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Identification of a three‑long noncoding 
RNA prognostic model involved competitive 
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Abstract 

Background:  Long noncoding RNA (lncRNA) is generally identified as competing endogenous RNA (ceRNA) that 
plays a vital role in the pathogenesis of kidney renal clear cell carcinoma (KIRC), the most common subtype of renal 
cell carcinoma with poor prognosis and unclear pathogenesis. This study established a novel ceRNA network and thus 
identified a three-lncRNA prognostic model in KIRC patients.

Methods:  Differentially expressed genes (DEGs) were screened out from The Cancer Genome Atlas (TCGA) data-
base. The lncATLAS was applied to determine the differentially expressed lncRNAs (DElncRNAs) of the cytoplasm. 
The miRcode, miRDB, miRTarBase, and TargetScan databases were utilized to predict the interactions of DElncRNAs, 
DEmiRNAs, and DEmRNAs. Cytoscape was used to construct the ceRNA network. Then, a lncRNA prognostic model 
(LPM) was constructed based on ceRNA-related lncRNA that was significantly related to overall survival (OS), and its 
predictive ability was evaluated. Moreover, an LPM-based nomogram model was constructed. The significantly differ-
ent expression of genes in the LPM was validated in an independent clinical cohort (N = 21) by quantitative RT-PCR.

Results:  A novel ceRNA regulatory network, including 73 lncRNAs, 8 miRNAs, and 21 mRNAs was constructed. 
Functional enrichment analysis indicated that integral components of membrane and PI3K–Akt signaling pathway 
represented the most significant GO terms and pathway, respectively. The LPM established based on three lncRNAs 
(MIAT, LINC00460, and LINC00443) of great prognostic value from the ceRNA network was proven to be independent 
of conventional clinical parameters to differentiate patients with low or high risk of poor survival, with the AUC of 1-, 
5- and 10-year OS were 0.723, 0.714 and 0.826 respectively. Furthermore, the nomogram showed a better predictive 
value in KIRC patients than individual prognostic parameters. The expression of MIAT and LINC00460 was significantly 
upregulated in the KIRC samples, while the expression of LINC00443 was significantly downregulated compared with 
the adjacent normal samples in the clinical cohort, TCGA, and GTEx.

Conclusion:  This LPM based on three-lncRNA could serve as an independent prognostic factor with a tremendous 
predictive ability for KIRC patients, and the identified novel ceRNA network may provide insight into the prognostic 
biomarkers and therapeutic targets of KIRC.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Cancer Cell International

*Correspondence:  xiaopeng_hu@sina.com
†Di Zhang and Song Zeng contributed equally to this work
1 Department of Urology, Beijing Chao‑Yang Hospital, Capital Medical 
University, No. 8 GongTi South Road, 100020 Beijing, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4176-3605
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-020-01423-4&domain=pdf


Page 2 of 15Zhang et al. Cancer Cell Int          (2020) 20:319 

Background
Kidney renal clear cell carcinoma (KIRC) is the most 
common and aggressive malignant subtype of renal cell 
carcinoma that has a poor prognosis and high mortality 
in an advanced stage due to the lack of useful biomark-
ers and treatments [1]. Currently, there is a multitude of 
established treatments for KIRC, such as surgical resec-
tion, nonspecific immune approach, targeted therapy 
against vascular endothelial growth factor, and novel 
immunotherapy agents. Despite these treatments, about 
50% of KIRC patients develop metastases, and the 5-year 
survival rate of these patients is still lower than 10% 
[2]. At present, the commonly used clinical prognostic 
markers of KIRC include the pathological grade system 
and tumor node metastasis (TNM) stage, microvascular 
invasion, tumor necrosis, and invasion of the collecting 
system [3]. These clinicopathological risk factors exhibit 
valuable but insufficient prediction of prognosis and esti-
mation for subsets of KIRC patients. Previous researches 
have established some prognostic models and nomo-
grams that incorporate necrosis, blood tests such as lac-
tate dehydrogenase, hemoglobin, platelets, and calcium 
levels, prior nephrectomy, symptoms, and performance 
status [4, 5]. However, due to the intratumor heterogene-
ity of KIRC, these prognostic models cannot accurately 
predict the prognosis of KIRC patients in different sub-
sets [6]. Therefore, the identification of useful prognos-
tic biomarkers and therapeutic targets is urgingly needed 
to predict more accurately and improve the outcome of 
KIRC patients.

Long noncoding RNA (lncRNA), broadly defined as 
noncoding RNA molecules longer than 200 nucleotides, 
has gained emerging attention in cancer biology due to 
their direct and indirect regulatory roles [7]. It has been 
reported to be aberrantly expressed in a broad spec-
trum of tumors, leading to tumor initiation and pro-
gression [8]. Hence, they may serve as promising a new 
type of biomarkers for tumor diagnosis, prognosis, even 
in targeted gene therapy [9]. More recently, extensive 
research has explored the lncRNA expression profiling in 
the KIRC with the development of sequencing technol-
ogy [10–12]. The determination of their interaction with 
other molecules and functional analysis is also widely 
investigated in recent years [13]. Notably, the subcellu-
lar localization of lncRNAs holds valuable clues to their 
molecular function [14]. In the cell nucleus, lncRNA 
could modulate nuclear functions, such as transcription, 
chromatin regulation, and variable splicing [15]. While in 
the cytoplasm, lncRNA could modulate mRNA mainly 

through the competitive endogenous RNA (ceRNA) 
regulation mechanism, according to the ceRNA hypoth-
esis proposed by Salmena et al. in which lncRNA could 
compete with miRNA as a natural sponge and therefore 
indirectly regulate mRNA expression [16, 17]. Since pro-
posed, numerous studies have investigated and validated 
that this lncRNA–miRNA–mRNA regulatory mecha-
nism participates in tumor occurrence, progression, 
and metastasis and the potential prognosis of colorec-
tal cancer, hepatocellular carcinoma, and lung cancer 
[18–20]. However, the overall regulatory functions of 
the lncRNA–miRNA–mRNA ceRNA network remain 
unclear, and the predictive accuracy of the prognostic 
model based on multiple lncRNAs’ expression is virtually 
worthy of exploring in KIRC patients.

In this study, we constructed a ceRNA network to elu-
cidate the potential interaction of differentially expressed 
lncRNAs (DElncRNAs), DEmiRNAs, and DEmRNAs 
in KIRC. The subcellular localization of lncRNA was 
restricted to be cytoplasm in this network. We also 
explored the vital role of the network in KIRC. Subse-
quently, we identified the potential prognostic values of 
lncRNAs included in the ceRNA network and confirmed 
a lncRNA prognostic model (LPM) signature, which was 
established based on three lncRNAs of great prognostic 
value for overall survival (OS), as an independent prog-
nostic biomarker. Then, we demonstrated a nomogram 
with better prediction value in KIRC patients than indi-
vidual prognostic parameters. In the end, an independent 
clinical cohort was used to verify the significantly differ-
ent expression of genes in the LPM by RT-PCR.

Methods
Data source and processing
The level 3 gene expression files and the corresponding 
clinical information for 530 KIRC patients, and miRNA 
expression files for 516 KIRC patients were retrieved 
from The Cancer Genome Atlas (TCGA) database (https​
://porta​l.gdc.cance​r.gov/) (up to October 10, 2019). 
Sequencing was performed by Illumina HiSeq RNA-Seq 
and Illumina HiSeq miRNA-Seq platforms, respectively. 
Among these KIRC patients, a total of 539 KIRC sam-
ples and 72 adjacent normal samples in RNA sequence 
data, 545 KIRC samples and 71 adjacent normal samples 
in miRNA sequence data were subjected to subsequent 
analyses. The annotation data (antisense, lincRNA, and 
sense_intronic/sense overlapping, lncRNAs, 3′ over-
lapping ncRNAs, processed transcripts, antisense, and 
sense intronic) of probes of the TCGA RNA sequence 
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data was recognized as lncRNA, and annotation data 
(protein-coding) as mRNA by using the GENCODE data-
base (https​://www.genco​degen​es.org/). Then, the gene 
symbols were annotated based on the Homo_sapiens.
GRCh38.84.chr.gtf file, which was downloaded from the 
Ensembl database (https​://asia.ensem​bl.org/index​.html).

Identification of differentially expressed genes (DEGs)
We compared the KIRC samples and adjacent normal 
samples to identify DEGs by using DESeq  2 R package 
(Version 1.27.19; http://www.bioco​nduct​or.org/packa​ges/
devel​/bioc/html/DESeq​2.html) with a rigorous threshold 
as |log2-fold change (FC)| > 2.0 and FDR < 0.01 [21]. Then 
a heat map and volcano plot were drawn by using the 
heatmap R package (Version 1.0.1; https​://www.rdocu​
menta​tion.org/packa​ges/pheat​map) and ggpubr R pack-
age (Version 0.2.4; https​://www.rdocu​menta​tion.org/
packa​ges/ggpub​r) in R software (Version 3.6.0; https​://
www.r-proje​ct.org/), to visualize the hierarchical cluster-
ing analysis of the identified DEGs.

Construction of the ceRNA network
The lncATLAS database (http://lncat​las.crg.eu/) was 
used to identify the DElncRNAs located in the cytoplasm 
[22]. Then the DEmiRNAs which potentially interacted 
with DElncRNAs located in the cytoplasm were pre-
dicted using the miRcode (http://www.mirco​de.org/), a 
comprehensive searchable map of putative microRNA 
target sites in the long noncoding transcriptome [23]. 
Subsequently, the target DEmRNAs of DEmiRNA were 
predicted using miRDB (http://mirdb​.org/), miRTarBase 
(http://mirta​rbase​.mbc.nctu.edu.tw/php/index​.php) and 
TargetScan (http://www.targe​tscan​.org/vert_72/) data-
bases [24–26]. After that, Cytoscape software (Version 
3.7.2; http://www.cytos​cape.org/) was utilized to visual-
ize and construct the ceRNA network [27].

Functional enrichment analysis
The pathway and functional enrichment analysis were 
carried out by utilizing KO-Based Annotation System 
(KOBAS) (Version 3.0; http://kobas​.cbi.pku.edu.cn/) 
and the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) (Version: 6.8; https​://
david​.ncifc​rf.gov/), to investigate the potential biological 
implications of the ceRNA network [28, 29]. Significant 
GO terms and pathways were visualized by the GOplot 
(Version 1.0.2; https​://cran.r-proje​ct.org/web/packa​ges/
GOplo​t/index​.html) and ggalluvial (Version 0.9.1; https​
://www.rdocu​menta​tion.org/packa​ges/ggall​uvial​) R pack-
ages, respectively.

Construction and validation of a lncRNA‑related prognostic 
model
Among 530 KIRC patients with RNA-sequencing data 
and clinical information, 514 KIRC patients were sub-
jected to subsequent analyses after excluded according to 
the following criteria: (1) patients without survival infor-
mation including survival time and status; (2) patients 
without complete lncRNA expression data; (3) patients 
who did not meet endpoint with following time less than 
30  days. The expression files of DElncRNAs involved in 
the ceRNA network from 514 KIRC patients were ana-
lyzed through univariate Cox regression analysis in 
which genes were regarded as significant at P < 0.001, to 
identify the prognostic value of the DElncRNAs for OS. 
Then, the least absolute shrinkage and selection opera-
tor (LASSO) model with L1-penalty, performed by using 
the glmnet R package (Version 2.0-16; https​://www.rdocu​
menta​tion.org/packa​ges/glmne​t), was utilized to further 
select crucial lncRNAs from the prognostic DElncRNAs. 
In this method, a sub-selection of lncRNAs involved in 
KIRC patient prognosis was identified by shrinkage of 
the regression coefficient. Eventually, quite a few indica-
tors with a weight of nonzero remained, and most of the 
potential indicators were shrunk to zero. In this process, 
we subsampled the data set 1000 times and selected the 
lncRNAs that were repeated > 900 times [30]. Finally, a 
risk-score based LPM was established using the regres-
sion coefficients from the multivariate Cox regression 
analysis in which genes were regarded as significant at 
P < 0.01. The formula of the risk score was constructed as 
follows:

β stands for the regression coefficient of genes, X repre-
sents the expression level of genes, and N is the number 
of significant genes derived from the multivariate Cox 
regression analysis. The univariate and multivariate Cox 
regression analysis was performed utilizing the survival 
R package (Version 3.1-8; https​://www.rdocu​menta​tion.
org/packa​ges/survi​val). Subsequently, the X-tile 3.6.1 
software was applied to calculate the optimal cutoff to 
classify the KIRC patients into high- and low-risk groups 
[31]. Risk heatmap applying pheatmap R package (Ver-
sion 1.0.12; https​://www.rdocu​menta​tion.org/packa​ges/
pheat​map) was employed to cluster the expression files of 
core lncRNAs, which constructed the LPM, in the high- 
and low-risk groups. Then, the Kaplan–Meier (K–M) 
survival analysis and time‐dependent receiver operat-
ing characteristic (ROC) curves were used to evaluate 
the ability of the LPM to predict OS and disease-spe-
cific survival (DSS) by utilizing the survminer (Version 

Risk score =

N∑

i=1

(β ∗ x).
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0.4.3; https​://www.rdocu​menta​tion.org/packa​ges/survm​
iner) and survival ROC (Version 1.0.3; https​://www.
rdocu​menta​tion.org/packa​ges/survi​valRO​C) R package, 
respectively.

Independence of the LPM from traditional clinical features
514 KIRC patients with complete lncRNA expression 
data, survival information, and complete clinical infor-
mation, including age, gender, pathologic stage, and 
histologic grade, were subjected to subsequent univari-
ate and multivariate Cox regression analyses, to assess 
the independent prognostic ability of the LPM for KIRC 
patients. To better visualize the prognostic value of risk 
score and clinical features, the forest plot was performed 
by using the ggplot2 R package (Version 3.2.1; https​://
www.rdocu​menta​tion.org/packa​ges/ggplo​t2).

Construction and validation of the nomogram
To further determine the predictive accuracy of model 
efficiency for 1-, 5-, 10-year, we constructed a novel 
nomogram, contained significant clinical features and 
calibration plots, based on the results of the multivariate 
Cox analysis utilizing the rms R package (Version 5.1-
4; https​://cran.r-proje​ct.org/web/packa​ges/rms/index​
.html). The concordance index (C-index) was applied 
to evaluate the discrimination of the nomogram, and it 
was corrected by a bootstrap method with 1000 resam-
ples [32]. Besides, the C-index and time-dependent ROC 
curves were performed to compare the predictive accura-
cies of the nomogram and individual prognostic factors. 
Besides, decision curve analysis (DCA) was performed to 
assess the clinical utility of the nomogram by comparing 
the benefits of different models.

Gene set enrichment analysis (GSEA)
GSEA (Version 4.0; http://softw​are.broad​insti​tute.org/
gsea/index​.jsp) was performed between high- and low-
risk groups to identify the potential biological function of 
LPM [33]. An annotated gene set file (c5.bp.v7.0.entrez.
gmt) was chosen as the reference gene set. The threshold 
was set at levels of |NES| > 2 and P < 0.01.

Clinical samples and quantitative RT‑PCR
In the clinical validation set, a total of 21 KIRC patients 
with KIRC samples and adjacent normal samples were 
selected according to the following criteria: (1) patients 
treated in the Beijing Chao-Yang Hospital; (2) patients 
who did not undergo treatment before surgery. Two 
individual experienced pathologists confirmed the final 
diagnosis of samples through identifying the morphol-
ogy of the samples stained with H&E. This study was 
carried out in accordance with The Code of Ethics of the 
World Medical Association (Declaration of Helsinki). All 

patients signed the informed consent, and this study was 
approved by the ethics committees of Beijing Chao-Yang 
Hospital.

Total RNA of samples was extracted using the Trizol 
method, and then we synthesized cDNA via reverse tran-
scription using the HiScript III RT SuperMix Kit (R323-
01, Vazyme, China). The expression levels of lncRNAs 
were quantitated using the AceQ qPCR SYBR Green 
Master Mix (R323-01, Vazyme, China) by the ABI 7500 
real-time PCR system (Applied Biosystems, Foster City, 
CA, USA). The primers used in this study are listed in 
Additional file  1: Table  S1. Target lncRNA levels were 
normalized against GAPDH standards and calculated 
using the 2-ΔΔCt method.

Validation of lncRNAs expression
The expression levels of the three lncRNAs were verified 
in KIRC patients with paired KIRC samples and adja-
cent normal samples from the Beijing Chao-Yang cohort 
(N = 21) and TCGA cohort (N = 72), respectively, by 
using Wilcoxon signed-rank test. Additionally, the differ-
ent expression analysis was further performed in KIRC 
samples (N = 523) from TCGA and normal samples 
(N = 100) from the match TCGA normal and Genotype-
Tissue Expression (GTEx) data by utilizing Gene Expres-
sion Profiling Interactive Analysis (GEPIA2) (http://gepia​
2.cance​r-pku.cn/#index​) [34]. P <0.05 was considered sig-
nificant, and all statistical tests were two-sided.

Results
Identification of differentially expressed genes 
between KIRC samples and adjacent normal samples
A total of 539 KIRC samples and 72 adjacent normal sam-
ples were utilized to screen DElncRNAs and DEmRNAs; 
545 KIRC samples and 71 adjacent normal samples were 
utilized to screen DEmiRNAs. The DESeq  2 R package 
was performed to identify differentially expressed genes 
with a strict cutoff threshold of |log2 FC | > 2 and an 
adjusted P <0.01. Compared with normal samples, 2015 
DElncRNAs, 47 DEmiRNAs, and 2314 DEmRNAs were 
differentially expressed, among which 1461 lncRNAs, 19 
miRNAs, and 1511 mRNAs were upregulated as well as 
554 lncRNAs, 28 miRNAs and 803 mRNAs were down-
regulated (Additional file 1: Table S2). The heat maps and 
volcano plots of DEGs between KIRC samples and adja-
cent normal samples were shown in Fig. 1.

Construction of the ceRNA network
Considering the nuclear-cytoplasmic localization of 
lncRNAs plays a vital role in its molecular function, we 
firstly confirmed the subcellular localization of the 2015 
DElncRNAs by utilizing the lncATLAS database, and 
excluded 385 DElncRNAs which were located only in 
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Fig. 1  Identification of differentially expressed genes. Volcano plots and heatmap plots of differentially expressed lncRNAs (a), miRNAs (b), and 
mRNAs (c) between KIRC samples and adjacent normal samples. Red denotes upregulated genes, and blue denotes downregulated genes in both 
volcano plots and heatmaps. The horizontal axis of the heatmaps represents the samples, and the vertical axis of heatmaps presents the top forty 
DEGs
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the nucleus because the endogenous competition role 
of lncRNAs is mainly exhibited in the cytoplasm. The 
detailed distribution information for the DElncRNAs was 
shown in Additional file 1: Table S3. Then the remained 
DElncRNAs were put into the miRcode database to iden-
tify the potential miRNAs targeting lncRNAs. However, 
only 12 out of predicted miRNAs were selected after 
taking the intersection with 47 DEmiRNAs. We then 
utilized the databases of miRDB, miRTarBase, and Tar-
getScan to identify the downstream target mRNAs with 
reference to the 12 DEmiRNAs. In addition, we selected 
potential mRNAs that only shared by all three databases 
to enhance the veracity of the prediction. The results 
showed that 21 out of 2314 DEmRNAs were identified. 
Finally, a total of 73 DElncRNAs, 8 DEmiRNAs, and 
21 DEmRNAs were eventually incorporated into the 
KIRC-associated ceRNA regulatory network by applying 
Cytoscape software (Fig. 2a, Additional file 1: Table S4).

To further reveal the biological functions and pathways 
associated with the ceRNA network, GO and KEGG 
enrichment analysis was performed via KOBAS and 
DAVID. The results of GO analysis indicated that the 
DEmRNAs involved in the ceRNA network were mainly 

enriched in the “Integral component of membrane”, 
“Extracellular region” and “Extracellular space” (Fig. 2b). 
Moreover, the results from KEGG analysis showed that 
the DEmRNAs were particularly enriched in “ECM-
receptor interaction”, “Chemokine signaling pathway”, 
“PI3K–Akt signaling pathway” and Neurotrophin signal-
ing pathway (Fig. 2c).

Construction of an LPM and evaluation of its predictive 
ability
To consider whether those DElncRNAs involved in 
the ceRNA network were closely related to the OS of 
KIRC patients in the TCGA cohort, we performed 
the univariate Cox regression to identify the prognos-
tic value of the DElncRNAs for OS. The result indi-
cated that 17 of the 73 DElncRNAs were significantly 
related to OS (Additional file  1: Table  S5). To further 
find crucial lncRNAs from the prognostic DElncR-
NAs, we applied LASSO estimation and selected 8 
lncRNAs which appeared > 900 times out of 1000 
repetitions (Fig.  3a). Subsequently, multivariate Cox 
regression analysis was utilized to select lncRNAs 
with the best prognostic value and calculate their 

Fig. 2  Construction and functional enrichment analysis of the ceRNA network. a The ceRNA regulatory network in KIRC. Red octagons represent 
upregulated miRNAs, and Blue octagons represent downregulated miRNAs. Orange circles and squares stand for upregulated mRNAs and lncRNAs, 
respectively. Green circles and squares present downregulated mRNAs and lncRNAs, respectively. b Chord plot of GO enrichment analysis for the 
ceRNA network. The GO terms are shown and annotated on the right of the chord diagram, while the DEmRNAs in the ceRNA network are shown 
on the left. Red bricks represent upregulated genes, and blue bricks represent downregulated genes. c Sankey diagram of KEGG pathway analysis 
for the ceRNA network. Rectangles on the left of the Sankey plot represent the significant pathways, while rectangles on the right represent 
DEmRNAs in the ceRNA network
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relative coefficients, to further establish a risk-score 
based LPM. Finally, we constructed the LPM to pre-
dict patient survival with the risk score of each patient 
calculated as follows: risk score = (0.13383 × expres-
sion level of LINC00460) + (− 0.33667 × expression 
level of LINC00443) + (0.15751 × expression level of 
MIAT) (Fig.  3b). Furthermore, we applied the X-tile 
software to find the optimal cutoff value of risk scores, 
and patients with risk scores greater than 2.08 (n = 65) 

were classified into the high‐risk group, while those 
with risk scores less than or equal to 2.08 (n = 449) 
were allocated to the low‐risk group. The risk score 
distribution and lncRNA expression data are shown in 
Fig.  3c. The K-M survival analysis indicated that the 
high-risk patients had a shorter OS than the low-risk 
patients (Fig.  3d). Additionally, the high-risk group 
showed a 3.768-fold higher risk [95% confidence inter-
val (CI) 2.254–6.299, P <0.001)] than the low-risk 

Fig. 3  The lncRNA prognostic model. a Lasso-penalized Cox regression analysis of 17 DElncRNAs. Ten-fold cross-validation was applied to 
calculate the best lambda, which leads to a minimum mean cross-validated error. b The bar plot shows coefficients of three lncRNAs in the LPM. 
The color of the bars represented the P-value of the coefficients. c Risk score system of the LPM. The above scatter plot exhibits the risk scores of 
each KIRC patient with survival data, and the below heatmap displays the expression profiles of three lncRNAs in the LPM. K–M survival curves 
and time-dependent ROC curves of OS are shown in d and e, respectively. K–M survival curves and time-dependent ROC curves of DSS are 
demonstrated in f and g, respectively
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group. The time-dependent ROC curve analysis vali-
dated the great prognostic value of the LPM (Fig. 3e). 
The area under the ROC curve (AUC) of the LPM for 
OS was 0.723 at 1  year, 0.714 at 5  years, and 0.826 at 
10 years. Besides, the high-risk patients had a shorter 
DSS than the low-risk patients with a 5.561-fold higher 
risk (95% CI 2.929–10.560, P <0.001), and the AUC of 
the LPM for DSS was 0.723 at 1 year, 0.770 at 5 years 
and 0.793 at 10 years (Fig. 3f, g).

High risk indicated an enhanced immune phenotype
To explore the biological pathways associated with the 
LPM, GSEA was conducted between the 65 high-risk and 
449 low-risk KIRC patients in the TCGA KIRC cohort. 
The result revealed that the high-risk patients were sig-
nificantly related to 223 biological processes (Additional 
file  1: Table  S6), in which the top 3 immune processes 
were HUMORAL_IMMUNE_RESPONSE_MEDI-
ATED_BY_CIRCULATING_IMMUNOGLOBULIN 
(NES = 3.512, size = 136), B_CELL_MEDIATED_IMMU-
NITY (NES = 3.364, size = 199) and REGULATION_
OF_HUMORAL_IMMUNE_RESPONSE (NES = 3.172, 
size = 124) (P <0.01) (Fig.  4a). Therefore, the high-risk 
score may confer an enhanced immune phenotype.

Validation of lncRNAs in the clinical cohort, TCGA, 
and GTEx
According to the above analysis in the TCGA KIRC 
cohort, the three lncRNAs (LINC00460, LINC00443, 
MIAT) involved in the ceRNA network could serve as 
potential prognostic predictors for KIRC patients. To 
verify the validity and reliability of the results, the expres-
sion of the three lncRNAs were analyzed between 21 
diagnosed KIRC samples and 21 adjacent normal samples 
through RT-PCR. As shown in Fig. 4b, the results dem-
onstrated that the expression of MIAT and LINC00460 
was significantly upregulated in the KIRC samples, while 
the expression of LINC00443 was significantly down-
regulated compared with the adjacent normal sam-
ples. In addition, we performed the difference analysis 
of three-lncRNA expression by using the TCGA paired 
samples and GEPIA2, to verify the expression of MIAT, 
LINC00460, LINC00443 further. A consistent find-
ing with that of the clinical KIRC cohort was elucidated 
(Fig. 4c, d).

Stratification analysis of OS for the LPM
Stratification analysis was performed to determine 
whether the prognostic value of the LPM would remain 
stable in different subgroups. Therefore, patients in the 
TCGA KIRC cohort were classified into two groups 
according to age, sex, tumor grade, and tumor stage, 
respectively. As shown in Fig. 5, patients in the high-risk 

group showed worse survival compared to those in 
the low-risk group in patients with grade low or grade 
median and high tumors, stage I and II or stage III and 
IV tumors, younger or older, and male or female patients. 
Besides, the LPM still remained a stable and great predic-
tive ability for KIRC patients in distinct subgroups.

LPM is independent of traditional clinical features for KIRC 
Patients
To identify whether the LPM is an independent clinical 
prognostic factor for KIRC patients, we firstly performed 
the univariate Cox regression analysis and demonstrated 
that the LPM was significantly associated with OS [Haz-
ard ratio (HR): 3.809, 95% CI 2.720–5.330, P <0.001; 
Fig.  6a]. Then clinical characteristics, including gen-
der, age, pathologic stage, and histological grade were 
adjusted by multivariate Cox regression analysis, and the 
result indicated that the LPM remained an independent 
prognostic factor with an HR of 2.020 in the TCGA KIRC 
cohort (95% CI 1.387–2.940, P <0.001; Fig. 6b).

Construction and validation of an LPM‑based nomogram 
model
Since other studies have confirmed that the nomogram 
model could predict the prognosis of cancer patients bet-
ter [30, 35, 36], we established a nomogram model com-
bining risk scores and independent clinical prognostic 
factors (age, histologic grade, and tumor stage) (Fig. 6c). 
According to this model, we can determine each point 
for factors by drawing a vertical line from the prognos-
tic factor axis to the points axis to further calculate the 
total points. Similarly, we can determine the survival 
probability for total points by drawing a vertical line 
from the total points axis to the outcome axis. Based on 
the total nomogram points, we divided the patients into 
high-risk group and low-risk group with an optimal cut-
off point 66, and the high-risk patients had a shorter OS 
than the low-risk patients with a 5.574-fold higher risk 
(95% CI 3.852–8.064, P <0.001; Fig.  6d). We then com-
pared the predictive accuracy between the nomogram 
model and individual predictors with the time-depend-
ent ROC curve analysis and C-index. The result indi-
cated that the nomogram model had a better power for 
predicting the prognosis of KIRC patients with a larger 
AUC (Fig. 6e, f ). Moreover, the nomogram model had a 
higher mean C-index (0.772) than other predictors (0.551 
to 0.676) (Fig. 6g), which was consistent with the results 
of ROC analysis, further validating the robust prognos-
tic value of the nomogram. The calibration plots dem-
onstrated a good agreement between the observed and 
predicted probabilities with lines close to 45° (Fig.  6h). 
Finally, we compared the clinical benefit of the nomo-
gram model and other individual predictors via DCA, a 
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novel method for evaluating prediction models [37]. As 
a result, the nomogram model showed a better net ben-
efit and broader threshold probability. Thus, it provided 

the best clinical utility compared with other independent 
prognostic factors (1-year OS: Fig. 6i; 5-year OS: Fig. 6j; 
10-year OS: Fig. 6k).

Fig. 4  GSEA and validations of three lncRNAs. a GSEA plot shows the top three immune processes associated with high risk score. b The barplot 
exhibits the expressions of MIAT, LINC00443, and LINC00460 evaluated by RT-PCR in 21 KIRC samples and paired adjacent normal samples. ∗P < 0.05 
versus control. c The differential expression patterns of three lncRNAs in 72 KIRC patients with paired KIRC and adjacent normal samples from TCGA. 
d The expression profiles of three lncRNAs were further compared between the TCGA KIRC cohort (523 KIRC samples) and the GTEx cohort (100 
normal kidney samples) via GEPIA2
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Fig. 5  Stratification analysis of the LPM. Kaplan–Meier curves and time-dependent ROC curves illustrate the prognostic value of LPM based on the 
stratification of different clinical features. a age; b gender; c histological grade; d tumor stage; e violin plots exhibit the risk score distributions within 
different clinical parameters stratification
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Fig. 6  The LPM-based nomogram model. a Univariate and b multivariate regression analysis of the relation between the LPM and clinical 
features regarding prognostic value. c Nomogram for predicting the probability of 1-, 5-, and 10-year OS for KIRC patients. d Kaplan–Meier curves 
demonstrate the prognostic performance of the nomogram. e, f Time-dependent ROC curves of the nomogram, the LPM, age, histological 
grade, and tumor stage. g The prognostic performance was compared among the nomogram, the LPM, and conventional clinical characteristics 
by calculating the C-index. h Calibration plots of the nomogram for predicting the probability of OS at 1-, 5-, and 10-years. i–k DCA plots of the 
nomogram, the LPM, and clinical characteristics for predicting the probability oof OS at 1-, 5-, and 10-years
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Discussion
As the most common and lethal subtype of renal carci-
noma, KIRC is driven by distinct driver gene mutations 
and complex molecular alterations [38]. Though many 
effective treatments have been developed for KIRC, the 
unsatisfied survival rate and intolerant of chemother-
apy make it an emerging need for new therapeutic tar-
gets and prognostic biomarkers to improve the clinical 
outcomes of KIRC patients in the future [39]. Previous 
research has demonstrated that lncRNAs located in the 
cytoplasm could regulate mRNA transcription indispen-
sably, primarily through ceRNA regulatory networks, 
making these attractive molecules targets and prognostic 
biomarkers [40]. However, few studies have investigated 
the specific functions and prognostic value of lncRNAs 
involved in the ceRNA regulatory network in KIRC, 
especially lncRNAs located in the cytoplasm.

In this study, we established a lncRNA-miRNA-mRNA 
ceRNA regulatory network and constructed a novel 
three-lncRNA-based LPM that could identify KIRC 
patients who had a high risk of poor prognosis. There-
fore, it is feasible to divide the KIRC patients into dif-
ferent subgroups with a particular risk score, and such 
patient stratification could clinically contribute to more 
individualized management for patients. The lncRNAs 
(MIAT, LINC00460, and LINC00443) that constitute 
the LPM could be regarded as individual targets in the 
future, and they may provide better performance in com-
bination, depending on their prognostic significance. To 
facilitate the clinical use of the LPM, we further devel-
oped a nomogram to help clinicians conduct accurate 
risk assessment for individual KIRC patients. Since it 
consisted of the LPM and several independent clini-
cal prognostic factors (age, histologic grade, and tumor 
stage), the nomogram can better account for intratumor 
heterogeneity of KIRC. Thus, it can accurately predict the 
prognosis of KIRC patients in different subsets.

An increasing number of researches have found that 
tumor initiation and progression can be primarily repre-
sented by DEGs [41, 42]. Thus, we firstly identified DEGs 
as candidate genes for the ceRNA network by using the 
DESeq  2 method, which has better statistical power in 
sensitivity and precision than edgeR and DESeq. To the 
best of our knowledge, our study is the first to use the 
DESeq 2 method in constructing the ceRNA network in 
KIRC, resulting in an inconsistent finding in the DEGs 
screen with other studies [35, 43]. Since the lncRNA–
miRNA–mRNA interaction in the ceRNA network only 
presented in the cytoplasm [44], we excluded the lncR-
NAs that only located in the nucleus to enhance the accu-
racy of prediction. Based on these improved methods, we 
constructed a novel ceRNA network. In this network, the 
potential binding sites of the three lncRNA (LINC00443, 

LINC00460, and MIAT) on the targeted DEmiRNAs 
were showed in Additional file 1: Table S7. Moreover, in 
order to explore the potential biological function of the 
ceRNA network, we performed the KEGG pathway anal-
ysis. The result indicated that the function of the ceRNA 
network might be associated with the PI3K–Akt signal-
ing pathway, a cancer-related pathway. Current stud-
ies have shown that the PI3K–Akt pathway is activated 
in many types of cancers. Recent large-scale integrated 
analyses have provided the genetic alteration rates of the 
PI3K–Akt pathway in KIRC patients, reiterating the criti-
cal role of the PI3K–Akt pathway [45]. Previous studies 
have reported that the PI3K–Akt pathway could closely 
connected with the VHL–HIF pathway, forming a large 
signaling network contributing to cell proliferation, 
migration, and invasion in KIRC [46].

In this study, we identified three lncRNAs of great 
prognostic value from the ceRNA network and further 
established a risk-score based LPM. Previous studies have 
reported several lncRNA-based prognosis models and 
nomograms of KIRC [35, 47, 48], but the LPM that we 
established had the following advantages. First, we selec-
tively analyzed those DElncRNAs in the ceRNA network 
for their prognostic value. Because if lncRNA affected 
tumorigenesis with inconsiderable influences, their prog-
nostic value would be diminished. Second, we performed 
the LASSO algorithm to further select crucial lncRNA. 
Third, the LPM contained only three lncRNAs whose 
differential expression pattern was further confirmed in 
our independent cohort. Fourth, the LPM scored above 
0.70 for the AUC statistic, which was higher than that 
in other lncRNA-based prognosis models. These advan-
tages ensured the accuracy of LPM and thus enhanced 
its feasibility of clinical transformation. Among the three 
lncRNAs in the LPM, LINC00460 is the most studied 
oncogenic lncRNA. On a large scale of cancer types, 
LINC00460 functions as a competing endogenous RNA, 
sponging multiple miRNAs, indicating that it plays a vital 
role in promoting tumor cell proliferation, migration, 
and invasion [49–51]. However, a rare study has explored 
the role of LINC00460 in KIRC, so this was the first 
study which found that high expression of LINC00460 
is linked to poor prognosis in patients with KIRC. In the 
previous study, LINC00443 was reported as a tumor sup-
pressor, which was associated with a better prognosis of 
KIRC, while MIAT was associated with worse prognosis 
[52–54]. In our study, expression and survival analysis 
of LINC00443 and MIAT revealed the high expression 
of MIAT and the low expression of LINC00443 in KIRC 
samples, which was related to poor prognosis and better 
prognosis, respectively. However, a further basic study 
needs to be undertaken to validate their molecular func-
tions in the development of KIRC.
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In addition, we revealed that the LPM was still an 
independent prognostic factor in KIRC patients after 
adjusting traditional clinical characteristics. This 
result indicated that LPM has the potential to improve 
the predictive power of traditional factors. Hence, we 
construct a nomogram model that combines the LPM 
and other independent clinical prognostic factors. 
The results of time-dependent ROC curve analysis, 
C-index, and DCA demonstrated the robust prognostic 
value of the nomogram for KIRC patients. The primary 
advantage of this model lies in developing a unique 
LPM based clinically associated risk scoring system for 
KIRC patients.

Our study provided new insight into developing a 
prognostic score system for KIRC patients. It can eas-
ily separate patients with poor prognosis from patients 
with good prognosis. Since this LPM consisted of only 
three lncRNAs which can be measured by PCR, it was 
convenient, cost-effective, and easy to use in clini-
cal application. The nomogram, a unique LPM based 
clinically associated risk scoring system, had robust 
prognostic value for KIRC patients, and it could be a 
promising tool for clinicians in the future. Further-
more, clinicians can develop more individualized treat-
ment regimens for patients with different prognosis 
assessed by nomogram, and this will make treatment 
more targeted. However, our study is limited because 
we only validated the expression of three lncRNAs in 
the individual clinical cohorts, and it would be better if 
clinical cohorts could validate the prognostic value of 
LPM. Besides, prospective studies are further needed 
to perform to confirm its predictive ability.

Conclusions
In conclusion, we successfully constructed a novel 
ceRNA regulatory network, which narrowed the scope of 
predicting prognostic biomarkers and therapeutic targets 
for KIRC. Besides, we identified and validated an LPM 
which is based on three lncRNAs involved in the ceRNA 
network, and it has independent and great prognostic 
value for KIRC patients.
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