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Abstract 

Background:  At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Thera-
nostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that 
relies on the development of biomarkers particularly “liquid biopsy”. Circulating tumor cells (CTCs) and tumor-derived 
exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which 
cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, 
recent attempts has shifted towards minimally noninvasive methods.

Main text:  CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detect-
able in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment 
response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major 
challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the develop-
ment of isolation and characterization; a standardizable approach. This review highlights and discusses the current 
challenges to find the bio fluids application in CRC early detection and clinical management.

Conclusion:  Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer 
patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the 
limited data available from clinical trials, further validations are required before addressing their putative application in 
oncology.

Keywords:  Colorectal cancer, Circulating tumor cells (CTCs), Tumor-derived exosomes (TDEs), Clinical trial, 
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Background
Colorectal cancer (CRC) is the third leading cause of can-
cer-related mortality and morbidity [1] and fifty percent 
of patients suffering from metastasis undergo surgery [2] 
which creates huge obstacles in treatment and eventually 

leads to patient death. Unfortunately, primary tumor 
resection appears not able to evacuate seeded malignant 
growth cells, and guides dormant cancer cells to induce 
metastatic growth leading to recurrence by circulating 
tumor cells (CTCs) and tumor-derived exosomes (TDE) 
in some cases [3]. Traditional biomarkers (CEA, CA19-9 
and FOBT), as well as colon/sigmoidoscopy play an unsat-
isfactory specificity roles in colorectal screening [4]. Since 
the demerits of these various CRC screening tests are 
considerable [5]; shifting to repeatable noninvasive meth-
ods such as liquid biopsy attracted much attention [6, 7].
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CTCs and TDEs are liquid biopsy tools which can pro-
vide complementary information about the whole tumor 
[8, 9]. Detection of them as a source of molecular mark-
ers (DNA, RNA, miRNA and proteins) provide relevant 
predictive gene signatures. They can be isolated from 
body fluids to elucidate patient’s clinical guidance and 
mediated tumor signatures [10, 11]. They are important 
in diagnostic, prognostic and cancer staging and has 
profitable usage in the estimation of relapse risk, thera-
peutic targets identification, intervention for stratifica-
tion, sequential and continuous checking of treatments, 
determination of predictive information, and minimal 
residual disease follow up [12, 13]. Standardization of 
integrated pre/post analytical workflows of sample han-
dling (isolation and characterization) must be greatly 
considered as priorities in increasing patient survival due 
to accurate therapy decision making [14]. The current 
review summarizes clinical translation, isolation meth-
ods, and crosstalk of CTCs and TDEs as a practical con-
cept in colorectal cancer liquid biopsy.

CTCs & TDEs in CRC​
Comprehensive concept and biology
The main step in cancer progression is detachment, inva-
sion of cancer cells and extravasation in order to metas-
tasize to survive [15]. The most important materials 
shed into the systemic blood to establish pre-metastatic 
niche in maintenance of stemness and promote immune 
evasion include CTCs, TDEs and even cancer stem cells 
(CSCs). CTCs as a valuable disease indicator [16] among 
thousands of tumor cells leak into circulation and can 
survive. This ability is due to various mechanisms attrib-
uted to it such as resistance to blood shearing forces, 
anoikis, immune system attack and also down regulation 
of c-myc, β-catenin and Ki-67, and over expression of 
CD47 [17]. An average number of CTCs in a metastatic 
patient is between 5 and 50 in 7.5  cc peripheral blood, 
thus it is extremely low and suffers a number of chal-
lenges such as high fragility, low half-life, gain/loss of cell 
markers, vast range of phenotypic and genotypic hetero-
geneity, and plasticity [18].

On the other hand, the concept of CSCs as a small 
population with diverse phenotype, self-renewal ability, 
cellular differentiation and resistance to conventional 
therapies can contribute to tumor progression [19, 20]. 
Self- homing CTCs have been reported as delivery vehi-
cles for anti-cancer therapeutics. Hence, detection, enu-
meration and molecular characterization of CTCs and 
CSCs are considered to be impediment factors in cancer 
clinics [21].

Tumor cells shed under epithelial mesenchymal tran-
sition (EMT) or by centrosome amplification triggering 
or external forces [22]. In addition, the mesenchymal 

epithelial transition (MET), as a reverse process, estab-
lishes micro metastasis. Advancing knowledge related to 
dominant drivers in cancer complex interactions is criti-
cal for therapeutic scheme design [23].

CTCs may exist as single cells with a wide range of 
EMT phenotype or in clusters with platelets, and/or reac-
tivated stromal cells and macrophages [24]. CTC phe-
notype incorporate with epithelial tumor cells as well as 
EMT, half-breed (epithelial/EMT), irreversible EMT can-
cer cells, and CSCs that is shown in Fig. 1 [25]. Platelets 
surround the CTCs as supporters and promote tumor 
cells EMT and facilitate development in the distant 
organs [26]. CTC numbers before and during treatment 
are an independent indicator of overall survival (OS) and 
progression-free survival (PFS), by genome, expression, 
protein and functional analysis [27]. CTCs from 2004 in 
three metastatic cancers were introduced in clinics as an 
independent prognostic factor of survival [21].

Additionally, extracellular vesicles (EVs) contain apop-
totic bodies (500–1000 nm), microvesicles (100–350 nm), 
and exosomes (30–150  nm) [28]. Pan et  al. in 1983, for 
the first time, introduced and confirmed exosomes 
[29, 30] which are vesicles secreted by various kinds 
of cells and include a broad repertoire of cargo such as 
DNAs, RNA, proteins and lipids (Fig.  1) [31]. TDEs are 
originated from multivesicular bodies (MVBs) and the 
plasma membrane fusion and release their contents to 
be uptaken by targets. TDEs are capable of modulate cel-
lular activities via transferring genetic data of tumor and 
reflect the original cell nature. Exosomes which promote 
adhesion, not only play a significant role in triggering 
signaling pathways such as immune escape and inflam-
matory responses, but also act in the diagnosis, prognosis 
and treatment assessment [21]. Additionally, they have 
been engineered as vectors in cancer intervention and 
affect the tumor microenvironment [32]. They modulate 
the immune response, regulate intercellular communi-
cation, mediate tumor resistance by drug efflux, and are 
even introduced as potential biomarkers in various dis-
eases [33, 34].

General approaches in isolation and characterization
Considering the importance of these two biomarkers 
in basic research and clinical translation, investigating 
the isolation, enrichment, molecular and bioinformat-
ics analysis of them as opposed to a complex biological 
background is crucial [35]. In the past, scientific proof on 
CTCs via RT-PCR and immunocytochemistry based on 
epithelial-specific antibodies gave false positive results 
[36].

CTC detections include five technical indicators: cap-
turing rate efficiency or recovery, purity in the enriched 
sample, CTC concentration limitation in the blood, 
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throughput and biocompatibility [37]. Three general 
mechanisms of CTC enrichment have been developed 
based on the importance of isolation approach namely: 
(1) biological, (2) physical and (3) functional, which have 
been illustrated in Table 1. (1) Immuno/magnetic affinity 
surface/intra cellular marker based on (peptide/aptamer/
antibodies) affinity [38]: (1-A) In positive selection/
capture, CTCs are directly isolated. The first and gold 
standard systems worked based on EpCAM named Cell-
Search™ as the only FDA platform in which labeling with 
an avidin–biotin anti-EpCAM-ferrofluid complex was 
employed; [39] this method can also be used in vivo assay 
[40]. (1-B) negative selection can be helpful for avoiding 
selection bias marker based on tumor heterogeneity via 
depletion of abundant leucocytes through removal CD45 

and other antigens. (1-C) combination of both selection 
such as Liquid Biopsy platform [41].

(2) Physical/direct enrichment of CTCs (e.g. size and 
deformability, gradient density and di-electrophoresis) 
are the second criteria that can be used to enrich cancer 
cells from blood cells positively and/or negatively. CTCs 
are bigger than 12 µm in comparison with Lymphocytes 
and neutrophils which are lower than 12 µm [42].

(3) Functional measurement exploit CTC cellular activ-
ity, enrichment and separation, namely epithelial immu-
nospot secreted tumor-marker proteins, and have been 
reported in several cancers [43].

Microfluidics has opened a new window in general 
methods via hydrodynamics/inertial focusing/spiral to 
separate CTCs from other blood cells passively. Utilizing 

Fig. 1  The different types of CTCs and extra vesicles in colorectal cancer patient blood circulation. a tumor mass released circulating tumor 
cells to the blood circulation which intravasate to the blood vessel and via systematic transportation can extravasate and establish a colony 
in the secondary metastatic body such as liver and lung. CTCs can move in single or cluster ones that are homotypic or can accompany 
fibroblast, endothelial, platelets and macrophages as heterotypic cells. b Extracellular vesicles also can be shed from tumor mass into the next 
microenvironment that consists of tumor-derived exosomes (TDEs), exosome, microvesicles and apoptotic vesicles that are different from each 
other in size. These vesicles can be received via fusion, receptor-ligand interaction, and endocytosis by their selective target
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immobilized specific CTC antibodies on microchips/
micro-posts or in a herringbone design improve cell 
viability and efficiency [44]. Miniaturization of the tra-
ditional laboratory instrument followed by in  situ cells 
capturing, sorting and analyzing have attracted much 
attention such as CTC-chip [45], graphene oxide–go chip 
[46], hb-chip [47], gem chip [48].

All of these abovementioned methods require identity 
confirmation of the captured, associated cells with differ-
ential staining using high resolution imaging with DAPI 
(nucleated cells), CK (CK20, CK19, CK18, and CK8) (epi-
thelial structural), and anti-CD45 (CTCs) as DAPI+/
CK+/CD45− from circulating white blood cells (WBCs). 
The time for detection of CTCs must be done at least 
7 days postoperatively and also the whole CTC operation 
process had a significant impact on CTC results and must 
be carried out quickly [18, 49].

TDE isolation and purification among a mixture of EVs 
are technically unavailable at the moment. Therefore, 
novel isolation methods are crucial to enrich the specific 
subtypes [76]. Three general approaches for exosome iso-
lation were summarized in Table 2 based on: (1) Physical 
characters including size and gradient density centrifu-
gation (DGC) and ultracentrifugation (UC) (increas-
ing centrifugal force ≥ 100,000g) apply to progressively 
eradicate unwanted smaller debris and bigger subpopu-
lations of vesicles as a gold standard [77]. Furthermore, 
filtration and size exclusion chromatography (SEC) were 
considered as an important approach in this category. 
UC is a labor intensive and time-consuming procedure 
that requires specialist laboratory equipment that can be 
combined with the other modalities such as sucrose gra-
dient and poly ethylene glycol (PEG) to increase the yield 
[78].

(2) Chemical properties, samples incubated with a PEG 
based on their solubility and exosomes separate centrifu-
gation or filtration [79]. Currently, several exosome pre-
cipitation kits such as ExoQuick™, Exospin and the other 
kits are commercially available [80].

(3) Immunoplate- and immunobead-based affinity 
isolation can be accompanied by performing molecular 
labeling of the exosome, including CD81, CD9, CD63, 
TSG101, HSP 70 and Alix. Magcapture™ exosome isola-
tion kit PS and CD63 dynabeads® beads work based on 
this approach. An ELISA-based method was also devel-
oped for exosome detection, in support of functional-
ized approach via specific antibodies. Characterization 
of exosomes based on morphology via scanning electron 
microscope (SEM) and transmission electron microscopy 
(TEM) can be determined. Then nanoparticle tracking 
assay (NTA) and dynamic light scattering (DLS) verify 
wanted vesicle size samples. Finally, their molecular pro-
filing can be defined through conventional ELISA, PCR 
and western blotting [81, 82].

Alternatively, microfluidic based exochips and poly 
dimethyl siloxane (PDMS) innovative sorting platform 
devices by electromagnetic and electrophoretic manipu-
lations have been developed to isolate exosomes. This 
technology has many advantages such as being user 
friendly, with quantitative readouts, high sensitivity, is 
economic, fast and requires minimal sample handling 
[83].

Molecular markers
Colorectal cancer has two types including sporadic 
and hereditary, the first of the two (65%) [95] is directly 
impressed by personal life-style and the second one con-
sists of familial adenomatous polyposis (FAP), due to 

Table 1  Enrichment/isolation approaches of CTCs based on the inherent characteristics

Total approach Methods/kits

Biological (Immuno-affinity)

 Negative selection Rosettesep [50]/Easysep [51]/Magnetic-activated cell sorting (MACS) [52]/Fluorescence-activated cell sorting (FACS) [53]/
Dynal Invitrogen [54]/CTC-iChip [55]/Ephesia [56]/GEDI [57]/QMS [58]

 Positive selection Cell search [39]/Magnetic-activated cell sorting (MACS) [52]/Fluorescence-activated cell sorting (FACS) [53]/Epic system 
[59] Magsweeper [60]/Rosettesep/Easysep/Cytoquest/Adnatest [61]/GILUPI Nanodetector [62]/Liquid Biopsy (Cynve-
nio) [45]/Dynal Invitrogen

Physical

 Size Label-free/Spiral/Vortex/Microfiltration/Vycap/IsoFlux (Fluxion) [62]/Rare cell Devices Isolation by SizE of Tumor/Tropho-
blastic Cells (ISET) [63]/DEPArray [64]/(Silicon Biosystems)/ApoStream (ApoCell) [65]/Clear cell Parsortix [66]/Flexible 
micro spring array (FMSA) [67]/fiber-optic array scanning technology (FAST) [68]/Metacell [69]/Resettable Cell Trap/
CellSieve/FaCTCheckr/ScreenCell/ClearCell FX [70]

 Gradient density OncoQuick (Grenier Bio-One) Ficoll-Paque [71]/Rosettesep/CyteSealer/AccuCyte [72]

 Di-electrophoretic (DEP) DEP-FFF/LFFF-DEP [73, 74]

 Functional analysis EPISOT/Vita-Assay (Vitatex) [75]/Epithelial ImmunoSPOT [38]/in vivo photoacoustic (PA) flow cytometry (PAFC) [62]
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Adenomatous polyposis coli (APC) gene mutations, and 
HNPCC/lynch syndrome, that is caused by MMR genes 
[96].

Colorectal CTC markers included carcinoembryonic 
antigen (CEA/CEACAM5, 7), EpCAM, CK19 and CK20 
[97, 98]. Colon stem-like cells express CD44, CD166 
(ALCAM), CD133 (Prominin-1), CD29, CD24, EPCAM, 
doublecortin like kinase 1 (DCLK1), Leucine-rich repeat-
containing G protein-coupled receptor 5 (Lgr5) [99, 100]. 
Additionally, there are some known markers in targeted 
therapy which have been discussed clinically including 
EGFR, VEGF, IGF-IR the insulin-like growth factor 1 
receptor (IGF-1R), interleukin-4 (IL-4) and bone mor-
phogenetic protein 4 (BMP-4) [101].

Analysis of exosome composition indicated that they 
express tetraspanins, a class of membrane proteins 
including CD9, CD63 and CD81 [102]. The other fre-
quent exosomal proteins are EpCAM, Alix, and TSG101 
[103], GTPases, cytoskeletal proteins, annexines, the heat 
shock proteins (Hsp70 and Hsp90) [104] and integrins 
[105, 106], of which all of the valuable biomarkers were 
drawn in Fig. 2.

Clinical applications to manage patients
CTCs were captured via all the aforementioned 
approaches that have been discussed and cultured 
in  vivo/vitro named patient-derived xenografts (PDXs) 
and CTC-derived xenografts (CDXs) although the estab-
lishment of permanent CTC lines is very challengeable 
[21, 107].

In this section, clinical studies concerned with the colo-
rectal CTCs will be mentioned; 63 trials were registered 
in https​://clini​caltr​ials.gov of which 22 of them were 
completed and summarized in Table  3. Meta-analyses 
and large-scale clinical trials declare that patients with 
CTC number ≥ 5 (per 7.5  ml) were classified as being 
in the aggressive stage IV and would develop distant 
metastasis. Meanwhile, CTC level < 3 cells can also be 
correlated with unfavorable prognostic factor [108] with 
shorter median OS and PFS [109]. Thus, it can be a vital 
factor in cancer progression risk assessment and patients 
must be stratified to be treated promptly based on 

molecular subtypes [110, 111]. Therefore, higher  num-
bers  of CTCs  are seen in patients with a greater  num-
ber of metastatic sites [112]. Regardless of the metastatic 
site, CTC enumeration (cell-based assays) are sufficient 
enough as a proper cancer monitoring index whenever 
CEA and other markers levels are not measurable [113]. 
It is worthy to mention that an elevated CTC number 
was not necessarily associated with apoptotic CTCs 
or CTC debris and could be used to interrogate meta-
static in patients and contribute to run tumor-associated 
events [114, 115].

In another site, only five clinical trials using the key 
word ‘colorectal exosome’ were registered that none of 
them completed. Recently, TDEs have been introduced 
as promising drug delivery vehicles in targeting different 
organs and their selective cargo must be determined to 
increase therapy effectiveness. Thus, scientists are focus-
ing on TDEs components [116] even in inducing anti-
tumor immune responses as cancer vaccine candidates 
[117]. The plasma TDE cargo is enriched in immuno-
suppressive and immunostimulatory receptor/ligands, 
MHC molecules and various tumor-associated antigens 
(TAAs). Their content depends on cellular origin variety 
and carries oncogenic DNA, microRNAs, proteins and 
mRNAs [118] such as GPC1+, tumor suppressor-acti-
vated pathway 6 (TSAP6) [119], ΔNp73 [120], metastatic 
factors (TNC, MET, S100A9, S100A8), signal transduc-
tion molecules (EFNB2, JAG1, SRC, TNIK), and lipid raft 
associated components (PROM1, CAV1, FLOT1 and 2). Ji 
et  al. reported Let-7a-3p, let-7f-1-3p, miR-574-5p, miR-
451a, miR-7641, and miR-4454 are common to all EV 
subtypes [121]. In addition to the detection and co-local-
ization of protein complexes in CRC exosomes, regula-
tion of signaling pathways such as Wnt and EGFR ligand, 
besides autocrine, paracrine, and juxtacrine, contribute 
in priming of the metastatic niche [122]. Furthermore, 
inhibition of exosome secretion, besides targeting CSCs, 
as a new therapeutic strategy, can block tumor associated 
secretion before chemotherapy [123, 124] and facilitate 
cross talk between stromal cells and tumors in cancer 
microenvironment [125].

Table 2  Enrichment/isolation approaches of exosomes based on the inherent characteristics

Methods/kits

Physical Ultracentrifugation [84–87]/Sucrose gradient [88]/Membrane-based filtration/Filter-based/Column-based/Chro-
matography [89]/Nanowire trapping [90]

Chemical Exoquick [91]/Exospin/qEV [92]

Biological (Immuno-affinity) Magcapture™ Exosome isolation kit [93]/Dynabeads®/Fluorescence/colorimetric [94]

https://clinicaltrials.gov
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Crosstalk in tumor microenvironment (TME)
Metabolic cells reprogramming, loss of cell connec-
tion with overexpression of matrix metalloproteinases 
(MMP), cancer cells diapedesis and its integration to 
define target sites contribute in metastasis cascade. 
Tumor microenvironment (TME) consists of CAFs, 
extracellular matrix (ECM), cancer- tumor-associated 
vasculature and inflammatory immune cells. Mediating 
the crosstalk between tumor and tumor-associated cells 
identify as a viable step in cancer development (Fig.  3) 
[126, 127].

Primary TDE conveys messages to the other cells which 
exist in TME, as well as modifying the microenvironment 
through their cargo. Not only does TDE play a pivotal 
role, but also the exosomes secreted by cancer-associated 
factors including CAFs, tumor-associated macrophages 
(TAMs), endothelium, leukocytes and progenitor cells 
should be considered as significant characteristics in 
cancer progression [128]. TDE is also important  in the 

regulation of macrophage polarization and CAF transi-
tion [129].

The data related to the TDE roles in CRC are limited 
but it was approved that TDE in other cancers promotes 
invasiveness by regulating signaling pathway, for exam-
ple, primary TDEs enhance SMAD3/ROS signaling and 
induce CTC survival and cell adhesion. Furthermore, the 
levels of TDEs markers which participated in EMT pro-
cess cellular movement and cell–cell signaling in can-
cer patients’ blood correlated with the disease stage [3]. 
MiRNAs encapsulated in EVs play a significant role in 
metastasis such as circulating exosomal microRNA-203 
via inducing TAM in CRC [130], [130]. Cha et al. showed 
that the KRAS status of CRC have a direct influence on 
the type of miRNAs enriched in exosomes [131]. Con-
ditioned media harvested from M2 macrophages which 
consist of derived exosomes promote CRC motility and 
invasion throughout IL6, Wnt5a, TNFα and EGF mole-
cules [132].

Fig. 2  A brief graphical explanation is provided regarding molecular markers expressed in CTCs, CSCs, and TDEs in CRC​
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Interestingly, an acidic and hypoxic microenvironment 
stimulates the release of TDE and is involved in epithelial 
adheres junctions and cytoskeleton remodeling pathways 
[133]. In addition, TDEs may potentially collaborate in 
the dynamic regulation of the tumor fate and is consid-
ered as a valuable diagnostic non-invasive approach [34, 
134].

Cancer stem cells regulate tumor 
microenvironment via exosomes
CSCs or “tumor-initiating cells”, a rare subpopulation 
are capable of self-renewal and differentiate into special-
ized cells through symmetric division and therapeutic 
resistance drive tumor growth [135]. Nowadays, CSCs 
are investigated in various ranges of solid tumors. CSCs 
derived EVs contribute in tumor initiation, progression, 
angiogenesis, invasion and metastasis formation [136].

Tumor exosome RNAs induce the expression of 
interleukin-1β through NF-κB signaling leading to the 
survival of neutrophil sustain. Colorectal CSCs secreted 
CXCL1 and 2 and attracted neutrophils primed via IL-1β 
to promote CRC cells tumorigenesis [137]. Moreover, 
exosomes  may transfer mutant KRAS to recipient cells 
and trigger increases in IL-8 production, neutrophil 
recruitment as well as the formation of the neutrophil 
extracellular trap (NET), leading to the deterioration of 
CRC [138]. CD44v6 CSC-derived exosomes contribute 
to cancer development by non-cancer initiating cells to 
acquire the CSC phenotype [139].

EVs-derived CSCs with variable patterns of miRNA 
can convey their oncogenic features in order to affect 
cancer proliferation, progression, invasion, metastasis 
[140], activate angiogenesis and stimulate tumor immune 
escape mechanisms [141, 142] (Fig. 3).

Fig. 3  The primary tumor distributes CTCs, CSCs, and TDEs in the CRC microenvironment to metastasize and establish secondary tumors in other 
organs of body via the blood. Exosome derived CTCs release SMAD3, Exosome derived CSCs release CD44v6, CD90, CD105, IL-1B, CXCL 1, 2, 4. In 
addition, Exosome derived cancer-associated fibroblast released Nf-KB and CD81
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Conclusion
Tumor metastasis is still the main principle of cancer 
death, highlighting the importance of investigating an 
updating approach to control it. Cross talks among tumor 
cells and derived-exosomes play a significant role in a 
dynamic network of cancer microenvironment. There-
fore, their recognition and characterization are a crucial 
step in accurate comprehension of molecular and cel-
lular oncology. Tracking cancer related markers in body 
fluid could be helpful to measure residual disease pres-
ence, recurrence, relapse and resistance and address the 
needs of clinicians and patients. Liquid biopsy, includ-
ing CTCs and TDEs as a noninvasive tool in the field of 
precision medicine, provides substantially helpful infor-
mation regarding diagnosis, prognosis, predictive and 
pharmacodynamics.

In spite of numerous merits that can be counted for 
CTCs and TDEs separately or simultaneously (Fig. 4), it 
should be noted that the most challengeable and disad-
vantageous of them concern isolation and purification 

due to methodological restrictions (sensitivity and speci-
ficity) and standardization because heterogeneity must be 
resolved. For example, by inducing the apoptosis of CTCs 
by intervening ROS-mediated DNA damage can inhibit 
the CTCs metastasis along the the EGF pathway which is 
cleared by ingenuity exosome pathway analysis [143]. In 
another study, it was proved that TDEs have equivalent 
prognostic values to CTCs in the investigated metastatic 
cancers. Patients with favorable  CTC  counts can have 
further prognostic stratification using TDEs [144].

Lab on chip (LOC) technology, in order to grow aware-
ness about the point-of-care testing in cancer was devel-
oped and because of low consumption of a sample and 
high compatibility with the liquid biopsy concept and 
personalized medicine it has been welcomed [145, 146]. 
This precious dream can come true with the analysis of 
patient-activated social networks and systems medicine. 
P4 medicine that is predictive, personalized, preven-
tive, and participatory can be helpful in this field, next 
to gene-panel testing due to next-generation sequencing 

Fig. 4  Comparison of the merits of CTCs (green boxes) and TDEs (blue boxes) together. All of the common characterizations of both were drawn in 
the middle (orange boxes)
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(NGS) technology [147] and plays a critical role in cover-
ing the current shortcomings of liquid biopsy regarding 
practicality, standardization, and the result comparisons.

Despite many techniques regarding CTC exosome 
capturing and subgrouping are available in clinics; the 
need for optimization of downstream analysis is tangible. 
Additionally, distinguishing between CTCs with high and 
low metastatic status as well as between TDEs and nor-
mal status is absolutely vital. In conclusion, liquid biopsy 
is an expanding field in the management of CRC patient 
in different stages. It is highly recommended that further 
research be done on CTCs and TDEs alone or simulta-
neously until both can serve as valuable biomarkers in 
clinics.
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