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Abstract 

Background:  The incidence of lung squamous cell carcinoma (LUSC) increased substantially in recent years. System-
atical investigation of the immunogenomic pattern is critical to improve the prognosis of LUSC.

Methods:  Based on the TCGA and GEO dataset, we integrated the immune-related genes (IRGs) expression profile 
and the overall survival (OS) of 502 patients with LUSC. The survival-related and differentially-expressed IRGs in LUSC 
patients were evaluated by univariate cox regression and LASSO regression analysis. By applying multivariate cox 
analysis, a new prognostic indicator based on IRGs was established. We also used CIBERSORT algorithms and TIMER 
database to analyze immune infiltration of LUSC. Both gene set enrichment analysis (GSEA) and principal component 
analysis (PCA) was carried out for functional annotation. With the assist of computational biology, we also investigated 
the latent properties and molecular mechanisms of these LUSC-specific IRGs. We analyzed the correlation between 
immune checkpoints and risk score.

Results:  A novel prognostic model was established based on 11 IRGS, including CXCL5, MMP12, PLAU, ELN, JUN, 
RNASE7, JAG1, SPP1, AGTR2, FGFR4, and TNFRSF18. This model performed well in the prognostic forecast, and was 
also related to the infiltration of immune cells. Besides, the high-risk groups and the low-risk groups exhibited distinct 
layout modes in PCA analysis, and GSEA results showed that different immune status among these groups.

Conclusions:  In summary, our researches screened out clinically significant IRGs and proved the significance of IRG-
based, individualized immune-related biomarkers in monitoring, prognosis, and discern of LUSC.
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Background
Lung cancer is the principal reason for tumor-related 
deaths, with 1.7 million deaths worldwide annually [1]. 
Non-small cell lung cancer (NSCLC) approximately 
take up 85% of all lung cancer cases [2]. LUSC is one of 

the major subtypes of NSCLC, accounting for approxi-
mately 25% to 30% of NSCLC [3]. LUSC is usually located 
in the hilum of lung and usually occurs in the proximal 
bronchus, and it is more likely to invade larger blood 
vessels [4–6]. Although the technologies in early detec-
tion, targeted therapy, and chemotherapy were substan-
tially improved during the last decades, the OS of LUSC 
patients remains poor [7].

Cancer immunotherapy has been the main driving force 
of personalized medicine, by activating the immune system 
oppose cancer [8, 9]. In recent decades, immunotherapy 
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was included in the treatment guidelines for multiple can-
cers [10, 11]. T cell is an important component of tumor 
immunity [12]. The standard treatment of immunotherapy 
is to promote T cell functionality in tumors [13], and the 
studies on immunotherapy focus on the recruitment of 
cancer-infiltrating T cells [14]. In lung cancer, cancer-infil-
trating CD4 + T cells have a vital impact on the immune 
response [15]. CD4 + T cells were reported to recruit 
CD8 + T cells to the tumor site [16] and infect mucosa 
[17]. In addition, they were necessary to inhibit angiogen-
esis at the tumor sites [18, 19]. Recently, several immune 
checkpoint inhibitors were found to enhance cytotoxic 
competence by targeting PD-1 ligand 1 (PD-L1), cytotoxic 
T lymphocyte antigen-4 (CTLA-4), and programmed cell 
death protein 1 (PD-1).  They also had significant clini-
cal effects on LUSC [20].  PD-1 antibodies, Nivolumab 
and Pembrolizumab, as well as PD-L1 antibody Atezoli-
zumab, were allowed for NSCLC therapy [21, 22]. With 
the development of immune therapy, the relationship 
between immune cell and tumor has become a hot topic 
[23, 24]. The prognostic value of IRGs was comprehensively 
explored to utilize personalized immune signals for optimal 
prognostic evaluations in non-squamous NSCLC patients 
[25]. However, the prognostic significance and clinical cor-
relation of IRGs in LUSC remain to be explored.

We combined clinical information with IRG expres-
sion profiles to evaluate the OS of LUSC patients. The 
prognostic landscape and expression status of IRGs were 
systematically analyzed, and individual prognostic char-
acteristics for patients with LUSC were developed. We 
found that 11 IRGs were significantly correlated with 
prognosis, and established a new independent prognos-
tic model based on these genes. This model also well 
predicted immune cell infiltration in LUSC. Our study 
provided a potential model and biomarkers for further 
immune-related work and personalized medicine for the 
treatment of LUSC.

Materials and methods
Data collection and processing
The RNA-seq FPKM data of LUSC, containing corre-
sponding clinical data, were downloaded from the TCGA 
[26], which included 502 LUSC tissues and 49 normal 
tissues. The dataset (GSE73403) on LUSC with survival 
data was downloaded from the GEO database as a valida-
tion set. This dataset contained 69 tumor samples. IRG 
list in the ImmPort database has been exported [27]. 
These genes have been identified as active participants 
in immune processes. We then screened the immune 
genes shared by TCGA and GEO datasets. The differen-
tially expressed genes (DEGs) in LUSC and its adjacent 
normal tissues were analyzed by the R software limma 

package. The log2 | fold change | > 1 and false discovery 
rate (FDR) < 0.05 were set as the cut-off value.

Gene ontology and KEGG pathway analysis
To verify whether the DEGs were related to immune, GO 
and KEGG enrichment analysis were used. First, the org.
Hs.e.g.db package was used to convert the gene symbol 
into entrezID. Then, GO and KEGG enrichment analy-
sis were performed using the clusterProfiler package. 
P < 0.05 was considered as statistical significance. Finally, 
the GOplot package was used to draw the bar chart of 
GO and circle diagram of KEGG.

Univariate COX analysis and LASSO analysis
To get survival- and immune-related genes, we integrated 
the expression of IRGs with the OS of LUSC patients. 
IRGs were then analyzed by univariate COX regression 
analysis with continuous variables (P < 0.05). These sur-
vival- and immune-related genes were integrated into 
least absolute shrinkage and selection operator (LASSO) 
regression, which was calculated by the glmnet package 
of R software with 1000 runs [28].

Survival analysis
The patients whose follow-up time was less than 30 days 
were removed from the survival analysis. 470 patients 
were analyzed. Multivariate survival analysis was per-
formed to inspect the overall effect of the IRGs on prog-
nosis using the R software survival package. Finally, the 
prognostic model of LUSC was established based on the 
multivariate co-efficiency multiplied by expression data. 
The formula was as follows: 

The survminer package of R software was used to 
apply the Kaplan–Meier curve to investigate the connec-
tion amid IRGs and prognosis. Univariate analysis and 
multivariate analysis were used to explore independent 
prognostic factors of LUSC patients. Survival ROC R 
Software package was used to calculate the area under 
the curve (AUC) to verify the manifestation of prognos-
tic characteristics [29]. In addition, we drew a nomogram 
including the clinical factors and risk scores. The calibra-
tion curve and ROC curve were painted to illustrate the 
accurateness of this model in predicting the survival of 
LUSC patients.

Validation of the immune‑related genes
To investigate the expression of IRGs in distinct can-
cers, the Oncomine database was utilized to analyze the 

Risk score = αgene(a) × gene expression(a)

+ αgene(b)× gene expression(b)

+ · · · + αgene(n) × gene expression(n).
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expression levels of the hub gene in tumor tissues and 
normal tissues. The Human Protein Atlas database was 
used to verify the protein function of IRGs by immuno-
histochemistry. The correlations between IRGs and clini-
cal factors were also analyzed.

Molecular characteristics of immune‑related genes
We recognized the mutations in IRGs through Cbio-
portal database [30–32]. Cistrome cancer database is a 
resource for predicting transcription factor (TF) targets 
and enhancers in cancer [33]. We downloaded tumor-
related TFs from this database and acquired differen-
tial expression TFs (log2 | fold change | > 1 and FDR < 0. 
05). Through correlation analysis (corFilter > 0.4 and 
P < 0.001), the association between IRGs and TFs were 
established. Then we utilized Cytoscape to visualize this 
relationship.

Analysis of the difference between high‑risk and low‑risk 
patients
We built the immune-related gene-based prognostic 
index (IRGPI) on the basis of the multivariate cox regres-
sion coefficient multiplied by expression data. According 
to the median PI value, the patients were classified into 
the high-risk group and low-risk group. Principal compo-
nent analysis (PCA) was utilized to analyze the grouped 
samples and expression patterns and gene set enrichment 
analysis (GSEA) was carried out to evaluate different 
functional phenotypes between low-risk and high-risk 
groups [34].

Analysis of the relationship between immune cell 
infiltration and immune‑related genes
Based on all the genes of two cohorts, we used the CIB-
ERSORT software package to evaluate the proportion of 
22 leukocyte subtypes. The perm was set to 1000. The 

Fig. 1  Differentially expressed and functional enrichment analysis. a Heatmap of differentially expressed IRGs. b Volcano plot of differentially 
expressed IRGs. c GO analysis. d KEGG analysis
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samples with P < 0. 05 in the results of CIBERSORT anal-
ysis were delivered for further investigate. Mann–Whit-
ney U test was performed to contrast the difference of 

similar leukocyte subtypes between the low-risk group 
and the high-risk group. In addition, we also used TIMER 
database to calculate the relationship between IRGs and 

Fig. 2  Identification of core prognosis concerning IRGs and TF network. a LASSO coefficient. b A graph of the error rate of cross-validation. c 
Heatmap of differentially expressed TFs. d Volcano plot of differentially expressed TFs. e Regulatory network built on the basis of IRGs and TFs. The 
red, green, and purple circles represent up-regulated IRGs, TFs, and down-regulated IRGs
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Fig. 3  Overall survival of the low- and high-risk groups. a Forest plot of hazard ratios exhibiting the prognostic worth of IRGPI. b Survival conditions 
of LUSC patients. c K-M survival curve of TCGA cohort. d K-M survival curve of GEO cohort. e ROC curve verifies the accuracy of the model in 
predicting the 1-, 3-,5-year survival rates of LUSC patients in the training set. f ROC curve verifies the accuracy of the model in predicting the 1-, 3-, 
5-year survival rates of LUSC patients in the validation set
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immune cell infiltration. TIMER reanalyzed gene expres-
sion data to assess the infiltrating levels of 6 immune cell 
subtypes, including CD4 + T cells, B cells, CD8 + T cells, 
neutrophils, macrophages, and dendritic cells. Therefore, 
it could be utilized to validation the connections between 
hub IRGs and immune cell infiltration. To explore the 
relationship between IRGs and immune checkpoints, we 
calculated the correlation between IRGs and 30 immune 
checkpoint genes.

Results
Identification of differentially expressed IRGs
According to the list of IRGs from the ImmPort data-
base, 355 differentially expressed IRGs were identified, 
containing 135 upregulated and 220 downregulated 
(Fig. 1a, b). The results of GO analysis and KEGG anal-
ysis confirmed that the differential genes were related 
to immune (Fig. 1c, d). Through univariate COX regres-
sion analysis, 42 differentially expressed IRGs (P < 0.05) 
were notably associated with clinical outcomes. Then 
we used LASSO regression analysis to select these sur-
vival-related IRGs. As illustrated in Fig. 2a, b, Twenty-
one IRGs were involved in the classifier.

Transcriptional factor regulatory network
To investigate the latent regulatory mechanism of these 
IRGs expressions, we obtained differentially expressed 
TFs between LUSC and normal tissues using data 
downloaded from the Cistrome database. 111 differ-
entially expressed TFs were identified (Fig.  2c, d). We 
built an interaction network on the basis of these 111 
TFs and the 42 IRGs. The regulatory map showed the 
relationships between these IRGs and TFs (Fig. 2e).

Evaluation of clinical outcomes
On the basis of IRGs, we built a prognostic model 
through multivariate cox regression analysis. As shown 
in Fig.  3a, the hazard ratio of most genes was greater 
than 1, indicated that the high expression level of these 

genes implied poor prognosis. With the increased in 
the risk score, the number of deaths was also increased 
(Fig. 3b). The calculation formula of the risk score was 
shown as follows: 

According to this immune-related biomarker, the 
clinical outcome of high-risk and low-risk groups could 
be well distinguished in training and validation sets 
(Fig.  3c, d). The AUC value of ROC curve was 0.692, 
0.702, 0.656 and 0.655, 0.551, 0.713 in training and vali-
dation set, respectively, which indicated that the prog-
nostic features based on IRGs have moderate potential 
in survival monitoring (Fig.  3e, f ). Univariate and 
multivariate Cox regression analysis showed that the 
prognostic indexes were independent predictors after 

Risk score = [CXCL5 ∗ (0.007723916)] + [PLAU ∗ (0.002773196)]

+ [RNASE7 ∗ (0.010151846)]+ [MMP12 ∗ (0.00312593)]

+ [ELN ∗ (0.008678381)+ [JUN ∗ (0.003339818)]

+ [JAG1 ∗ (0.00273091)] + [SPP1 ∗ (0.000384113)]

+ [FGFR4 ∗ (0.058409538)+ [AGTR2 ∗ (0.033995614)]

+ [TNFRSF18 ∗ (− 0.008807401)].

Table 1  Univariate and Multivariate regression analysis of LUSC

Variables Univariate analysis Multivariate analysis

HR HR0.95L HR0.95H P value HR HR0.95L HR0.95H P value

Age 1.020950985 0.999614487 1.042742905 0.054331873 1.017961038 0.995298322 1.04113978 0.121213533

Gender 1.379009269 0.91009885 2.089516499 0.129601938 1.49490472 0.982161625 2.275328279 0.060657928

Stage 1.312726712 1.077250626 1.599675488 0.006982166 1.024047188 0.638679737 1.641938177 0.921416616

T stage 1.323372248 1.066256833 1.642488051 0.011021532 1.194741067 0.849191412 1.680900438 0.307024365

M stage 2.232878181 0.706946144 7.052510314 0.171013949 2.18843533 0.528787421 9.057040707 0.279818155

N stage 1.216897792 0.966420088 1.532294553 0.095022688 1.311029236 0.854094408 2.012421156 0.215484682

RiskScore 2.8091709 2.079248648 3.795333065 1.72E−11 2.819329395 2.082596762 3.816686161 1.98E−11

Table 2  General characteristics of  LUSC immune-related 
genes

Gene symbol HR P value logFC FDR

CXCL5 1.007754 0.014338 − 1.70462 9.92E−18

MMP12 1.003131 0.010559 7.548206 1.34E−27

PLAU 1.002777 0.00243 3.249016 4.05E−23

ELN 1.008716 0.108874 − 1.61414 7.71E−19

JUN 1.003345 0.06374 − 1.06491 1.32E−12

RNASE7 1.010204 0.036693 2.835585 1.26E−17

JAG1 1.002735 0.044368 2.5708 6.35E−22

SPP1 1.000384 0.001399 5.468771 2.82E−23

AGTR2 1.03458 0.035991 − 2.5684 3.92E−24

FGFR4 1.060149 0.013799 − 2.5443 4.42E−28

TNFRSF18 0.991231 0.150625 3.205853 1.07E−24
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adjusting for other parameters, for example, gender, 
tumor stage, age, metastasis, and lymph node (Table 1).

Characteristics of survival‑related IRGs
Identified survival-related IRGs have outstanding bio-
marker capacity and could be used to monitor prog-
nosis. Most of these core IRGs were upregulated in 
LUSC samples (Table 2), and most of these genes were 
risk factors. While TNFRSF18 was defined as positive 

effectors. In the genetic alterations of these IRGs, 
deep deletion and amplification were the most com-
mon forms (Fig.  4a). CXCL5, PLAU, and FGFR4 was 
the gene that had the most genetic alternations. SPP1, 
PLAU, JUN, JAG1, CXCL5, and AGTR2 existed muta-
tions in the protein functional domain (Fig.  4b), and 
these IRGs mutations may affect the prognosis of LUSC 
patients (Fig. 4c).

Fig. 4  Mutations of risk genes. a The diagram reflected the mutation type and frequency of risk genes. b Gene mutation site. c Survival curve of 
LUSC patients with risk gene mutation and patients without these mutations
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Clinic correlation and nomogram of immune‑related genes
The ggpubr package was applied to explore the con-
nection of IRGs and clinical factors (Table  3). Except 
for CXCL5, JAG1, and SPP1, the rest of the IRGs were 
related to clinical factors. At the same time, we utilized 
IRGs together with clinical factors to draw a nomogram 
(Fig. 5a) and the calibration curve was drawn to verify the 
accuracy of the prediction model (Fig.  5b–d). The pre-
dicted value fits well with the real value, suggesting that 
our model might be applied to prophesy the prognosis 
of LUSC patients. ROC was performed to measure the 
clinical effectiveness of the nomogram. For the 1-, 3-, and 
5-year OS probability, the ROC curve showed that the 
combination of IRGs and other clinical factors were bet-
ter than the model built only by IRGs (Fig. 5e). 

Validation of the immune‑related genes
Based on the HPA database, the function of IRGs was 
verified at the protein levels by immunohistochemistry 
(Fig.  6a). The results were accordant with our preced-
ing research. CXCL5, ELN, JUN, and FGFR4 were highly 
expressed in normal tissues, while PLAU, RNASE7, 
JAG1, SPP1, and TNFRSF18 were highly expressed in 
tumor tissues. Oncomine analysis of tumor and normal 
tissues (Fig.  6b) showed that the expression patterns of 
some IRGs in LUSC were different from those in other 
tumors.

Immunocyte infiltration in the tumor microenvironment
To understand whether the immune genome exactly mir-
rored the condition of the LUSC immune microenviron-
ment, we analyzed the connection between IRGs and 
immune cell infiltration by CIBERSORT algorithm and 

TIMER database. The proportion of 22 kinds of immune 
cells in LUSC was calculated through CIBERSORT algo-
rithm. We found that resting memory CD4 + T cell, M0 
macrophage, M2 macrophage, and neutrophil infiltration 
levels were higher in high-risk group. While T cell folli-
cular helper, and CD8 + T cells were higher in low-risk 
group (Fig. 7a). The TIMER database was also applied to 
investigate the connection of the IRGs and immune cell 
infiltration. CD4 + T cells, CD8 + T cells, dendritic cells, 
neutrophils, and macrophages were positively related to 
IRGs (Fig. 7b–g).

Immune status analysis for high‑risk and low‑risk groups
To study whether the LUSC patients could be distin-
guished properly based on our prognosis model, PCA 
analysis was utilized to explore the distinct distribu-
tion modes between the high-risk groups and low-risk 
groups. According to risk genes, the high-risk and low-
risk groups tend to be divided into two aspects (Fig. 8a). 
Based on the whole-genome sets and whole-IRGs, high-
risk and low-risk groups did not show significant separa-
tion in immune status (Fig. 8b, c), while the model based 
on our risk genes could well distinguish the difference 
of immune status between high- and low-risk groups. 
The GSEA further validated the functional annotations 
and found that the high-risk groups had more immune 
responses than the low-risk groups (immune system 
process, NES = 2.08, FDR = 0.002; immune response, 
NES = 2.16, FDR < 0.001; Fig.  8d, e). These results were 
consistent with the results of immune cell infiltration, 
indicating that the high-risk scores were correlated with 
the enhanced immunophenotype.

Table 3  Relationships between the expressions of the immune-related genes and the clinicopathological factors in LUSC

Gene symbol Age (≧65/< 65) Gender (male/
female)

Stage (I&II/III&IV) T stage (T1–T2/
T3–T4)

M stage (M0/M1) N stage (N0/N1-3)

t P t P t P t P t P t P

CXCL5 0.391 0.696 − 1.302 0.194 −  0.972 0.334 − 1.108 0.271 0.58 0.583 − 0.7 0.485

MMP12 − 2.276 0.023 1.365 0.174 0.518 0.605 2.307 0.022 0.25 0.812 − 0.927 0.355

PLAU − 2.427 0.016 0.101 0.92 0.547 0.585 − 2.346 0.021 0.032 0.975 2.492 0.013

ELN − 1.893 0.059 2.107 0.037 − 0.21 0.834 − 0.143 0.886 2.591 0.031 0.397 0.691

JUN − 2.521 0.012 1.592 0.113 − 0.353 0.725 − 1.425 0.158 − 0.619 0.559 1.089 0.277

RNASE7 − 0.113 0.91 0.372 0.71 2.42 0.016 − 0.596 0.553 3.296 0.007 0.094 0.926

JAG1 − 0.625 0.532 − 1.557 0.121 − 0.903 0.369 − 0.85 0.398 − 1.501 0.189 − 0.837 0.404

SPP1 0.261 0.794 − 1.242 0.216 − 0.855 0.395 0.131 0.896 0.133 0.899 0.936 0.35

AGTR2 − 0.707 0.48 0.086 0.932 1.931 0.054 − 0.009 0.993 2.317 0.036 3.376 8.28E−04

FGFR4 1.423 0.156 − 2.509 0.013 − 0.89 0.376 0.632 0.528 9.289 7.33E−14 − 1.725 0.086

TNFRSF18 1.752 0.081 − 0.933 0.352 − 0.29 0.773 − 0.24 0.811 0.077 0.941 − 0.81 0.419

riskScore − 2.79 0.006 0.267 0.79 − 0.596 0.553 − 1.255 0.213 1.597 0.159 1.188 0.236
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Fig. 5  IRGs combined with other clinical factors to predict the prognosis of patients with LUSC. a Nomogram. b, c and d The calibration curve was 
drawn to verify the accuracy of the prediction model for predicting 1-,3-, 5-year survival rates. e ROC curve verifies the accuracy of the combined 
model in predicting the 1-, 3-, 5-year survival rates of LUSC patients
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Correlation analysis of immune checkpoints and risk score
To investigate the relationship between risk score and 
immune checkpoint, we extracted the expression of 30 
immune checkpoint (Fig.  9a), including B7-CD28 fam-
ily (CD274, CD276, CTLA4, HHLA2, ICOS, ICOSLG, 
PDCD1, PDCD1LG2, TMIGD2, VTCN1), TNF super-
family (BTLA, CD27, CD40LG, CD40, CD70, TNFRSF18, 
TNFRSF4, TNFRSF9, TNFSF14, TNFSF4, TNFSF9), 
and other immune checkpoint (HAVCR2, IDO1, LAG3, 
FGL1, ENTPD1, NT5E, SIGLEC15, VSIR, NCR3). We 
then calculated the correlation between risk score and 
the expression of immune checkpoint. The results illus-
trated that ICOS, NT5E, PDCD1LG2, ENTPD1, VSIR, 
CD276, TNFSF14, HAVCR2 were positively correlated 
with risk score, while TNFRSF18 and VTCN1 were nega-
tively correlated with risk score (Fig. 9b–k).

Discussion
The importance of IRGs in cancer deterioration and 
immunotherapy has been accepted, but overall genome-
wide analysis is still to be investigated to explore the 
molecular mechanism and clinical significance. Our 
researches revealed the effects of IRGs on LUSC clinical 

significance and elucidated the molecular characteristics. 
these IRGs might be valuable clinical indicators. Per-
sonalized immune-related prognostic characteristics on 
the basis of selective, differentially expressed IRGs were 
raised to evaluate potential clinical outcomes and meas-
ure immune cell infiltration.

To establish a suitable and simple scheme to observe 
the immune status of LUSC patients and imply clini-
cal outcomes, we built an IRGs-based prognostic index. 
With the consequences of multivariate regression analy-
sis, the prognostic indexes based on 11 IRGs (CXCL5, 
MMP12, PLAU, ELN, JUN, RNASE7, JAG1, SPP1, 
AGTR2, FGFR4, and TNFRSF18) were established. 
Patients with high-risk values have a bad prognosis, 
whose survival time was shortened with increased risk 
values. Moreover, univariate COX and multivariate COX 
regression analysis illustrated that the prognostic signa-
ture based on these IRGs might be applied as independ-
ent prognostic factors. We also constructed a nomograph 
composed of IRGs and other clinical factors to predict 
the OS. Our studies suggested that IRGs could be used as 
prognostic markers and indexes of immune status.

The TF-IRG regulatory network based on CHIP-SEQ 
and co-expression will assist to guide and inform the 

Fig. 6  Validation of the IRGs. a Immunohistochemistry of the IRGs based on the Human Protein Atlas. b The mRNA expression patterns of IRGs in 
the pan- cancers. The differences in mRNA expression between tumors and normal tissues were analyzed by the Oncomine database
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analysis of future mechanisms. The mechanism and func-
tion of RNASE7, and ELN had not been reported in lung 
cancer. The other 9 IRGs, including MMP12, PLAU, JUN, 
TNFRSF18, JAG1, FGFR4, AGTR2, CXCL5, and SPP1. 
CXCL5, FGFR4, and PLAU were reported to be a poten-
tial prognostic factor in LUSC [35]. Ella et  al. suggest 
that overexpression of MMP12 promotes invasion and 
migration of lung cancer cells [36]. Chang et  al. found 
that the ectopic expression of JAG1 in lung cancer cells 
enhances cell migration, invasion and metastasis in vivo 
and in  vitro [37]. It was reported that SPP1 could not 
only be used as a prognostic biomarker of lung cancer 
but also play a role in mediating macrophage polarization 
and immune escape [38, 39]. In small cell lung cancer, 
TNFRSF18 has been found to bind to its receptor and 
induce apoptosis [40]. The complex of dTAT- AGTR2-
Ca2 + could inhibit the growth of Lewis lung carcinoma 
in mice [41]. Yang et  al. discovered that JUN played a 
role in the inhibition of growth and apoptosis of NSCLC 
by PS-341 [42]. However, these studies offered a finite 

message on the mechanism of 11 IRGs in the survival of 
LUSC patients.

To establish a suitable and simple scheme to observe 
the immune status of LUSC patients and imply clinical 
outcomes, we established an immune-based prognostic 
index. Shi et  al. investigated DNA methylation profil-
ing and put forward potential diagnostic biomarkers for 
LUSC [43]. Chen et al. investigated the roles of IRGs in 
deterioration of lung cancer and indicated the distinct 
between LUAD and LUSC from the perspective of the 
immune response [44]. Several researchers have put 
forward a prognostic marker for survival prediction in 
patients with LUSC [45–47]. Our study suggested that 
IRGPI could be used as a prognostic marker. In addition, 
it could also be utilized as an index of immune status.

On the basis of 11 IRGs in LUSC, this prognostic indi-
cator showed satisfactory clinical feasibility. The tool 
could adjust the treatment plan relatively quickly accord-
ing to the level of immune cell infiltration reflected by 
IRGPI. The results of TIMER database showed that 
these genes were positively related to the infiltration of 

Fig. 7  Immune cell infiltration. a Radar plot of low-risk groups and high-risk groups with LUSC, blue stand for low-risk groups and red represent 
the high-risk groups. Analysis of the correlation between risk score and immune cells. b Dendritic cells. c CD8 + T cells. d CD4 + T cells. e B cells. f 
Neutrophils. g Macrophages
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Fig. 8  The high- and low-risk groups showed different distribution patterns and gene-set enrichment analysis. a PCA of the high- and low-risk 
groups based on the 11 risk genes. b PCA of the high- and low-risk groups based on the whole immune-genome set. c PCA of the high- and 
low-risk groups based on the whole genome set. d Immune system process and e immune response enrichment analysis by GSEA
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CD4 + T cells, CD8 + T cells, dendritic cells, neutrophils, 
and macrophages. However, the results of CIBERSORT 
showed that CD8 + T cells infiltrated more in the low-risk 
group, which was different from the TIMER database, 
resulting from the difference between the 2 algorithms. 
TIMER quantified 6 kinds of immune cells, but it was 
different from CIBERSORT (CIBERSORT analysis: the 
total proportion of 22 kinds of immune cells added to 
100%). TIMER did not standardize the predicted value to 
1. Therefore, the results could not be interpreted as cell 
fraction or compared in different data sets. The imbal-
ance of immune cell composition was associated with the 
survival rate and bad prognosis of cancer patients [48]. 
Our findings expanded and confirmed the discovery that 
the infiltration level of the immune cells was crucial for 
the progression of LUSC. The result indicated that these 
IRGs had the capacity to be a predictor of increased infil-
tration of immune cells, which was consistent with previ-
ous reports. Nevertheless, the function of the infiltration 
immune cell of LUSC was still unknown. Our initial 

observations offered an opinion for investigating this 
issue, and further study was required in the future.

Interestingly, we found that the risk score was not 
only associated with immune cell infiltration, but also 
correlated with the expression of immune checkpoint 
genes. CD276, PDCD1LG2 (PD-L2) were a member of 
the B7 transmembrane glycoprotein family, and their 
expression were associated with poor prognosis and 
tumor immune escape of NSCLC [49–51]. VTCN1 
also belonged to the B7 family, but its expression was 
not related to B cell and T cell infiltration in lung can-
cer [52]. It was reported that TNFSF14, a member of 
Tumor necrosis factor superfamily, played an important 
role in Osteolytic Bone Metastases of NSCLC patients 
[53]. HAVCR2, also known as TIM-3, was mainly dis-
tributed in NK cells and macrophages in NSCLC, 
which could suppress anti-tumor immunity [54]. 
Franz et al. found that VSIR was related to the increase 
of lymphocyte infiltration in tumor microenviron-
ment, specific gene mutation and prognosis of NSCLC 
patients [55]. The function of NT5E was hydrolyzed 

Fig. 9  Immune checkpoint. a Heatmap of 30 immune checkpoints between low- and high-risk groups. Analysis of the correlation between risk 
score and immune checkpoints. b VTCN1. c ENTPD1. d ICOS. e TNFRSF18. f VSIR. g CD276. h NT5E. i PDCD1LG2. j TNFSF14. k HAVCR2
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extracellular nucleotides, overexpression of which gene 
could inhibit anti-tumor immune response and con-
tribute to proliferation, angiogenesis, and metastasis 
[56]. With the increase of risk score, the gene expres-
sion in most immune checkpoints increased, which 
was consistent with the poor prognosis of patients in 
the high-risk group. Meanwhile, the treatment of these 
immune checkpoints may improve the prognosis of 
LUSC patients.

However, the current study had some shortcom-
ings, which ought to be taken into consideration when 
explaining our results. First of all, transcriptome analysis 
could only reflect certain aspects of the immune state, 
but not global changes.  Secondly, the verification with 
another independent queue was lacked.  At the last, our 
results also required validation of in  vivo and in  vitro 
experiments.

Conclusion
On the basis of gene sets downloaded from the TCGA 
and GEO database, we utilized LASSO regression analy-
sis and univariate cox regression analysis in R to screen 
IRGs associated with the prognosis of LUSC patients. 
A prediction model was constructed based on 11 IRGs 
(CXCL5, MMP12, PLAU, ELN, JUN, RNASE7, JAG1, 
SPP1, AGTR2, FGFR4, and TNFRSF18). This model also 
well predicted immune cell infiltration in LUSC. Our 
study provided a potential model and biomarkers for fur-
ther immune-related work and personalized medicine for 
the treatment of LUSC.
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