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Significance of tumor mutation 
burden combined with immune infiltrates 
in the progression and prognosis of ovarian 
cancer
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Abstract 

Background:  Ovarian cancer (OC) is the most malignant tumor in the female reproductive system. About 75% of OC 
in complete remission of clinical symptoms still develop a recurrence. Therefore, searching for new treatment meth-
ods plays an important role in improving the prognosis of OC.

Methods:  We downloaded the MAF files, RNA-seq data and clinical information from the TCGA database. The 
“maftools” package in R software was used to visualize the OC mutation data. We calculated the tumor mutation 
burden (TMB) of OC and analyzed its correlation with clinicopathological parameters and prognostic value. Tumor 
mutation burden related signature model was constructed to predict the overall survival (OS) of OC.

Results:  The results revealed that there was a statistical correlation between TMB and FIGO stage, grade and tumor 
residual size of ovarian cancer patients. The Kaplan–Meier curve indicated that a high TMB is associated with better 
clinical outcomes of OC. The difference analysis indicated 24 upregulated genes and 619 downregulated genes in 
the high-TMB group compared with the low-TMB group. Besides, the TMBRS model based on five hub genes (RBMS3, 
PLA2G5, CDH2, AMHR2 and ADAMTS8) was constructed to predict the OS of OC. The ROC curve and validation data 
sets all revealed that the TMBRS model was reliable in predicting recurrence risk. Immune microenvironment analy-
sis indicated the correlations between TMB and infiltrating immune cells.

Conclusions:  Our results suggest that TMB plays an important role in the prognosis and guiding immunotherapy of 
OC. By detecting the TMB of OC, clinicians can more accurately treat patients with immunotherapy, thereby improv-
ing their survival rate.
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Background
Ovarian cancer is one of the most malignant tumors in 
the female reproductive system and ranks second only to 
cervical cancer in global incidence and mortality [1]. Due 
to a lack of early symptoms and effective early screening 

diagnostic methods, most patients with OC are found in 
the late stage, and the 5-year survival rate is only 20–25% 
[2]. The main treatment method is a combination of 
tumor cell ablation and chemotherapy drugs, such as 
paclitaxel and platinum-based drugs. Despite the devel-
opment of diagnostic and treatment technology, the mor-
tality rate has not improved significantly [3]. Therefore, 
searching for new treatment methods plays an important 
role in improving the prognosis of patients with OC.
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Immunotherapy is a kind of therapy that can enhance 
the autoimmune ability of patients to kill or eliminate 
cancer cells. Immunotherapy includes many meth-
ods, such as tumor vaccine [4], immunocytotherapy, 
therapeutic antibody, small synthetic molecule inhibi-
tors, immune checkpoint inhibitors, etc. Among them, 
immunocheckpoint inhibitors play a very important 
role in tumor treatment. Immunocheckpoint inhibitors 
have been used in melanoma [5], non-small cell lung 
cancer [6], Hodgkin’s lymphoma [7] and many other 
tumors. In recent years, immunotherapy, as a new 
treatment of ovarian cancer, has gradually attracted 
people’s attention and achieved some results in the 
treatment of ovarian cancer. Especially the inhibitors 
for immunocheckpoint of PD1/PDL1. Unfortunately, 
the overall response rate of patients to these inhibitors 
is still low [8].

The tumor mutation burden (TMB) refers to the 
total number of replacement and insertion/deletion 
(indel) mutations per basic group in the exon coding 
region of the assessed gene in the genome of a tumor 
cell. Driver gene mutations can lead to the occurrence 
of tumors, but a large number of somatic mutations 
produce neoantigens, which activate CD8+ cytotoxic 
T cells and exert an anti-tumor effect mediated by 
T cells. Thus, more neoantigens are produced as the 
number of genetic variations increases, and the more 
likely it is that the immune system will recognize them. 
TMB was originally intended as a biomarker for pre-
dictive efficacy in patients with advanced melanoma 
treated with ipilimumab or tremelimumab. Patients 
with melanoma and a high TMB level tend to have bet-
ter efficacy against PD-1/PD-L1 checkpoint inhibitors 
than patients with a low TMB level [9]. In recent years, 
treatment with PD-1/PD-L1 checkpoint inhibitors has 
developed rapidly, opening a new chapter in the treat-
ment of advanced OC, but patients have shown low 
objective response rates [10]. Therefore, finding suit-
able biomarkers to screen the dominant population and 
improve the efficacy of immunotherapy is the top prior-
ity of immunotherapy for OC.

In this study, we calculated the TMB in 397 patients 
with OC in the TCGA database. Then, we investigated 
the relationship between TMB, prognosis, and clinico-
pathological parameters, such as grade, FIGO stage, 
lymphatic metastasis, and vascular invasion in patients 
with OC. Finally, we investigated the gene expression and 
tumor infiltrating immune cells (TIICs) related to TMB. 
After a comprehensive analysis of the TMB of OC cases 
in the TCGA database, we determined that TMB plays an 
important role in the malignant progression and progno-
sis of OC. Thus, monitoring patient mutation load can be 
used to provide more accurate immunotherapy.

Materials and methods
TCGA data acquisition
We downloaded the OC genetic mutation data, transcrip-
tome data, and clinical data from the TCGA database (/) 
[11]. The genetic mutation data contained 37,248 mutated 
genes. The transcriptome data included 307 cases of OC. 
The clinical data included age, sex, grade, FIGO stage, 
lymph node metastasis, and vascular invasion. The gene 
microarray data and corresponding clinical information 
of verifying cohorts GSE9891 [12] and GSE26193 [13] 
was downloaded from GEO database (https​://www.ncbi.
nlm.nih.gov/geo/, RRID:SCR_007303). The data were 
standardized, and R software (R Foundation for Statisti-
cal Computing, Vienna, Austria, RRID:SCR_003302) was 
used for all operations.

Calculation of TMB in patients with OC
TMB was defined as the number of somatic, coding, base 
replacement, and insert-deletion mutations per megabase 
of the genome examined using non-synonymous and 
code-shifting indels under a 5% detection limit. We used 
R software and the following formula to calculate the 
TMB of the patients with OC:

 where Sn represents the absolute number of somatic 
mutations, and n represents the number of exon base 
coverage depth ≥ 100×) [14].

Differential analysis and Functional enrichment analysis
Ovarian cancer data were divided into two groups 
according to median TMB value. Through the algorithm 
of limma package, the differentially expressed genes were 
calculated, and the genes with logFDR < 0.05 and lg|Fold 
change| (log|FC|) > 1 were selected as the significantly 
differentially expressed genes. In order to better under-
stand the function of the selected differentially expressed 
genes, we use enrich GO in the clusterprofiler package of 
R to perform the GO function enrichment analysis and 
KEGG pathway enrichment analysis. The false discovery 
rate (FDR) was less than 0.01.

Identification and verification of hub TMB‐related 
signature
The expression data and survival data of the selected 
differential genes were combined, and univariate Cox 
proportional hazards regression (PHR) analysis was per-
formed to obtain survival-related genes. The genes with 
the p values (p < 0.001) were fitted in a multivariate Cox 
PHR model establish an risk score model. Kaplan–Meier 
survival curve was drawn to evaluate the difference of 

TMB = Sn× 1, 000, 000
/

n
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overall survival rate between high and low risk groups 
(p < 0.05). The receiver operating characteristic (ROC) 
curve was calculated to assess the predictive power of the 
risk score model. Finally, the result was test in verifying 
cohorts GSE9891 and GSE26193.

Estimate of immune cell infiltration
CIBERSORT is a deconvolution algorithm that combines 
the labeled genomes of different immune cell subpopu-
lations to calculate the proportion of 22 immune cells in 
tissues. The 22 types of immune cells included: 7 types of 
T cells (CD8+ T cells, naive CD4+ T cells, resting mem-
ory CD4+ T cells, activated memory CD4+ T cells, fol-
licle-assisted T cells, regulatory T cells, and γδT cells), 3 
types of B cells (naive B cells, memory B cells, and plasma 
cells) NK cells (resting NK cells and activated NK cells), 
and various myeloid cells (monocytes, M0 macrophages, 
M1 macrophages, M2 macrophages, resting dendritic 
cells, activated dendritic cells, resting mast cells, acti-
vated mast cells, eosinophils, and neutrophils). In this 
study, the CIBERSORT online platform (http://ciber​sort.
stanf​ord.edu/) was used to complete the calculation, and 
each sample was assigned a p value. Samples with a CIB-
ERSORT output value of p < 0.05 were screened for fur-
ther analysis [15].

Identification of potential compounds
CMAP database stores up gene expression profile data of 
human cell lines including MCF7, ssMCF7, PC3, HL60 
and SKMEL5 processed by 1309 bioactive small mole-
cules. Differentially expressed genes based on TMB value 
were divided into up- and downregulated groups. The 
probe IDs of the two groups genes were uploaded to the 
connectivity map website (https​://porta​ls.broad​insti​tute.
org/cmap/), respectively, and then a permuted results 
were obtained.

Statistical analyses
SPSS 23.0 software (SPSS Inc., Chicago, IL, USA) was 
used for data recording and analysis, and the Kolmogo-
rov–Smirnov test was used to determine whether vari-
ables obeyed a normal distribution. If the data were 

normally distributed, the mean ± standard deviation was 
calculated and the independent sample t-test was used to 
detect differences between groups. If a normal distribu-
tion was not observed, the median value was presented, 
and the non-parametric rank sum test was used to detect 
differences between the groups. Comparisons of classi-
fied data between the groups were analyzed by the Chi 
square test, and p < 0.05 was considered significant. The 
follow-up endpoint was overall survival (OS), which 
refers to the time from the date of the definite diagno-
sis of OC patients to death from any cause or the end 
of the final follow-up. The survival curve was plotted by 
Kaplan–Meier method, and the differences between the 
groups were assessed by the log-rank test. Cox propor-
tional hazard model was used to evaluate the effect of 
clinical variables and TMB level on the OS of the patients 
with OC, and a p-value < 0.05 was considered significant.

Results
Somatic mutations in the OC data
To identify the somatic mutations of the patients with 
OC in the TCGA database, mutation data were down-
loaded and visualized using the “maftools” package in R 
software. Horizontal histogram showed the genes have 
the higher mutation frequency in patients with OC, such 
as TP53 (90%), TTN (21%), MUC16 (7%), TOP2A (6%), 
and NF1(6%, Fig.  1A, Bf, F). Missense mutations were 
the most common type of mutation in patients with OC 
(Fig. 1Ba), single nucleotide polymorphism (SNP) occu-
pied an absolute position compared with insertion (INS) 
or deletion (DEL, Fig. 1Bb), and C>T was the predomi-
nant mutation type detected (Fig. 1Bc, D). The number of 
mutations per sample was shown in Fig. 1Bd. In Fig. 1Be, 
the box diagram of each color represents a kind of muta-
tion. Cancer genomes, especially solid tumors are charac-
terized by genomic loci with localized hyper-mutations. 
Such hyper mutated genomic regions can be visualized 
by plotting inter variant distance on a linear genomic 
scale. These plots generally called rainfall plots. Figure 1C 
revealed the rainfall plot of TCGA ovarian cancer sam-
ple TCGA-59-2349-01A-01W-0799-08. Each point is a 

(See figure on next page.)
Fig. 1  Genome‐wide mutation profiling in OC. A Landscape of mutation profiles in OC samples. Mutation information of each gene in each 
sample was shown in the waterfall plot, where different colors with specific annotations at the bottom meant the various mutation types. The 
barplot above the legend exhibited the number of mutation burden. B Cohort summary plot displaying distribution of variants according to 
variant classification, type and SNV class. Bottom part (from left to right) indicates mutation load for each sample, variant classification type. A 
stacked barplot shows top ten mutated genes. C Rainfall plot of TCGA ovarian cancer sample TCGA-59-2349-01A-01W-0799-08. Each point is a 
mutation color coded according to SNV class. D Transition and transversion plot displaying distribution of SNVs in OC classified into six transition 
and transversion events. Stacked bar plot (bottom) shows distribution of mutation spectra for every sample in the MAF file. E Mutually co-occurring 
gene pairs in OC displayed as a triangular matrix. F A word cloud generated based on frequency of mutated genes in OC

http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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https://portals.broadinstitute.org/cmap/
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mutation color coded according to SNV class. Figure 1E 
shows that LRP2 and TTN have the highest correlation.

Drug–gene interactions and oncogenic signaling pathways
From the professional definition, pharmacogenomics is 
to explore the influence of genetic variation of genes on 
the therapeutic effect of drugs from the perspective of 
genome. Drug–gene interaction database (DGIdb, http://
dgidb​.org/) is a database used to mine existing resources 
and generate information about how mutant genes are 
targeted or prioritized for drug development [16]. Fig-
ure 2a showed potential druggable gene categories along 
with top 5 genes involved in them. We could see that the 
drug group targeting TP53 is the largest and tumor sup-
pressors targeting BRCA1, cdk12, RB1 genes have been 
developed to clinical application stage. Besides, we also 
discussed the  enrichment of known Oncogenic Signal-
ing Pathways in TCGA cohorts and the genes affected by 
these pathways (Fig. 2b). We could see the abundance of 
RTK-RAS oncogenic signaling pathway in ovarian cancer 
samples and the number of genes affected by this path-
way is the highest.

TMB was associated with survival outcomes, FIGO stage, 
tumor grade, and tumor residual size
TMB value of per TCGA ovarian cancer was calculated 
and revealed by Histogram (Fig.  3a). To investigate the 
correlation between TMB and the prognosis of patients 
with OC, we downloaded the prognostic information 
of the patients with OC and plotted a Kaplan–Meier 
curve. The results indicated that a high TMB was associ-
ated with a better clinical outcome of patients with OC 

(p = 0.007, Fig.  3b). Then, we downloaded the clinical 
information to investigate the correlation between TMB 
and the clinicopathological parameters of the patients 
with OC. We then mapped the correlation between TMB 
and the clinicopathological parameters, such as age, 
grade, FIGO stage, lymph node invasion, tumor residual 
size, and vascular invasion. The results revealed no sig-
nificant correlations between TMB and lymph node 
invasion (p = 0.412, Fig.  3e), age (p = 0.623, Fig.  3g) or 
vascular invasion (p = 0.396, Fig. 3h). TMB is negatively 
correlated with FIGO stage (p = 0.002, Fig. 3c) or tumor 
residual size (p = 0.002, Fig. 3f ) of ovarian cancer, while it 
is positively correlated with the grade (p = 0.012, Fig. 3d) 
of ovarian cancer.

Genetic changes associated with TMB and functional 
analysis
To investigate the differentially expressed genes (DEGs) 
associated with TMB in the OC cases, we divided the 
patients with OC into a high-TMB group and a low-TMB 
group. The edgeR package was used to screen DEGs 
between the high-TMB and low-TMB groups. The results 
indicated 24 upregulated genes and 619 downregulated 
genes in the high-TMB group compared with the low-
TMB group. Figure 4a is a heat map of the TOP 40 differ-
entially expressed genes, which indicated that he level of 
gene expression is generally decreased in the high TMB 
group. The DEGs in the high-TMB and low-TMB groups 
of patients with OC were visualized in a volcanic map 
(Fig. 4b). In GO functional analysis, muscle contraction, 
muscle system process, and extracellular matrix were 
enriched (Fig.  4c, Additional file  1: Table  S1). In KEGG 

Fig. 2  Drug–gene interactions and oncogenic signaling pathways. a Drug–gene interactions, potential druggable gene categories along with top 
5 genes involved in them. b Oncogenic signaling pathways in TCGA cohorts and the genes affected by these pathways

http://dgidb.org/
http://dgidb.org/
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pathway analysis, the genes mainly enriched in Neuroac-
tive ligand-receptor interaction, Calcium signaling path-
way, and Vascular smooth muscle contraction (Fig.  4d, 
Additional file 2: Table S2).

Identification and evaluation of 5 hub TMB‐related 
signature
We utilized univariate Cox PHR to screened 17 survival 
related genes among the differentially expressed genes 
(Additional file 3: Table S3), and performed multivariate 
Cox PHR to further selected 5 genes to establish TMBRS 
model. The estimated regression coefficients are as 
follows:

 where x1 represents the expression of AMHR2, x2 rep-
resents CDH2, x3 represents ADAMTS8, x4 represents 
RBMS3, and x5 represents PLA2G5. The patients were 
divided into two groups according to the median value 
of risk score, and patients in high-risk group have poor 
outcome (Fig.  5a). The ROC curve revealed that the 
TMBRS model was reliable in predicting recurrence risk 
(Fig. 5b). Then, the results were validated in other data-
sets GSE9891 (Fig. 5c, d), GSE26193 (Fig. 5e, f ).

Risk5 = 0.16x1 + 0.05x2 + 0.05x3 + 0.17x4 + 0.11x5

Fig. 3  Prognostic analysis of TMB and associations with clinicopathological parameters. a The TMB value were showed by a box plot. b Kaplan–
Meier curve indicated that a high TMB was associated with a better clinical outcome of patients with OC. c, f TMB is negatively correlated with FIGO 
stage (c) or tumor residual size (f) of OC. d TMB is positively correlated with the grade of OC. e, g, h No significant correlations between TMB and 
lymph node invasion (e), age (g) or vascular invasion (h)
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Tumor infiltrating immune cells (TIICs) associated with TMB
To investigate the correlation between TIICs and TMB in 
OC, we first used CIBERSORT to calculate infiltration of 
22 immune cells in the OC cases (Fig. 6a). We found that 
macrophages account for the largest proportion among 
22 immune cells. Then, we divided the OC cases into 
high-TMB and low-TMB groups according to the fre-
quency of TMB. The difference analytical results showed 
that naive B cells, memory B cells, resting memory 
CD4+ T cells, Tregs, monocytes, resting mast cells, and 

neutrophils were higher infiltrating in low‐TMB group, 
while activated memory CD4+ T cells, follicle-assisted 
T cells, M1 macrophages were higher infiltrating in 
high‐TMB group (Fig. 6b). Recent studies have reported 
that activated memory CD4+ T cells, follicle-assisted T 
cells and M1 macrophages play a crucial role in antitu-
mor immunity [17–19]. We speculated from the results 
that high TMB can induce the activation of antitumor 
immune cells in OC patients and improve the prognosis 
of OC patients, while low TMB can’ t.

Fig. 4  Genetic changes associated with TMB and functional analysis. A The heat map of top 40 differentially expressed genes. B Volcanic map 
showed the differentially expressed genes (DEGs) associated with TMB. Red dots are positive correlations, green dots are negative correlations. C GO 
functional enrichment analysis of the differentially expressed genes. D KEGG pathway functional enrichment analysis of the differentially expressed 
genes. Circle color represents p value, size represents gene number involved in
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Connectivity map analysis identifies candidate compounds
Differentially expressed genes were divided into up- 
and downregulated groups, the gene ID of which were 
converted to probe ID and uploaded to the connectivity 

map website. Among the highly correlated compounds, 
ciclopirox, thiethylperazine, cefepime and tetrandrine 
showed higher positive correlation with TMB of OC, 
which might improve OS of patients with a higher TMB 
(Table 1).

Fig. 5  Establishment of TMBRS model. a K–M curves for TCGA cohort. b Time‐dependent ROC curves showed the predictive efficiency of the 
TMBRS model in TCGA cohort. C K–M curves for GSE9891 cohort. D Time‐dependent ROC curves showed the predictive efficiency of the TMBRS 
model in GSE9891 cohort. e K–M curves for GSE26193 cohort. f Time‐dependent ROC curves showed the predictive efficiency of the TMBRS model 
in GSE26193 cohort
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Discussion
OC is a highly malignant tumor that seriously threatens 
a woman’s health. There are no typical clinical symptoms 
and signs in its early stage. Once symptoms appear, most 
cases are in an advanced stage, and the mortality rate is 
the highest among gynecological malignant tumors [20]. 
Although cytoreductive surgery and platinum-based 
combination chemotherapy have improved the 5-year 
survival rate of patients with OC, there has been no sub-
stantial progress in clinical diagnosis and treatment of 
OC [21]. Therefore, finding new treatments is crucial to 
improve the survival rate of patients with OC.

Gene mutations are changes in the molecular structure 
of genes caused by the replacement, addition, or dele-
tion of DNA base pairs. According to the way genetic 
information changes, gene mutations can be divided into 
three types: same sense mutations, missense mutations, 
and nonsense mutations [22]. Same sense mutations do 
not have an actual mutation effect, while missense and 
nonsense mutations in most cases affect the structure 
and function of proteins or enzymes, thereby changing 

Fig. 6  TIICs associated with TMB. a The landscape of TIICs in TCGA cohort. b TIICs associated with TMB. Red means high TMB, green means low TMB

Table 1  Highly positive correlated compounds with  TMB 
of OC obtained from connectivity map website

Rank Cmap name Mean n Enrichment p

1 Ciclopirox 0.703 4 0.91 0.00006

2 Thiethylperazine 0.561 4 0.711 0.01436

3 Cefepime 0.544 4 0.789 0.00394

4 Tetrandrine 0.529 4 0.815 0.00219

5 Prestwick-967 0.506 4 0.849 0.00074

6 Karakoline 0.468 6 0.592 0.01502

7 Terazosin 0.467 4 0.659 0.03093

8 Memantine 0.465 4 0.761 0.00621

9 Ethisterone 0.443 6 0.562 0.0261

10 Thiamazole 0.411 6 0.55 0.03141

11 Cinnarizine 0.396 4 0.672 0.0255

12 Sulfacetamide 0.329 4 0.712 0.014

13 Alclometasone 0.323 4 0.671 0.02572

14 Altizide 0.291 4 0.7 0.01671



Page 10 of 11Bi et al. Cancer Cell Int          (2020) 20:373 

the genetic information. In our study, the mutations in 
the patients with OC were mainly missense mutations. 
The distribution of mutation sites in the gene is different, 
most of which occur on some mutation hot spots [23]. 
Therefore, it is of great significance for diagnosis and 
treatment of tumor-related diseases to search for these 
hot mutated genes by gene sequencing technology. In our 
research, we found that TP53 had a high mutation fre-
quency in patients with OC.

TMB is an important biological marker reflecting 
the degree of tumor mutation. Alexandrov and Law-
rence et  al. found that the TMB among tumor samples 
was significantly different, which was at least 0.001/Mb 
and up to 400/Mb. The TMB of different patients is also 
significantly different even for the same type of tumor. 
Some studies have reported that the TMB as a biologi-
cal marker has an important correlation with the thera-
peutic effect of cancer immunotherapy [24]. The reason 
why TMB is a marker of immunotherapy stems from 
the biological mechanism of somatic mutation and the 
immune response. Somatic mutations of tumors include 
synonymous mutations and non-synonymous muta-
tions. Non-synonymous mutations produce abnormal 
proteins by changing the amino acid sequence. However, 
the immunogenicity of abnormal proteins in tumors is 
the basis of the tumor immune response. If abnormal 
proteins are finally recognized by immune cells, they will 
become neoantigens, and subsequent immune responses 
can develop [25]. That is to say, when the TMB of a tumor 
sample is high, the mutations that produce immunogenic 
neoantigens in the mutations also increase. It is easier 
for the immune system to recognize and remove tumor 
cells, and the survival rate of patients will be relatively 
improved. In our study, the OS of the patients with OC in 
the high TMB group was significantly higher than that in 
the low TMB group, which was consistent with previous 
assumptions. However, We were unable to validate our 
predictions in other OC datasets due to the lack of prog-
nostic information. In addition, we found that there was 
a statistical correlation between TMB and FIGO stages, 
Grade or tumor residual size. Then, five genes (RBMS3, 
PLA2G5, CDH2, AMHR2 and ADAMTS8) were selected 
to establish TMBRS model based on univariate and mul-
tivariate Cox PHR. The ROC curve and validation data 
sets all revealed that the TMBRS model was reliable in 
predicting recurrence risk. However, further we need 
more clinical trials to verify the results.

TIICs are part of the tumor microenvironment that 
promote, regulate, and inhibit the development and 
growth of tumors. According to the interactions between 
the types and functions of immune cells, immune cells 
may play a variety of roles in the development of tumors 
[26]. In our study, we used the CIBERSORT algorithm to 

calculate the proportion of 22 immune cells in OC. The 
patients with OC were divided into two groups according 
to the TMB naive B cells, memory B cells, resting mem-
ory CD4+ T cells, Tregs, monocytes, resting mast cells, 
and neutrophils were higher infiltrating in low‐TMB 
group, while activated memory CD4+ T cells, follicle-
assisted T cells, M1 macrophages were higher infiltrat-
ing in high‐TMB group, which indirectly confirms the 
previous view that a high TMB of tumors can induce 
the immune response of the body and thus inhibit the 
growth of tumors.

Conclusions
In conclusion, our results suggest that TMB, as an impor-
tant biomarker of tumor mutation, plays an important 
role in the prognosis and guiding immunotherapy of OC. 
By determining the TMB of patients with OC, clinicians 
can more accurately treat patients with immunotherapy, 
thereby improving their survival rate.
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