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Abstract 

Background:  Large-scale initiatives like The Cancer Genome Atlas (TCGA) performed genomics studies on pre-
dominantly Caucasian kidney cancer. In this study, we aimed to investigate genomics of Chinese clear cell renal cell 
carcinoma (ccRCC).

Methods:  We performed whole-transcriptomic sequencing on 55 tumor tissues and 11 matched normal tissues from 
Chinese ccRCC patients. We systematically analyzed the data from our cohort and comprehensively compared with 
the TCGA ccRCC cohort.

Results:  It found that PBRM1 mutates with a frequency of 11% in our cohort, much lower than that in TCGA Cauca-
sians (33%). Besides, 31 gene fusions including 5 recurrent ones, that associated with apoptosis, tumor suppression 
and metastasis were identified. We classified our cohort into three classes by gene expression. Class 1 shows signifi-
cantly elevated gene expression in the VEGF pathway, while Class 3 has comparably suppressed expression of this 
pathway. Class 2 is characterized by increased expression of extracellular matrix organization genes and is associated 
with high-grade tumors. Applying the classification to TCGA ccRCC patients revealed better distinction of tumor 
prognosis than reported classifications. Class 2 shows worst survival and Class 3 is a rare subtype ccRCC in the TCGA 
cohort. Furthermore, computational analysis on the immune microenvironment of ccRCC identified immune-active 
and tolerant tumors with significant increased macrophages and depleted CD4 positive T-cells, thus some patients 
may benefit from immunotherapies.

Conclusion:  In summary, results presented in this study shed light into distinct genomic expression profiles in Chi-
nese population, modified the stratification patterns by new molecular classification, and gave practical guidelines on 
clinical treatment of ccRCC patients.
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Background
Kidney cancer, or renal cell carcinoma (RCC), accounts 
for about 2–3% of tumor malignancy in adults, and is 
one of the most lethal urological cancers [1]. Clear cell 
renal cell carcinoma (ccRCC) is its most common sub-
type (75–85%). According to the data from the Chinese 
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National Cancer Registry Center, over 67,000 new cases 
were diagnosed and 23,400 died in China in 2016, and 
these numbers are rapidly increasing each year. Due to 
the improvement of people’s health consciousness and 
the upgrades of surgical techniques, 5-year survival 
rates of organ-confined disease can reach 70–90% [2]. 
Patients with lymph node or systemic metastases suffer 
comparably worse with 5- and 10-year survival rates of 
5–30% and 0–5%, respectively [3–5].

Besides clinical and histopathological features, RCC 
can be also characterized by underlying genomic vari-
ations and high immune infiltration [6]. Genomic 
characterizations of resource datasets on RCCs have 
been performed in the past few years, including clear 
cell renal cell carcinoma (ccRCC) [7–9], chromophobe 
renal cell carcinoma [10], papillary renal cell carcinoma 
[11] and renal medullary carcinoma [12]. One integra-
tive taxonomy research has been performed to assem-
ble three TCGA renal carcinoma subtypes [13].

Race and ethnicity cause inter-tumoral heterogene-
ity in cancers, ranging from disease incidence, mor-
bidity, and mortality rates to treatment outcomes [14, 
15]. Therefore, identification of population-specific 
molecular biomarkers is very important to this end. For 
example, Shi et  al. utilized TCGA data to perform an 
integrative comparison between Caucasian and Asian 
Americans on gene expression patterns in breast can-
cers and found significant differences at gene and path-
way levels [16]. But global genomic and transcriptomic 
similarities and dissimilarities between Asian and Cau-
casian for ccRCC remain largely unknown.

Cancers are increasingly recognized as collections 
of diverse not only genetic diseases, but also immune 
diseases. The heterogeneous tumor microenvironment 
(TME), including immune components, plays critical 
roles in tumor growth, progression and response to 
pharmaceutics, particularly immuno-oncology thera-
peutics. In recent years, immuno-phenotyping stud-
ies based on high-throughput assays on bulk tissue or 
single cell levels become more popular in oncology 
research [9, 17–20]. Recently, two studies provided an 
immune atlas of ccRCC as inflammatory subtype of 
tumors by genomic analysis on bulk tumor level and 
by mass spectrometry single-cell level, respectively [17, 
20]. It would be interesting to understand the underly-
ing mechanisms for universal tumor-immune interac-
tions in ccRCC.

To this end, we performed whole-transcriptome 
sequencing (WTS) on a cohort of 66 samples derived 
from 55 tumor tissues from Chinese ccRCC (CccRCC) 
patients and 11 of their matched normal tissues. We 
compared genetic variations and gene expression of 
CccRCCs with other large cohorts from TCGA and 

identified novel genomic features for ccRCCs in Chinese 
patients. Additionally, we uncovered new immunological 
characteristics for ccRCC progression and repression.

Materials and methods
RNA isolation and WTS on CccRCC​
Freshly and surgically removed tumors and non-can-
cerous matched tissues (normals) were obtained from 
55 patients diagnosed as ccRCC (These patients were 
enrolled from August 26th, 2016 to July 24th, 2017.) and 
frozen for storage. Total RNAs were extracted by RNeasy 
kit from (Qiagen) and the purity and integrity of the RNA 
samples (RIN > 7 and 28S/18S > 1) were determined by 
Agilent Bioanalyzer prior to sequencing. polyA + mRNA 
sequencing was performed by certified service providers 
at paired-end 150 bp on Illumina HiSeq platform.

External datasets retrieval and processing
Level-3 TCGA RNA-seq data on kidney renal clear cell 
carcinoma or KIRC (533 tumor and 72 normal samples) 
were downloaded from the TCGA data portal (February 
2015 release, https​://tcga-data.nci.nih.gov/tcga/). RNA-
seq data generated by the Illumina HiSeq platform were 
used and processed by the RNAseqV2 pipeline, which 
used MapSplice [21] for read alignment and RSEM for 
quantification [22]. Clinical metadata of the three cancer 
types were obtained from the TCGA data portal (https​://
porta​l.gdc.cance​r.gov, November 2017) and converted to 
tab-delimited text tables.

Bioinformatics analysis on RNA‑seq data
Gene mutation analysis
Raw RNA-seq reads passed the FastQC tool (https​://
www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/) 
default filters were aligned to the human genome assem-
bly hg19. Somatic mutations on expressed genes were 
detected from aligned data for 55 tumor samples by the 
STAR mapping software [23] and the GATK variant dis-
covery toolkit [24]. Several filtering steps were performed 
to exclude low-quality and germline mutations: (1) low-
quality candidate events (i.e., the mutation events not 
tagged as PASS by GATK or with alternative allele depth 
smaller than 5, and indel mutations in poly-N region or 
with alternative allele rate less than 20%) were removed; 
(2) The mutation events that were observed in the 1000 
Genome Project [25] and the 6500 Exome Project [26] 
with greater than 0.5% frequency were excluded; (3) the 
putative events should be within exonic regions and be 
protein-changing; (4) only mutations associated with 
cancer related genes (572 cancer consensus genes from 
COSMIC database (https​://cance​r.sange​r.ac.uk/cosmi​
c) were retained [27]. The 11 matched normal samples 
were used as reference to further check the reliability 
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of the detected somatic mutation. The remained puta-
tive mutations were used to infer driver mutations via a 
web tool—the Cancer Genome Interpreter (https​://www.
cance​rgeno​meint​erpre​ter.org/). To compare the over-
all mutation frequencies of driver mutation genes in the 
Chinese and Caucasian populations, Fisher’s exact test 
was performed on each driver genes with 2 × 2 matrix of 
the sample counts with or without respective mutation in 
two datasets.

Gene fusion detection
Gene fusion information was detected by SOAPfuse [28] 
and Fusioncatcher [29] using mapped BAM files. Fusion 
events that are recurrent in more than one tumor sample 
were visualized as a circos plot [30].

Gene expression data preprocessing and basic analysis
Gene expression was estimated by the MMSEQ software 
[31] and raw gene counts were normalized by the RSEM 
software [22]. For the cross-dataset comparison of kidney 
cancer cohort for TCGA patients and CccRCC patients, 
“sva” package was utilized to estimate batch effect before 
pairwise Spearman correlation analysis on correspond-
ing transcriptome [32]. “Rtsne” package was employed 
to ensure absence of batch effect between two datasets 
[33]. Differentially expressed (DE) genes and pathways 
between different clinical groups (Asian versus white, 
early pathologic stage versus late stage, lower histo-
logic grade versus higher grade) were identified by using 
“Limma” and “GSVA” package with different cutoffs [34, 
35]. Genes sets are derived from KEGG (https​://www.
genom​e.jp/kegg/), REACTOME (https​://react​ome.org/) 
and BIOCARTA (http://www.bioca​rta.com/) databases, 
which are integrated by MSigDB [36].

RT‑PCR and Sanger sequencing validation
The genomic DNA of tumor and blood samples were 
isolated using DNeasy Blood and Tissue Kit (Qiagen 
Cat#69506) following manufacturer’s instruction. PCR 
amplification of amplified the mutation sites of PBRM1, 
and Sanger sequencing was used to verify the status of 
mutation sites. The PBRM1 primer sequences are pro-
vided in Additional file 1.

Molecular classification of ccRCC​
The gene expression data matrix was z-score transformed 
and the maximum absolute deviation was calculated for 
each gene to select the top variable genes for clustering. 
The data were then transformed into a non-negative 
matrix and clustered using the “NMF” package [37]. 
First, we tested a series of gene numbers (1500, 2000, 
3000, 4000, 5000, 6000 and 7000). Rank estimates were 
calculated using 50 iterations of ranks 2–8 with default 

settings. 3000 genes give best clustering with k = 3. DE 
genes across NMF-derived subtypes were identified by 
comparing each class with other two and Top 300 DE 
genes ranked by adjusted p-value among all comparisons 
were retained with the best recall of original NMF-based 
clustering using 3000 genes. Pathway enrichment analy-
sis was performed on 300 DE genes using REACTOME 
2016 pathway database via Enrichr webtool (http://amp.
pharm​.mssm.edu/Enric​hr/) [38, 39]. Pairwise Spearman 
correlation (COR) and distance matrix (1-COR) based on 
DE genes were determined for CccRCC samples (n = 55) 
combined with KIRC samples from TCGA (n = 533) as 
a complete cohort. Hierarchical clustering of distance 
matrix was performed to identify predicted classes. The 
classified KIRC samples were used for survival analysis.

Transcriptional immuno‑phenotyping analysis
The mRNA expression of 66 immune markers proposed 
by TCGA Network [40] was plotted as a heatmap for all 
CccRCC samples (55 tumors and 11 normals) and TCGA 
KIRC samples separately, and hierarchical clustering was 
performed. Survival analysis of TCGA patients were then 
performed for immuno-stratified groups. The RSEM-
normalized expression matrix of all genes for all CccRCC 
samples was utilized for deconvolution analysis by EPIC 
algorithm [41]. The signature scores of 6 human hemat-
opoietic cell types were displayed as a stacked bar plot, 
where samples are ordered in the same immuno-strati-
fied groups. Volcano plots showing log10 mean ratio and 
p-value between groups were drawn by comparing the 
inferred relative fractions from immune-active and toler-
ant tumors (n = 51) versus immune-inactive tumors and 
normal samples (n = 15).

Results
Patient clinical information
Transcriptome sequencing was performed on 55 tumor 
tissue samples from CccRCC patients, 11 of which with 
matched normal tissues. The clinical information, includ-
ing age, gender, race, vital status, metastasis, pathologic 
stage and histologic grade, was summarized in compari-
son with the TCGA ccRCC cohort (Table 1). To note, our 
cohort is a slightly biased in early stages (Stage I: 50.1%; 
Stage II: 10.7%) and moderate grades (Grade 2: 43.0%; 
Grade 3: 38.6%) biased compared with the TCGA cohort 
and hitherto all patients are alive.

Driver mutations and gene fusions
To investigate population-specific genomic features, 
important driver mutations and recurrent gene fusions 
were identified in CccRCC tumors (Fig. 1). The median 
number of estimated somatic mutations for ccRCC 
patients is 54 per sample, at a comparable level to the 
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TCGA cohort (KIRC: 44) (Fig. 1a). Due to lack of paired 
normal controls and the limitation of WTS technol-
ogy, the mutation frequencies for the vast majority of 
important ccRCC variant genes, such as VHL, BAP1 
and SETD2, were shown in higher levels than in the 
TCGA cohort, except for PBRM1, a second most sig-
nificantly mutated gene (SMG) (33.7% in the Cauca-
sian population) as previously described [8, 42], which 
was observed with only 14.5% mutation rate in Chi-
nese patients (Additional file  2: Table  S1a). RT-PCR 
and Sanger DNA sequencing confirmed that the true 
mutation rate of PBRM1 is 10.9%. We further iden-
tified 191 putative driver mutations associated with 
572 cancer consensus genes from the COSMIC data-
base [27] (Additional file  2: Table  S1b). The most fre-
quently mutated driver genes are VHL (78%), BAP1 
(19%), NCOR2 (13%) and SETD2 (11%) in 53 samples 
with driver mutation (Fig.  1b). Fisher’s exact test was 
then performed on each driver gene to investigate the 

overall mutation frequency difference between the 
Chinese and Caucasian populations. Significant differ-
ence (p-value < 0.05) in mutation frequencies between 
two populations was observed in 11 out of 84 driver 
genes, of which 3 were previously proposed SMGs in 
ccRCC [42], including VHL (p-value = 8.6E−4), PBRM1 
(p-value = 8.4E−5) and KDM5C (p-value = 3.8E−2) 
(Table 2). Further mRNA expression analysis indicated 
that PBRM1 mutation is associated with activation of 
the VEGF signaling pathways (Fig. 1c).

Thirty-one fusion events were detected in the 
CccRCC patients, five of which were observed in more 
than one sample (Fig.  1d). Functional analysis on the 
downstream related genes, e.g. PIR for the ACE2-PIR 
fusion, revealed their association with apoptosis, can-
cer suppression and metastasis, etc. (Additional file  3: 
Table  S2). However, none of the fusion events was 
observed in TCGA patients [8].

Table 1  Clinical data summary of studied ccRCC datasets

CKC dataset Percentage TCGA dataset Percentage

Sample (matched normal) 55 (11) 533 (72)

Average of age (range) 58.3 (25–80) 60.63 (26–90)

Gender

 Male 41 74.5 345 64.7

 Female 14 25.5 188 35.3

Race

 White 0 0. 462 86.

 Black 0 0.0 56 10.5

 Asian 55 100.0 8 1.5

 Not available 0 0.0 7 1.3

Vital status

 Alive 55 100.0 358 67.2

 Dead 0 0.0 175 32.8

Metastasis

 Mets− 51 92.7 422 79.2

 Mets+ 4 7.3 109 20.5

 Not available 0 0.0 2 0.4

Pathologic stage

 Stage I 41 74.5 267 50.1

 Stage II 3 5.5 57 10.7

 Stage III 11 20.0 123 23.1

 Stage IV 0 0.0 83 15.6

 Not available 0 0.0 3 0.6

Histologic grade

 Grade1 8 14.5 14 2.6

 Grade2 29 52.7 229 43.0

 Grade3 13 23.6 206 38.6

 Grade4 4 7.3 76 14.3

 Not available 1 1.8 3 0.6
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Expression across populations and transcriptional 
variations during tumor development
The gene expression profiles from both Chinese (n = 55) 
and TCGA (n = 533) ccRCC cohorts were integrated 
and compared for population specific variations. The 

t-Distributed Stochastic Neighbor Embedding (t-SNE) 
plot of the expression profiles from both datasets demon-
strated a largely uniform distribution of Asian, white and 
black patients, suggesting low influence of race on tran-
scriptomic level inter-tumoral heterogeneity (Fig. 2a).

Fig. 1  Driver mutations and Gene fusion markers. a Scatterplot of mutation load in clear cell renal cell carcinoma patients from Chinese (n = 55) 
and TCGA (n = 533) collection. Median mutation load of each dataset is marked in red. b Summary of Top 26 driver mutations detected in Chinese 
cohort. Colors indicate mutation types. c PBRM1 mutation is associated with activation of VEGF signaling pathways in TCGA ccRCC collection. d 
Circos plot of detected fusion genes. Recurrent fusion events observed in more than one sample are highlighted in red
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To examine the transcriptomic variation between 
patients with different tumor stages/grades, we used 
gene set variation analysis (GSVA) on the 55 tumor sam-
ples from Chinese ccRCC patients on 833 well-curated 
biological pathways. We observed a strong clustering 
of tumor samples by tumor grade, showing by 71 dif-
ferentially expressed gene sets identified between grade 
groups (|Fold change| > 1.3, p-value < 0.05, Fig.  2b). A 

Table 2  The frequencies of  driver mutation genes 
in CccRCC and TCGA datasets

Gene Frequency 
in Chinese ccRCC 
(%)

Frequency in TCGA 
KIRC white (%)

p-value 
(Fisher’s 
exact test)

VHL 76.4 52.8 0.000862049

BAP1 18.2 9 0.053248208

NCOR2 12.7 1.4 0.000127079

SETD2 10.9 11 1

PBRM1 9.1 33.7 8.38E−05

ATM 9.1 3.5 0.065990135

ERBB3 9.1 1.9 0.011804502

NBN 9.1 0.4 0.000226619

DNM2 9.1 0.2 7.06E−05

PTEN 7.3 4.3 0.299167676

KMT2C 7.3 3.8 0.269293981

GOLGA5 7.3 1.1 0.010440507

MTOR 5.5 7.1 1

FAT1 5.5 3.5 0.449134307

PTCH1 5.5 2.1 0.131792795

MSH6 5.5 1.1 0.045880562

PTPRB 5.5 0.9 0.031041033

EXT2 5.5 0.4 0.01040418

APC 3.6 1.1 0.170756605

KDR 3.6 1.1 0.170756605

XPC 3.6 1.1 0.170756605

TSC1 3.6 0.9 0.13083787

FGFR4 3.6 0.7 0.093628013

SH2B3 3.6 0.4 0.06033848

TGFBR2 3.6 0.4 0.06033848

FANCE 1.8 4.3 0.711854112

PIK3CA 1.8 4 0.70899921

TP53 1.8 3.3 1

POLE 1.8 3.1 1

CHD4 1.8 2.6 1

SMARCA4 1.8 2.3 1

ATR​ 1.8 2.1 1

CDK12 1.8 2.1 1

TET2 1.8 2.1 1

CHEK2 1.8 1.9 1

EGFR 1.8 1.9 1

BLM 1.8 1.6 0.604409035

FLT4 1.8 1.6 0.604409035

GNAS 1.8 1.6 0.604409035

MYH11 1.8 1.6 0.604409035

TRRAP 1.8 1.6 0.604409035

NCOR1 1.8 1.4 0.55540565

PIK3CB 1.8 1.4 0.55540565

FBXW7 1.8 1.1 0.500455786

GATA2 1.8 1.1 0.500455786

KAT6B 1.8 1.1 0.500455786

MLLT4 1.8 1.1 0.500455786

Table 2  (continued)

Gene Frequency 
in Chinese ccRCC 
(%)

Frequency in TCGA 
KIRC white (%)

p-value 
(Fisher’s 
exact test)

TCF12 1.8 1.1 0.500455786

ERBB2 1.8 0.9 0.4388528

ARID1B 1.8 0.9 0.4388528

ASXL1 1.8 0.9 0.4388528

CIC 1.8 0.9 0.4388528

JAK3 1.8 0.9 0.4388528

MECOM 1.8 0.9 0.4388528

NUP98 1.8 0.9 0.4388528

PER1 1.8 0.9 0.4388528

BARD1 1.8 0.7 0.369807843

DDR2 1.8 0.7 0.369807843

MET 1.8 0.7 0.369807843

NDRG1 1.8 0.4 0.292440502

FANCG 1.8 0.4 0.292440502

PLCG1 1.8 0.4 0.292440502

PMS2 1.8 0.4 0.292440502

PRF1 1.8 0.2 0.205768403

CEBPA 1.8 0.2 0.205768403

MAP2K1 1.8 0.2 0.205768403

MYH9 1.8 0.2 0.205768403

PRDM1 1.8 0.2 0.205768403

TCF7L2 1.8 0.2 0.205768403

FH 1.8 0 0.108695652

CDKN1B 1.8 0 0.108695652

KLF6 1.8 0 0.108695652

PPM1D 1.8 0 0.108695652

TRAF7 1.8 0 0.108695652

KDM5C 0.0 6.9 0.037678184

ARID1A 0.0 5.5 0.095406442

MALAT1 0.0 2.1 0.606792113

FGFR3 0.0 1.4 1

ABL2 0.0 1.1 1

BCL6 0.0 1.1 1

CDK4 0.0 0.9 1

CDH1 0.0 0.7 1

PALB2 0.0 0.7 1

FANCF 0.0 0.2 1

Fisher’s Exact test was performed for each gene by comparing the sample 
counts with mutant and wild type in two datasets
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considerable number of pathways, especially pathways 
related to cell cycle, were significantly up-regulated in 
severe grade levels (Grade 3 and 4) than in mild level 
(Grade 1 and 2) (|Fold change| > 1.3, p-value < 0.05). 
Moreover, 91 differentially expressed gene sets are identi-
fied for stage groups (|Fold change| > 1.3, p-value < 0.05). 
The association between expression and tumor stages 
seems weak from clustering of pathways and genes 
(Additional file 4: Figure S1, Additional file 5: Figure S2).

ccRCC classification by mRNA expression
There have been several molecular classification schemes 
of ccRCC [7, 8, 13]. Most recently, ccRCC was classi-
fied into 3 subtypes using multilevel genomics data [13]. 
Such classifications, however, are sensitive to the num-
ber of genes used for statistical computation. Therefore, 
we used a robust iterative method to classify the Chi-
nese ccRCC patients (see “Materials and methods”). The 
expression signatures obtained therefrom, if were more 
clinical-relevant than existing ones, should classify the 
TCGA ccRCC patients into groups with more distinct 
survival patterns, especially that we observed no pro-
nounced population-specific transcriptomic profiling 
between the two patient cohorts.

Using our new method, the 55 CccRCC patients were 
clustered into 3 classes based on 3000 variable genes by 
unsupervised learning using the non-negative matrix fac-
torization (NMF) algorithm (Additional file 6: Figure S3). 
Through iterations, top 300 differentially expressed genes 
were chosen as signature genes from the NMF-derived 
classes that, gave 94.5% agreement with that done by the 
original 3000-genes (Fig. 3a, Additional file 7: Figure S4). 
The most significantly enriched pathways for the 300 sig-
nature genes are extracellular matrix organization, hemo-
stasis, and VEGF associated pathways, etc. (Additional 
file 8: Table S3).

The 300 signature genes were then used to classify 
TCGA ccRCC patients into 3 classes. Survival analysis 
of the three classes demonstrated significant difference 
in survival (log-rank test p-value = 1.55E−15), more 
so than that by the TCGA defined 3 subtypes, namely 
cc-e.1, cc-e.2 and cc-e.3 (log-rank test p-value = 8.94E−8) 
[13]. Gene set enrichment analysis revealed that Class 1 
tumors are characterized by significantly elevated VEGF 
pathway genes whereas those in Class 3 are comparably 
depleted (Kruskal–Wallis test p-value = 4.9E−16, data 

not shown). Class 2 tumors, which possess increased 
expression of extracellular matrix organization genes 
(Kruskal–Wallis test p-value = 1E−15, data not shown), 
were strongly associated with higher grade of tumors, 
and thus resulted in the worst overall survival (Fig. 3b). 
Comparison of median survival time for each patient 
group from our and TCGA classifications demonstrated 
better indication of survival groups in our classifica-
tion (Fig.  3c). The median survival time of our Class 2 
patients was only 1230 days, much shorter than the other 
two groups. In the TCGA classification, the cc-e.3 sub-
type had the worst survival, but its median survival was 
a much longer 1588  days. Cross comparison of the two 
classification schemes reveals that the majority (77 out of 
88) of our Class 2 patients were in the TCGA cc-e.3 sub-
type, which however had an additional 54 other patients. 
Further, Class 1 patients have overlap with all three 
TCGA subtypes and dominant in cc-e.2 whereas Class 3 
seems to be a rare novel subtype that has not been dis-
covered in previous studies.

Immuno‑phenotyping
To characterize tumor microenvironment in the CccRCC 
cohort, we first performed unsupervised hierarchi-
cal clustering of gene expression on 55 tumor and 11 
matched normal samples by using a list of 66 immune 
markers proposed by the TCGA project [40]. Three dis-
tinct groups of tumors plus one group of normal sam-
ples were determined based on immuno-phenotyping. 
Seventeen tumor samples were with relatively high 
immune marker expression, and therefore, were defined 
as immune-active tumors; 4 tumor samples were clus-
tered with normal tissues and had suppressed expression 
of the immune markers, hence, deemed as immune-
inactive tumors; the remaining 34 tumor samples had 
intermediate levels of immune activity and were defined 
as immune-tolerant tumors (Fig. 4a). Such immune-phe-
notyping classification showed no observable correlation 
to the ccRCC classification determined in Fig. 3, suggest-
ing immuno-phenotyping is independent of expression-
based ccRCC subtypes.

When such immune-phenotyping classification was 
applied to the TCGA ccRCC patients, we observed sig-
nificantly longer survival in the immune-inactive patients 
than in the immune-active and immune-tolerant patients 
(log-rank test p-value = 1.8E−3) (Fig.  4b). We further 

(See figure on next page.)
Fig. 2  Global overview of the transcriptomics of ccRCC patients. a The t-Distributed Stochastic Neighbor Embedding (t-SNE) plot of global 
mRNA expression for Chinese (C, n = 55) and TCGA’s (T, n = 533) ccRCC patients. Samples are colored by race. b Heatmap for gene set variation 
analysis (GSVA) on early (T1T2) and late (T3T4) clinical stages. Cutoffs used for GSVA were:|Fold Change| > 1.3 and Bonferroni & Hochberg adjusted 
p-value < 0.05
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classified TCGA ccRCC patients into 9 groups using 
both the expression-based and immuno-phenotyping 
classifications, and observed more distinct survival dif-
ference than either single classification (log-rank test 
p-value = 2.40E−14), and as expected, we observed that 
the immune-active and immune-tolerant patients in 
Class 2 had the worst survival (Fig. 4c).

To identify infiltrating immune components within 
these samples, we performed tumor-immune interaction 
estimation analysis on CccRCC tumor and normal sam-
ples by the EPIC algorithm [41] (Additional file 9: Figure 
S5a). The composition of infiltrating immune repertoire 
presented remarkable heterogeneity across CccRCC 
patients. By comparing the immune and stroma contents 
in immune-active and tolerant tumors with immune-inac-
tive tumors and normal tissues, macrophages, endothe-
lial cells and cancer associated fibroblasts (CAFs) were 
observed as significantly elevated cell types in the former 
group (Additional file 9: Figure S5b) whereas CD4 positive 
T cells are depleted, indicating macrophages and inflam-
mation plays important role in these tumors. Moreover, 
as the tumor mutational burden (TMB) is reported to be 
associated with immunotherapy in diverse cancers [43, 
44], we roughly estimated TMB (as eTMB) by the num-
ber of somatic mutations for the 11 paired samples using 
the RNA-seq data (Additional file  10: Table  S4a). From 
this small sample size estimation, we did not observe clear 
correlation between the computed eTMB and the immu-
nophenotyping we identified in Fig. 4a, however, we could 
see some evidence of the correlation between TMB and 
CD8+ T cells and macrophages contents in TME (Addi-
tional file 10: Table S4b).

Discussion
This study aimed to understand the transcriptomics of 
Chinese ccRCC from the RNA-seq data. We first inves-
tigated gene mutations. Due to lack of sufficient matched 
tumor adjacent normal tissue samples and compara-
tively lower sensitivity of WTS-based detection, heuristic 
methods were used to detect and infer somatic muta-
tions. We observed slight difference in occurrence and 
frequency for the previously found significantly mutated 
genes in TCGA ccRCC cohorts [42], except for PBRM1, 
whose mutation frequency in our cohort is much 
lower than in Caucasians. The RNA sequencing qual-
ity and depth at PBRM1 coding region were sufficient 

(Additional file 11: Table S5). Inference of gene mutation 
from transcriptomic data may be affected by several fac-
tors including DNA mutations that impact RNA tran-
script stability (e.g. through nonsense mediated decay), 
RNA editing that plays a role in cancer development [45], 
low expression of RNA that leads to undetected muta-
tions. To evaluate whether DNA mutations affect RNA 
transcript stability and subsequently mRNA expression, 
we compared PBRM1 expression between missense 
mutation, truncating mutation (some leading to non-
sense mediated decay), and wild type in the TCGA clear 
cell renal carcinoma cohort (Additional file  12: Figure 
S6a). Indeed, we observed a lower PBRM1 expression in 
patients with truncating mutations. However, all patients 
have significant PBRM1 expression. Similarly, PBRM1 
has quite measurable expression levels in the CccRCC 
cohort, and no significant difference is detected between 
tumor and normal samples (Additional file  12: Figure 
S6b). Therefore, it is unlikely that DNA mutations cause 
low PBRM1 mutation frequency in the CccRCC cohort. 
From Additional file 12: Figure S6a we also observed that 
about 80% of PBRM1 mutations are truncating muta-
tions. In the 8 validated PBRM1 mutations in the Chinese 
cohort, 6 or 75% are truncation mutations (Additional 
file  2: Table  S1b). We therefore conclude that the low 
PBRM1 mutation frequency in the CccRCC cohort is 
unlikely artifact.
PBRM1 was previously reported to be associated with 

slightly worse stage and grade tumors by immunohisto-
chemistry [46], however, the domination of early stage 
(78.4%) and low grade (66.1%) samples in our dataset 
might bias the observation. Nevertheless, remarkably 
low frequency of PBRM1 mutation frequency (11%) was 
also reported in Polish population with a samples size of 
83 patients and no bias in early stage and low grade [47]. 
PBRM1 is involved in the regulation of genes of metabolic 
pathways that is known to be essential for driving ccRCC, 
including the hypoxia response related PI3K signaling 
pathway [48], high percentage of wild type PBRM1 could 
be one reason why better treatment outcome of PI3K 
inhibitor was observed in the Chinese population (data 
not shown). PBRM1 mutation status could also be related 
to immunotherapy efficacy. A recent study reported that 
ccRCC patients with PBRM1 mutational inactivation 
benefits more from PD-1 inhibitors than those with wild 
type PBRM1 [49].

Fig. 3  Clear cell renal cell carcinoma classification. a Chinese and TCGA ccRCC patients (n = 588) are classified into three subtypes based on 
NMF-clustering derived 300 genes. b Survival analysis on three identified classes of TCGA ccRCC patients revealed significant difference. The log 
rank test p-value across groups is 1.55E−15. c Comparison of CccRCC-defined ccRCC classification (n = 533 and n = 488) with TCGA’s classification 
(n = 488) by stratification of survival curves. d Overlap of samples classified in CccRCC and TCGA’s classification. The largest intersection for Class 1-3 
is highlighted in red

(See figure on next page.)
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We used expression data to classify ccRCC patients. 
Large-scale molecular diagnosis of cancer plays more 
and more important role in precision medicine [50, 51]. 
Unsupervised clustering algorithms were usually used 
for classifying a cancer into subtypes. Such classifications 
are sensitive to various parameters used in the numeric 
operations, such as number of genes used. From a practi-
cal and clinical point of view, a good classification should 
generate subtypes with distinct clinical prognosis and 
unique pathway activations that can be treated accord-
ingly. As the Chinese cohort in this study lacks clinical 
survival information (all patients involved in this study 
were fortunately all alive at the time of this report), we 
used the TCGA ccRCC data to test our classification. 
The most recent multi-platform taxonomy of RCC from 
TCGA resulted in stratified survival groups (log rank 
p-value < 1E−7) with three ccRCC related subtypes [51], 
which is in favor of their previous mRNA-based cluster-
ing in 2013 [8]. Our classification further improved the 
stratification in overall survival. In addition to favorable 
distinction of survival curves, we could better correlate 
our classification with tumor grade levels. Although Class 
1 and Class 3 tumors resulted in similar survival behavior, 
significant expression difference in ccRCC-driven path-
ways such as VEGF signaling pathway indicate that these 
two subtypes might be caused or impacted by distinct 
molecular mechanism, and should be treated differently. 
Using our classification, we already put more emphasis 
on the follow-up care of the Class 2 patients, results of 
which will be reported in the future.

Finally, we investigated the immuno-phenotyping of 
CccRCC patients. A previous study applied mass cytom-
etry for multi-dimensional single-cell analysis on ccRCC 
but focused only on tumor associated macrophages and 
T cells due to limited number of channels [17]. Dis-
secting molecular signals of immune cells from TME in 
bulk tumor WTS by deconvolution analysis is a more 
convenient and cost-effective way than experimental 
technologies albeit resulting in insufficient resolution 
and precision [52–54]. Recent immunogenomic analy-
sis on TCGA dataset identified that ccRCC is dominant 
of inflammatory subtype [55], which is also confirmed 
in CccRCC patients by our computing of cell fractions 
of TME cell types using the EPIC algorithm [41]. We 

further demonstrated that macrophages play more role 
in “immune-active” and “immune-tolerant” ccRCCs by 
comparing across samples. Further understanding of the 
tumor-associated macrophages might be helpful to per-
form respective cell-mediated immunotherapy for these 
patients in the future. The combination of immune-
phenotyping and mRNA expression data for classifying 
ccRCC into 9 subtypes also gave better resolution on 
patient prognosis.

Conclusion
In summary, results presented in this study shed light 
into the prognostic difference across populations, and 
gave practical guidelines on clinical treatment of ccRCC 
patients.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​5-020-01552​-w.

Additional file 1. PBRM1 primer sequences used in RT-PCR and Sanger 
sequencing. 

Additional file 2: Table S1. a: this table gives the detailed information for 
detected driver mutation in CccRCC dataset. b: this table gives RT-PCR and 
Sanger sequencing validation of computational predicted PBRM1 somatic 
mutations from RNA-Seq technology. Confirmed somatic mutation are 
highlighted in yellow. 

Additional file 3: Table S2. This table contains detailed information on 
detected gene fusion events discovered in 55 CccRCC tumor samples. 

Additional file 4: Figure S1. Identification of pathway variation on dif-
ferent clinical groups. Heatmap for gene set variation analysis (GSVA) on 
early (T1T2) and late (T3T4) clinical stages. Cutoffs used for GSVA were: 
unadjusted p − value < 0.01. 

Additional file 5: Figure S2.Principle Component Analysis (PCA) on 
whole transcriptomes of 55 CccRCC reveals weak association between 
tumor stage gene expression. a: PCA plot colored by grade groups; b: PCA 
plot colored by stage groups. 

Additional file 6: Figure S3. Non-negative matrix factorization (NMF) 
clustering for CccRCC. Heatmap for NMF classification within all CccRCC 
samples for ranks 2-8 using 50 iterations. 

Additional file 7: Figure S4.Identification of gene expression based 
ccRCC classification. a. Heatmap for alignment of NMF based CccRCC 
classification to TCGA samples (n = 533) using 300 differentially expressed 
genes. b. Overlap of final predicted classes with original NMF-derived 
classes on CccRCC patients (n = 55). 

Additional file 8: Table S3. a: this table gives the top 300 differentially 
expressed genes between three classes defined by NMF clustering 
algorithm. b: this table contains top 20 significantly enriched Reactome 
pathways in the top 300 differentially expressed genes between three 

(See figure on previous page.)
Fig. 4  Transcriptional Characterization of Immune Microenvironment of ccRCC. a Unsupervised hierarchical clustering of immune gene expression 
within CccRCC patients (including tumor and normal samples, n = 66). A signature of 66 immune related cell markers proposed by TCGA was used 
for clustering. b Survival analysis on TCGA ccRCC patients (n = 533) grouped by three identified immuno-phenotypes (immune-active, tolerant and 
inactive) revealed significant difference. The log-rank test p-value across groups is 1.8E−3. c Survival analysis on combination of classification. TCGA 
patients were grouped by combination of molecular classification from Fig. 3 (Class 1–3) and immuno-phenotyping (immune-active, tolerant and 
inactive). The log rank test p-value across groups is 2.40E−14
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classes defined by NMF clustering algorithm. c: this table summarizes 
the molecular classification of ccRCC samples in both Chinese and TCGA 
datasets. 

Additional file 9: Figure S5. Identification of infiltrating immune cells 
in CccRCC. a. Relative fractions of tumor associated immune and stromal 
cells within all CccRCC samples. Samples were ordered as in the same 
clustering in Fig. 4. CAFs: cancer associated fibroblasts. b. Log10-trans-
formed mean ratio (x-axis) versus p-value from student t-test for immune-
active and tolerant tumors versus immune-inactive tumor and normal 
samples are shown. Only cell types with significant variance (p < 0.05) are 
labeled and highlighted in red (elevated) or blue (depleted). 

Additional file 10: Table S4. a: this table gives the estimated tumor 
mutational burden (eTMB, the number of somatic mutations) and cell 
fractions from bulk expression matrix for 11 paired CccRCC samples. b: 
this table summarizes the pairwise correlation between eTMB and the 
corresponding cell fraction values from a. 

Additional file 11: Table S5. a: this table provides whole transcriptome 
sequencing quality of 65 test samples in Chinese ccRCC dataset; b: this 
table summarizes the average depth of reads mapped to PBRM1 CDS 
region for Chinese ccRCC samples. 

Additional file 12: Figure S6. PBRM1 expression in CccRCC and TCGA 
cohorts. a PBRM1 expression represented by log10 RSEM values are com-
pared between missense mutation, truncating mutation and wild type in 
the TCGA cohort. Kruskal–Wallis test was performed across mutation type. 
b PBRM1 expression represented by log10 RSEM values are compared 
between tumor and normal samples in CccRCC cohort. Wilcoxon test was 
performed between tumor and normal.
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