysates and 
incubated with the anti-Ago2 antibody conjugated with 
magnetic beads with rotating overnight at 4   °C. After 
treating the lysates with proteinase K buffer, immuno-
precipitated RNA was extracted by using the RNeasy 
MinElute Cleanup Kit (Qiagen, Guangzhou, China) and 
reversely transcribed using Prime-Script RT Master Mix 
(TaKaRa, Dalian, China). qRT-PCR was used to detect 
the abundance of miR-7-5p and TCF4.

Statistical analysis
All data were shown as mean ± SD. SPSS 22.0 software 
(SPSS Inc., Chicago, IL, USA) and GraphPad Prism 6 
software (GraphPad Software Inc., San Diego, CA, USA) 

was applied to do statistical analysis. Student’s t-test 
method was used to compare the data between two 
groups. P < 0.05 was evaluated as statistically significant.

Results
ANRIL and TCF4 were remarkably highly expressed 
in bone marrow tissues of T‑ALL patients, while miR‑7‑5p 
was significantly lowly expressed
To explore the associations among ANRIL, miR-7-5p and 
TCF4, we firstly used qRT-PCR to detect ANRIL, miR-
7-5p and TCF4 mRNA expressions respectively in bone 
marrow tissues of patients with T-ALL and healthy vol-
unteers. The results suggested that compared with that 
of healthy controls, the expressions of ANRIL and TCF4 
in bone marrow tissue of T-ALL patients were dramati-
cally up-regulated, while miR-7-5p expression was down-
regulated (P < 0.001, Fig.  1 a–c). Correlation analysis 
was then performed and revealed a negative correlation 
between ANRIL and miR-7-5p (R = −0.4673, P < 0.05, 
Fig. 1d); miR-7-5p and TCF4 expressions were also nega-
tively correlated (R = −0.6034, P < 0.001, Fig.  1e), while 
ANRIL expression and TCF4 expression were positively 
correlated (R = 0.6749, P < 0.001, Fig.  1f ). These data 
implied potential regulatory relationships among ANRIL, 
miR-7-5p and TCF4.

Fig. 1  Correlation of ANRIL, miR-7-5p and TCF4 expression levels. a-c The relative expression levels of ANRIL, miR-7-5p and TCF4 in bone marrow 
tissues of 27 T-ALL patients and 27 healthy volunteers were detected by RT-PCR. d The expression level of ANRIL in T-ALL was negatively correlated 
with the expression level of miR-7-5p. e The expression level of miR-7-5p was negatively correlated with that of TCF4. f The expression level of TCF4 
was positively correlated with that of ANRIL. *** P < 0.001
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ANRIL targeted miR‑7‑5p
Then LncBase Predicted v.2 was used to predict the 
potential target miRNAs of ANRIL. Interestingly, it 
was found that miR-7-5p was the downstream poten-
tial targets for ANRIL, and the potential binding site 
was presented (Fig. 2a). Compared with T lymphocytes 
from normal bone marrow tissues, the expression lev-
els of ANRIL in three different T-ALL cells (MOLT4, 

CCRF-CEM and KOPT-K1) were significantly 
increased. Of the 3 T-ALL cell lines, ANRIL expression 
was the lowest in MOLT4 cell lines, which were chosen 
for the follow-up ANRIL overexpression experiments. 
ANRIL expression was the highest in CCRF-CEM and 
KOPT-K1 cell lines, which were selected for succedent 
ANRIL-knockdown assays (Additional file  1: Figure 
S1). As shown, ANRIL overexpression plasmid and 

Fig. 2  ANRIL targeted miR-7-5p and down-regulated its expression in T-ALL. a The binding sequence between ANRIL and miR-7-5p was predicted 
by bioinformatics analysis. b MOLT4 cells were overexpressed with ANRIL, and ANRIL in CCRF-CEM and KOPT-K1 cells was knocked down. c ANRIL 
regulated miR-7-5p expression level in MOLT4 cells, CCRF-CEM cells and KOPT-K1 cells. d Dual-luciferase reporter assays were performed in MOLT4, 
CCRF-CEM and KOPT-K1 cells to validate the binding site between ANRIL and miR-7-5p. *P < 0.05, **P < 0.01, and ***P < 0.001
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sh-ANRIL were transfected into T-ALL cells to estab-
lish overexpression and knockdown models respec-
tively, and the transfection efficiency was validated 
by qRT-PCR after transfection for 48  h (P < 0.001, 
Fig.  2b). Next, qRT-PCR showed that overexpression 
of ANRIL significantly reduced miR-7-5p expression 
in MOLT4 cells, and ANRIL knockdown enhanced 
miR-7-5p expression in CCRF-CEM cells and KOPT-
K1 cells (P < 0.01, Fig. 2c). Additionally, dual luciferase 
reporter assays confirmed that ANRIL had a binding 
site for miR-7-5p and probably acted as a “molecular 
sponge” for miR-7-5p (P < 0.05, Fig. 2d).

ANRIL accelerated proliferation and inhibited apoptosis 
of T‑ALL Cells via regulating miR‑7‑5p
To further elucidate the influence of ANRIL and miR-
7-5p on proliferation and apoptosis of T-ALL cells, 
miR-7-5p mimics were co-transfected into MOLT4 cells 
with ANRIL overexpression; miR-7-5p inhibitors were 
co-transfected into CCRF-CEM and KOPT-K1 cells 
with ANRIL knockdown. After transfection for 48  h, 
the results of qRT-PCR indicated successful transfec-
tion (P < 0.05, Fig. 3a). It was found that miR-7-5p could 
not observably change the expression level of ANRIL 
(P > 0.05, Fig.  3b). On this basis, CCK-8 experiment 
was performed to detect the proliferation of MOLT4, 
CCRF-CEM and KOPT-K1 cells at 24 h, 48 h, 72 h and 
96  h, respectively. It showed that proliferation rate of 
MOLT4 cells with overexpressed ANRIL was faster than 

Fig. 3  ANRIL promoted proliferation of T-ALL cells by regulating miR-7-5p. a Transfection efficiency was detected by RT-PCR after the transfection 
of miR-7-5p mimics into MOLT4 cells with overexpressed ANRIL, and miR-7-5p inhibitors into CCRF-CEM cells and KOPT-K1 cells with ANRIL knocked 
down. b After transfection, the expression of ANRIL in T-ALL cell lines was detected by RT-PCR. c ANRIL promoted MOLT4 cell proliferation and 
co-transfection of miR-7-5p mimics into MOLT4 cells reversed this effect; ANRIL knockdown inhibited CCRF-CEM and KOPT-K1 cells proliferation, and 
co-transfection of miR-7-5p inhibitors partly neutralized this effect. *P < 0.05, **P < 0.01, and ***P < 0.001
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that of that control group (P < 0.01); after transfection of 
the miR-7-5p mimics, this effect was markedly reduced 
(P < 0.01, Fig.  3c). The proliferation rate of CCRF-CEM 
cells and KOPT-K1 cells with ANRIL knockdown was 
lower than that of the control group (P < 0.01), and this 
effect was partly reversed by co-transfection of miR-7-5p 
inhibitors (P < 0.05, Fig. 3c). Then we detected the apopto-
sis of T-ALL cells by flow cytometry after transfection for 
48 h. As expected, the apoptotic rate of MOLT4 cells with 
overexpressed ANRIL was remarkably decreased com-
pared with that of the control group (P < 0.01), and this 
was remarkably reversed by co-transfection of miR-7-5p 
mimics (P < 0.05, Fig.  4a). The apoptosis of CCRF-CEM 
and KOPT-K1 cells with ANRIL knockdown was signifi-
cantly higher than that of the control group (P < 0.001), 
and the effects were reduced after transfection of miR-
7-5p inhibitors (P < 0.05, Fig. 4b–c). These suggested that 
ANRIL could facilitate the proliferation and inhibit the 
apoptosis of T-ALL cells partly via regulating miR-7-5p.

ANRIL promoted migration and invasion of T‑ALL cells 
by regulating miR‑7‑5p
Subsequently, we pinpointed the possible mechanisms 
by which ANRIL regulated the metastasis of T-ALL cells 
by Transwell assay. As shown (Fig. 5a–b), the number of 
migration and invasion MOLT4 cells with overexpressed 
ANRIL was markedly higher than that of the control 
group (P < 0.05); transfection of miR-7-5p mimics partly 
counteracted the function of ANRIL (P < 0.05). Con-
versely, the ability of migration and invasion of CCRF-
CEM cells and KOPT-K1 cells with ANRIL knockdown 
was impeded (P < 0.01), but it could be reversed by 
co-transfection of miR-7-5p inhibitors (P < 0.05). Col-
lectively, these data implied that ANRIL promoted the 
metastasis of T-ALL cells via regulating miR-7-5p.

Fig. 4  ANRIL Inhibited apoptosis of T-ALL cells by regulating miR-7-5p. a ANRIL overexpression inhibited MOLT4 cell apoptosis and co-transfection 
of miR-7-5p mimics reversed this effect; b ANRIL knockdown induced CCRF-CEM cell apoptosis and co-transfection of miR-7-5p inhibitors reversed 
this effect; c ANRIL knockdown induced KOPT-K1 cell apoptosis and co-transfection of miR-7-5p inhibitors reversed this effect. *P < 0.05, **P < 0.01, 
and ***P < 0.001
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TCF4 was a target of miR‑7‑5p and could be indirectly 
modulated by ANRIL
To fathom the downstream mechanism of ANRIL/
miR-7-5p axis, the target genes of miR-7-5p was pre-
dicted by multiple online bioinformatics databases 
(http://www.targe​tscan​.org/vert_72/; http://www.
micro​rna.org/micro​rna/home.do; http://mirdb​.org/
miRDB​/), and it showed that TCF4 had the poten-
tial to be a target of miR-7-5p (Fig. 6a). qRT-PCR and 
Western blot displayed that TCF4 mRNA and protein 
expressions were significantly decreased after transfec-
tion of miR-7-5p mimics into T-ALL cells, and trans-
fection of miR-7-5p inhibitors had the opposite effect 
(Fig.  6b–c). Subsequently, dual luciferase reporter 
experiments revealed that miR-7-5p specifically bound 
to the 3′UTR of TCF4 (P < 0.01, Fig. 6d). Furthermore, 
findings concluded by RIP suggested the TCF4 mRNA 
and miR-7-5p were directly interacted (Additional 
file 2: Figure S2). Western blot also showed that TCF4 
expression was obviously up-regulated after transfect-
ing T-ALL cells with ANRIL overexpression plasmid, 
and the transfection of ANRIL shRNA reduced the 
expression of TCF4 in T-ALL cells (Fig. 6e). These data 
implied that TCF4 was a downstream gene of miR-
7-5p, and ANRIL could positively regulate its expres-
sion indirectly.

Discussion
ANRIL, located in chromosome 9p21, is confirmed 
to facilitate cancer progression in a variety of tumors 
including thyroid cancer, head and neck squamous cell 
carcinoma, liver cancer, non-small cell lung cancer, 
cervical cancer and so on [13, 16, 17, 41, 42]. It pro-
motes cancer progression via multiple mechanisms. For 
example, in thyroid cancer, it activates TGF-β/Smad 
signaling pathway [13]; in liver cancer, it serves as a com-
petitive endogenous RNA (ceRNA) to promote tumo-
rigenesis through regulation of FGFR1 expression by 
sponging miR-125a-3p [17]. Its oncogenic role in hema-
tological malignancies has also been revealed in recent 
years. In acute myeloid leukemia (AML), ANRIL is up-
regulated in patients at diagnosis and down-regulated in 
patients with complete remission; it is proved to modu-
late the glucose metabolism related pathway of AdipoR1/
AMPK/SIRT1 to promote AML cell survival [43]. ANRIL 
also sponges miR-34a to up-regulate HDAC1, and in turn 
mediate the epigenetic suppression of ASPP2, which 
contributes to the proliferation, migration and invasion 
of AML cells [44]. In this study, it was demonstrated 
that compared with healthy cases, ANRIL was signifi-
cantly highly expressed in the bone marrow tissues of 
T-ALL patients. Our gain-of-function and loss-of-func-
tion experiments confirmed that ANRIL overexpression 

Fig. 5  ANRIL promoted T-ALL cells migration and invasion by regulating miR-7-5p. a Transwell migration experiment showed that ANRIL 
overexpression enhanced the migration ability of MOLT4 cells, which could be partially neutralized by miR-7-5p mimics; ANRIL knockdown 
inhibited the migration of CCRF-CEM and KOPT-K1 cells, and miR-7-5p inhibitors could partially attenuated this. b Transwell invasion assay showed 
that ANRIL overexpression promoted MOLT4 cell invasion, and transfection of miR-7-5p mimics reversed this; ANRIL knockdown inhibited the 
invasion of CCRF-CEM and KOPT-K1 cells, and miR-7-5p inhibitors partially reversed this. *P < 0.05, **P < 0.01, and ***P < 0.001

http://www.targetscan.org/vert_72/
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://mirdb.org/miRDB/
http://mirdb.org/miRDB/
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significantly facilitated the proliferation, migration, inva-
sion and inhibited apoptosis of T-ALL cells, while cells 
with ANRIL knockdown displayed the opposite effect. 
The above studies indicated that ANRIL was an onco-
genic lncRNA during the progression of T-ALL. To our 

best knowledge, this work was the first to investigate the 
expression pattern and function of ANRIL in T-ALL.

Recently, the tumor-suppressive effect of the miR-7 
family is confirmed in various tumors [45–48]. For exam-
ple, miR-7 negatively modulates MAP3K9 expression, 

Fig. 6  TCF4 was a target gene of miR-7-5p and modulated by ANRIL. a Binding site between the 3′UTR of TCF4 and miR-7-5p was predicted by 
bioinformatics analysis. (b-c) RT-PCR and Western blot showed that transfection of miR-7-5p mimics significantly decreased the expression of TCF4 
mRNA and protein; conversely, transfection of miR-7-5p inhibitors increased the expression of TCF4 mRNA and protein. d MiR-7-5p significantly 
inhibited the luciferase activity of wild-type TCF4 3′UTR, but had no significant effect on the luciferase activity of the mutated TCF4 3′UTR. e Western 
blot was used to detect the expression of TCF4 after ANRIL was overexpressed or knocked down. *P < 0.05, **P < 0.01, and ***P < 0.001
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suppressing the proliferation and promoting apoptosis 
of pancreatic cancer cells via hindering the MEK/ERK 
signaling pathway [47]. In addition, miR-7 can regulate 
TET2, which participates in the pathogenesis of acute 
myeloid leukemia by disrupting normal hematopoiesis 
[48]. In this study, miR-7-5p was found to be down-reg-
ulated in the bone marrow tissues of T-ALL cells. It was 
proved that ANRIL could negatively regulate the expres-
sion of miR-7-5p in T-ALL cells, and the binding rela-
tionship between ANRIL and miR-7-5p was confirmed. 
It was also demonstrated that the tumor-promoting 
effects of ANRIL in T-ALL cells were partly reversed by 
the co-transfection of miR-7-5p. These data indicated 
that miR-7-5p was a tumor suppressor in T-ALL, and the 
overexpression of ANRIL contributed to its dysregulation 
in T-ALL.

As is well-known, TCF4 promotes disease progression 
in diverse tumors, such as breast cancer, colon cancer and 
prostate cancer [49–51]. In addition, it is also reported 
that TCF4 is highly expressed in hematopoietic stem 
cells, and is associated with the progression of myelodys-
plastic syndrome and acute myeloid leukemia [52, 53]. In 
AML, the high expression of TCF4 indicates adverse clin-
ical outcomes of the patients [52]. Additionally, increased 
TCF4 transcriptional activity contributes to the patho-
genesis of transformation of post-myeloproliferative 
neoplasms into secondary AML, which is related with 
the abnormal activation of wnt/β-catenin signaling [52–
54]. In adult T-cell leukemia, TCF4 up-regulates BIRC5 
expression, which probably increase the viability of cell 
viability [55]. In this work, it was demonstrated that 
TCF4 was significantly up-regulated in the bone marrow 
tissues of T-ALL patients. Additionally, it was identified 
as a target gene of miR-7-5p. It was negatively regulated 
by miR-7-5p, but positively regulated by ANRIL. These 
data suggested that ANRIL/miR-7-5p/TCF4 axis was 
involved in the tumorigenesis and progression of T-ALL.

This work has several limitations. First of all, in  vivo 
experiments are of great significance to further validate 
the role of ANRIL/miR-7-5p/TCF4 axis in T-ALL pro-
gression. Additionally, whether ANRIL can regulate 
other phenotypes of T-ALL cells (such as chemosensitiv-
ity) awaits further exploration. Last but not the least, a 
considerable number of patients from different centers is 
required, and it is worth exploring whether the dysregu-
lation of ANRIL/miR-7-5p/TCF4 axis is associated with 
the patients’ prognosis.

Conclusion
To sum up, this study confirms that ANRIL promotes the 
proliferation and metastasis of T-ALL cells via modu-
lating miR-7-5p and TCF4. This work provides a new 
theoretical basis for clarifying the mechanism of NPC 

progression, and implies that ANRIL, miR-7-5p and 
TCF4 are potential diagnostic biomarkers and therapy 
targets.
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