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leukemia cell lines
Minori Tamai1, Meixian Huang1, Keiko Kagami1, Masako Abe1, Shinpei Somazu1, Tamao Shinohara1, 
Daisuke Harama1, Atsushi Watanabe1, Koshi Akahane1, Kumiko Goi1, Kanji Sugita1,2, Hiroaki Goto3, 
Masayoshi Minegishi4, Shotaro Iwamoto5 and Takeshi Inukai1* 

Abstract 

Background:  The genetic variants of the ARID5B gene have recently been reported to be associated with disease 
susceptibility and treatment outcome in childhood acute lymphoblastic leukemia (ALL). However, few studies have 
explored the association of ARID5B with sensitivities to chemotherapeutic agents.

Methods:  We genotyped susceptibility-linked rs7923074 and rs10821936 as well as relapse-linked rs4948488, 
rs2893881, and rs6479778 of ARDI5B by direct sequencing of polymerase chain reaction (PCR) products in 72 B-cell 
precursor-ALL (BCP-ALL) cell lines established from Japanese patients. We also quantified their ARID5B expression 
levels by real-time reverse transcription PCR, and determined their 50% inhibitory concentration (IC50) values by 
alamarBlue assays in nine representative chemotherapeutic agents used for ALL treatment.

Results:  No significant associations were observed in genotypes of the susceptibility-linked single nucleotide poly-
morphisms (SNPs) and the relapsed-linked SNPs with ARID5B gene expression levels. Of note, IC50 values of vincristine 
(VCR) (median IC50: 39.6 ng/ml) in 12 cell lines with homozygous genotype of risk allele (C) in the relapse-linked 
rs4948488 were significantly higher (p = 0.031 in Mann–Whitney U test) than those (1.04 ng/ml) in 60 cell lines with 
heterozygous or homozygous genotypes of the non-risk allele (T). Furthermore, the IC50 values of mafosfamide [Maf; 
active metabolite of cyclophosphamide (CY)] and cytarabine (AraC) tended to be associated with the genotype of 
rs4948488. Similar associations were observed in genotypes of the relapse-linked rs2893881 and rs6479778, but not 
in those of the susceptibility-linked rs7923074 and rs10821936. In addition, the IC50 values of methotrexate (MTX) 
were significantly higher (p = 0.023) in 36 cell lines with lower ARID5B gene expression (median IC50: 37.1 ng/ml) than 
those in the other 36 cell lines with higher expression (16.9 ng/ml).

Conclusion:  These observations in 72 BCP-ALL cell lines suggested that the risk allele of the relapse-linked SNPs of 
ARID5B may be involved in a higher relapse rate because of resistance to chemotherapeutic agents such as VCR, CY, 
and AraC. In addition, lower ARID5B gene expression may be associated with MTX resistance.
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Background
B-cell precursor acute lymphoblastic leukemia (BCP-
ALL) is the most common neoplasm in children. Recent 
genome-wide association studies (GWAS) on pediatric 
patients with BCP-ALL have identified common single 
nucleotide polymorphisms (SNPs) associated with dis-
ease susceptibility [1–6]. SNPs located in intron 3 of the 
ARID5B gene (i.e. rs7923074 and rs10821936; Fig.  1) 
are the most significant and recapitulated SNPs in vari-
ous races, including Asian populations [7–10]. ARID5B 
belongs to the AT-rich interactive domain (ARID) fam-
ily and acts as a transcription coactivator that binds to 
the 5′-AATA[CT]-3′ core sequence [11, 12]. Although 
the direct mechanism for leukemogenesis is not fully 
understood, the risk allele of susceptibility-linked SNPs 
in intron 3 of the ARID5B gene may alter the transcrip-
tion network involved in normal lymphopoiesis by dis-
rupting ARID5B expression [13]. Interestingly, further 
GWAS on pediatric ALL patients revealed that the 
other SNPs located in intron 2 of the ARID5B gene (i.e. 
rs4948488, rs2893881, and rs6479778; Fig. 1) were sig-
nificantly associated with their relapse rate [14]. This 
clinical observation suggests that the genotype of these 
relapse-linked SNPs of ARID5B may be associated with 
the responses to chemotherapeutic agents. Neverthe-
less, few studies have focused on the association of 
ARID5B with drug sensitivities in BCP-ALL [15].

Therefore, to address this issue, we analyzed any asso-
ciation of ARID5B genotype with ARID5B gene expres-
sion and drug sensitivity in a series of BCP-ALL cell 
lines. We found that genotypes of the relapse-linked 
SNPs of ARID5B are associated with resistance to sev-
eral chemotherapeutic agents.

Materials and methods
Cell lines
We used 72 BCP-ALL cell lines that were established 
from Japanese patients as described in detail previously 
[16] (Additional files 1, 2: Tables S1, S2). Among the 72 
cell lines, 15 cell lines were MEF2D fusion-positive, 14 
cell lines were BCR/ABL1-positive, 13 cell lines were 
TCF3/PBX1-positive, 12 cell lines were MLL (KMT2A)-
rearranged, 4 cell lines were ETV6/RUNX1-positive, 
3 cell lines were TCF3/HLF-positive, and 2 cell lines 
were BCR/ABL1-like. No hyperdiploid cell lines were 
included. Forty-six cell lines were sequentially estab-
lished in our laboratory from 1980 to 2011, while 24 
cell lines were provided by 10 institutes. Two additional 
cell lines were purchased from American Type Culture 
Collection (ATCC). All cell lines were maintained in 
RPMI1640 media with 10% fetal calf serum (FCS) at 
37 °C under a 21% O2 and 5% CO2 atmosphere.

Real‑time reverse transcription polymerase chain reaction 
(RT‑PCR)
Total RNA was extracted from each cell line using TRI-
zol reagent (Invitrogen, Carlsbad, CA), and reverse 
transcription reactions were performed using a ran-
dom hexamer (Amersham Bioscience, Buckingham-
shire, UK) and Superscript II Reverse Transcriptase 
(Invitrogen). To remove unreacted mRNA, the samples 
were treated with RNase (Invitrogen) after the reac-
tion. Real-time reverse transcription polymerase chain 
reaction (RT-PCR) analyses of ARID5B were performed 
using a TaqMan probe kit (Hs01382781_m1). Gene 
expression level of the beta-actin (ACTB) gene was also 
examined as an internal control using a TaqMan probe 
kit (Hs01060665_g1).

SNP genotyping
Genomic DNA was extracted from each cell line 
using a PureLink Genomic DNA Mini Kit (Invit-
rogen). Genomic regions containing two repre-
sentative susceptibility-linked SNPs (rs7923074 and 
rs10821936) and three representative relapse-linked 
SNPs (rs4948488, rs2893881 and rs6479778) of ARID5B 
in 72 BCP-ALL cell lines were amplified using primers 
described in Table  1. Then, genotypes of five SNPs in 
each cell line were determined after direct sequencing 
of each genomic PCR product using forward primers 

Keywords:  ARID5B, B-cell precursor acute lymphoblastic leukemia, Drug sensitivities, Single nucleotide 
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Fig. 1  Locations of relapse- and susceptibility-linked SNPs of ARID5B 
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for rs7923074, rs4948488, and rs2893881 as well as a 
reverse primer for rs10821936 and rs6479778.

AlamarBlue assay
Fifty percent inhibitory concentration (IC50) values of 
prednisolone (Pred), dexamethasone (Dex), vincristine 
(VCR), daunorubicin (DNR), L-asparaginase (L-Asp), 
cytarabine (AraC), methotrexate (MTX), mercaptopurine 
(6MP), and mafosfamide [Maf; active metabolite of cyclo-
phosphamide (CY)] were determined using the alamar-
Blue cell viability assay (Bio-Rad Laboratories, Hercules, 
CA) as previously reported [17]. Cells (1–4 × 105) were 
placed onto 96-well flat bottom plates in the presence or 
absence of seven separate concentrations of each drug in 
triplicate. The cells were cultured for 44 h to determine 
the DNR, VCR and CY (Maf) sensitivities and for 68  h 
to determine Pred, Dex, L‐Asp, MTX, and 6MP; 20  µL 
of alamarBlue was then added. After incubation for an 
additional 6  h in the presence of alamarBlue, the opti-
mal density was read on a spectrophotometer at 570 nm 
using 600 nm as a reference wavelength. Cell viability was 
calculated by the ratio of the optical density of the treated 
wells to that of the untreated wells as a percentage. The 
concentration of each agent required to reduce the viabil-
ity of the treated cells to 50% of the untreated cells (IC50 
value) was calculated and the median IC50 value of three 
independent assays was determined.

Cell cycle analysis
Each cell line at a density of 0.5 × 105 cells/ml was cul-
tured with fresh RPMI1640 media with 10% FCS for 
24 h. Then, cell cycle analysis was performed using flow 
cytometry after PI staining as previously reported [18]. 
The median percentage of G0/G1 dormancy phase was 
determined in three independent analyses.

Statistics
We applied Fisher’s exact test for comparison of allele 
frequencies between cell lines and Japanese popula-
tion in HapMap project database (https​://www.ncbi.
nlm.nih.gov/varia​tion/news/NCBI_retir​ing_HapMa​p/). 

Mann–Whitney U test was always applied for compari-
sons between two groups of cell lines using R (version 
3.5.1) statistical software.

Results
Genotype of susceptibility‑linked and relapse‑linked SNPs 
of ARID5B in BCP‑ALL cell lines
We first analyzed ARID5B genotypes in 72 BCP-ALL 
cell lines established from Japanese patients [16]. Our 
cell line bank contained 15 MEF2D fusion-positive, 
14 BCR/ABL1-positive, 13 TCF3/PBX1-positive, 12 
MLL (KMT2A)-rearranged, 4 ETV6/RUNX1-positive, 
3 TCF3/HLF-positive, and 2 BCR/ABL1-like cell lines, 
but no hyperdiploid cell lines (Additional files 1, 2: 
Table  S1, S2). Thus, the majority of our cell lines had 
been established from BCP-ALL with high or inter-
mediate risk karyotypes. Among 65 cell lines with 
basic records of cell line establishment, 28 and 37 cell 
lines were established from the samples at diagnosis 
and those at relapse, respectively (Additional files 1, 2: 
Table S1, S2). We determined genotypes of two repre-
sentative susceptibility-linked SNPs [14] (rs7923074 
and rs10821936, Fig.  1) and three representative 
relapse-linked SNPs [14] (rs4948488, rs2893881, and 
rs6479778, Fig. 1) in each cell line after direct sequenc-
ing of each genomic PCR product. Allele frequencies of 
each SNP in BCP-ALL cell lines were in Hardy–Wein-
berg equilibrium. Due to linkage disequilibrium, geno-
types of rs7923074 and rs10821936 were identical in 71 
of 72 cell lines. Genotypes of rs2893881 and rs6479778 
were also identical in 71 cell lines. In the HapMap pro-
ject database (Table  2), we compared the allele fre-
quency of each SNP between our cell lines and the 
Japanese population, but no significant differences were 
observed in the genotypes of both the susceptibility-
linked SNPs and the relapse-linked SNPs of ARID5B. 
We also compared the allele frequency of each SNP 
between 28 cell lines established at diagnosis and 37 
cell lines established at relapse, but no significant dif-
ferences were observed (data not shown).

Table 1  Primers for SNP genotyping

SNP single nucleotide polymorphism

SNP Forward primer Reverse primer Product 
size (bp)

rs4948488 5′-GAG​CAT​AAC​ACT​GGA​ATT​GGGC-3′ 5′-AAC​TCC​TTT​CAG​GTT​GCC​AT-3′ 107

rs2893881 5′-TGT​AAT​GGG​GAG​AAC​AGT​TGGG-3′ 5′-ATG​TAC​CAC​CTC​GAA​GCC​TG-3′ 113

rs6479776 5′-TGG​GAT​GTT​CAG​GGA​AGA​CTG-3′ 5′-TCA​CCT​AGC​ATC​CCA​AGG​AC-3′ 121

rs7923074 5′-TGT​CTC​TCC​CTG​ACT​GGA​CC-3′ 5′-GCA​CAC​AGA​AGG​GGC​TAG​AG-3′ 235

rs10821936 5′-TTT​ATG​CTG​CCG​CTA​ATG​CC-3′ 5′-GGG​ACT​AAC​CAT​TAG​TAT​CCCCC-3′ 155

https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
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No association of susceptibility or relapse‑linked SNPs 
of ARID5B with ARID5B expression
Since both the susceptibility-linked SNPs and the 
relapse-linked SNPs of ARID5B are located in intronic 
regions, we next performed an expression quantitative 
trait locus (eQTL) analysis. We quantified the ARID5B 
gene expression level in each cell line by real-time RT-
PCR using ACTB gene expression as an internal control. 
However, in the eQTL analysis of 72 BCP-ALL cell lines, 
neither genotypes of susceptibility-linked rs7923074 
and rs10821936 nor those of relapse-linked rs4948488, 
rs2893881, and rs6479778 were significantly associated 
with ARID5B expression level (Fig.  2). These observa-
tions demonstrated that genotypes of both susceptibility-
linked SNPs and relapse-linked SNPs of ARID5B were 
not clearly associated with ARID5B expression levels in 
the BCP-ALL cell lines.

Association of relapse‑linked SNPs of ARID5B with drug 
sensitivity
Next we verified whether the genotypes of relapse-linked 
SNPs of ARID5B in BCP-ALL cell lines were associ-
ated with their sensitivities to chemotherapeutic agents. 
We performed an alamarBlue assay to determine IC50 
values (concentration required to kill 50% of the cells) 
of nine representative chemotherapeutic agents [Pred, 

Dex, VCR, DNR, L-Asp, AraC, MTX, 6MP, and CY 
(Maf)] used for children with ALL. Of note, IC50 values 
of VCR (median IC50: 39.6  ng/ml) in 12 cell lines with 
homozygous risk allele (C) genotypes in the relapse-
linked rs4948488 were significantly higher (p = 0.031 in 
Mann–Whitney U test) than those (1.04 ng/ml) in 60 cell 
lines with heterozygous or homozygous genotypes of the 
non-risk allele (T) (Fig.  3a). In addition to VCR, sensi-
tivities to CY (Maf) (Fig. 3b) and AraC (Fig. 3c) tended 
to be associated with the genotype of the relapse-linked 
rs4948488. Similar associations were observed in geno-
types of rs2893881 and rs6479778 (Fig. 3a–c). IC50 val-
ues of six agents (Dex, Pred, DNR, L-Asp, MTX, and 
6MP) were not significantly associated with genotypes of 
the relapse-linked rs4948488, rs2893881, and rs6479778 
(Additional file  3: Fig. S1a–f). Considering that BCR/
ABL1-positive and BCR/ABL1-like ALL are characteris-
tic entities, we analyzed the association in 56 BCP-ALL 
cell lines excluding 14 BCR/ABL1-positive and 2 BCR/
ABL1-like ALL cell lines (Additional file  4: Fig. S2a–c). 
Similar associations were observed between genotypes 
of the relapse-linked SNPs of ARID5B and the sensitivi-
ties to VCR, CY (Maf), and Ara-C in BCR/ABL1-negative 
and BCR/ABL1-like-negative ALL cell lines.

We further analyzed any association of the suscepti-
bility-linked rs7923074 and rs10821936 with drug sensi-
tivities. In contrast to the genotypes of the relapse-linked 
SNPs, no significant associations were observed in geno-
types of rs7923074 and rs10821936 with sensitivities to 
VCR, CY and AraC (Fig. 3a–c) and the other six chemo-
therapeutic agents (Additional file  3: Fig. S1a-f ). These 
observations suggest that the risk allele of relapse-linked 
SNPs (but not susceptibility-linked SNPs) may be asso-
ciated with a higher relapse rate in pediatric BCP-ALL 
patients due to reduced sensitivities to VCR, CY and 
AraC.

Association of ARID5B gene expression with drug 
sensitivity
Finally, we verified whether gene expression level of 
ARID5B was associated with drug sensitivities of BCP-
ALL cell lines. To address this issue, we simply divided 
our 72 BCP-ALL cell lines into two groups—36 cell lines 
with higher than median value gene expression levels and 
36 cell lines with lower than median value gene expres-
sion levels—and compared the IC50 values of each drug. 
Of note, the IC50 values of MTX in 36 cell lines with 
lower ARID5B expression (median IC50: 37.1 ng/ml) was 
significantly higher (p = 0.023 in Mann–Whitney U test) 
than those in the other 36 cell lines with lower expres-
sion (16.9 ng/ml) (Fig. 4a). A similar trend was observed 
in 56 BCP-ALL cell lines, excluding 14 BCR/ABL1-pos-
itive and 2 BCR/ABL1-like ALL cell lines (Additional 
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file  5: Fig. S3). In contrast, although the sensitivities to 
VCR, CY, and AraC were associated with genotypes in 
the relapse-linked SNPs of ARID5B, no significant differ-
ences were observed in the IC50 values of VCR, CY, and 
AraC between the two groups (Fig. 4b–d). Furthermore, 

although genotypes in the susceptibility-linked SNPs 
of ARID5B were associated with sensitivities to Pred 
and Dex, no significant differences were observed in the 
IC50 values of Pred and Dex between the two groups 
(Additional file 6: Fig. S4a, b). In the IC50 values of the 
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remaining three agents (DNR, L-Asp, and 6MP), there 
were no statistically significant differences between the 
two groups (Additional file  6: Fig. S4c-e). These obser-
vations suggest that lower ARID5B expression may be a 
genetic marker for MTX resistance in BCP-ALL.

Association of ARID5B SNPs with cell cycle progression
Since anti-leukemic activity of chemotherapeutic agents 
are dependent on cell cycle progression, we analyzed 
the association of the susceptibility-linked and relapsed-
linked SNPs of ARID5B with cell cycle progression in 
BCP-ALL cell lines. First, we compared cell cycle pro-
gression between cell lines with homozygous genotype 
of risk allele in each relapsed-linked SNP and those 
with the non-risk allele (Additional file  7: Fig. S5). No 
significant associations were observed in genotypes of 
the susceptibility-linked and relapsed-linked SNPs of 
ARID5B with cell cycle progression. Next, we compared 
cell cycle progression between the 36 cell lines with 
higher than median value ARID5B gene expression levels 
and the other 36 cell lines with lower than median value 
gene expression levels (Additional file  8: Fig. S6). No 

differences were observed between the two groups. These 
observations suggest that cell cycle progression may not 
directly be involved in the association of SNP genotype 
and gene expression level of ARID5B with drug sensitivi-
ties in BCP-ALL cell lines.

Discussion
In the present study, using a series of BCP-ALL cell lines, 
we tried to verify the significance of genotype in the sus-
ceptibility-linked and relapsed-linked SNPs of ARID5B 
with ARID5B gene expression and drug sensitivities. It 
should be noted that the karyotypes in our cell lines were 
highly biased in comparison with those in childhood 
BCP-ALL patients: 14 cell lines were BCR/ABL1-positive, 
13 cell lines were TCF3/PBX1-positive, 12 cell lines were 
MLL (KMT2A)-rearranged, and 3 cell lines were TCF3/
HLF-positive. Furthermore, we later discovered that 15 
cell lines were positive for MEF2D-fusions [18], which 
are recently identified fusion genes with a poor therapeu-
tic outcome [19, 20]. In contrast, only four cell lines were 
ETV6/RUNX1-positive, and no cell lines were hyperdip-
loid. Thus, the majority of our cell lines were established 
from BCP-ALL with a poor prognosis.

Using these biased samples, we analyzed associa-
tions between genotypes of the relapsed-linked SNPs 
of ARID5B and the sensitivities to representative drugs 
for ALL treatment. We analyzed the sensitivities to nine 
agents, and found that sensitivities to VCR, CY, and AraC 
were associated with relapsed-linked SNPs; cell lines with 
homozygous genotypes of risk alleles in the relapsed-
linked rs4948488, rs2893881, and rs6479778 were sig-
nificantly more resistant to VCR, CY, and AraC than 
cell lines with non-risk alleles. These relapsed-linked 
SNPs of ARID5B were located in intron 2 of the ARID5B 
gene. However, no significant association was observed 
between genotypes of the relapse-linked SNPs of ARID5B 
and ARID5B gene expression level in BCP-ALL cell lines. 
Moreover, ARID5B gene expression level was not asso-
ciated with sensitivities to VCR, CY, and AraC. Thus, 
genotypes of the relapse-linked SNPs of ARID5B are 
associated with VCR, CY, and AraC sensitivities of BCP-
ALL cell lines independent of their ARID5B expression 
levels. Additionally, although cell cycle progression is 
highly associated with the drug sensitivity of leukemia 
cells, no clear association was observed between cell 
cycle progression and genotypes of the relapse-linked 
SNPs of ARID5B in BCP-ALL cell lines. Thus, further 
analyses are required to clarify the underlying mecha-
nism behind the association between genotypes of the 
relapse-linked SNPs of ARID5B with the sensitivities to 
VCR, CY, and AraC in BCP-ALL cell lines.

Regarding the association of ARID5B with drug sensi-
tivities in BCP-ALL cell lines, we also found that lower 
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Fig. 4  Association of ARID5B gene expression with sensitivities to 
MTX (a), VCR (b), CY (c), and AraC (d). Vertical axis indicates log-scaled 
IC50 values of MTX (a), VCR (b), CY (Maf ) (c), and AraC (d). The IC50 
values of 36 cell lines with higher ARID5B expression and the other 
36 cell lines with lower expression were compared. P-value in Mann–
Whitney U test is indicated at the top
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ARID5B gene expression level was associated with 
resistance to MTX. This finding seems to be partly con-
sistent with a recent report by Xu et al. [15] who found 
that ARID5B knockdown in ALL cell lines led to specific 
resistance to MTX and 6MP.  The authors showed that 
knockdown of ARID5B by using shRNA and CRISPR/
Cas9 in ALL cell lines induced partial cell-cycle arrest 
at G0/G1 phase through upregulation of p21 [15], sug-
gesting that cell-cycle arrest mediated by p21 may be 
involved in the induction of resistance to MTX and 6MP. 
However, in the present study, the proportions of G0/G1 
phase in cell lines with lower ARID5B expression were 
similar to those in cell lines with higher ARID5B expres-
sion, suggesting that cell cycle progression was not a 
direct mediator in the association between ARID5B gene 
expression level and sensitivity to MTX in BCP-ALL cell 
lines. Further mechanism(s) other than cell cycle pro-
gression may be involved in the association of ARID5B 
expression with MTX sensitivity.

Conclusion
In summary, our observations in 72 BCP-ALL cell lines 
suggest that the risk allele of the relapse-linked SNPs 
of ARID5B may be associated with higher relapse rates 
because of resistance to chemotherapeutic agents such 
as VCR, CY, and AraC. Moreover, lower ARID5B expres-
sion may be associated with MTX resistance. Limitations 
of the present study include that the study sample was 
restricted to limited numbers of leukemic cell lines with 
biased karyotypes and that underlying biological mecha-
nisms for the associations remain unclarified. Since our 
findings were obtained from leukemia cell lines, further 
studies are needed before making a firm conclusion.
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