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Abstract 

Background:  Soft tissue sarcomas (STS) has a high rate of early metastasis. In this study, we aimed to uncover the 
potential metastasis mechanisms and related signaling pathways in STS with differentially expressed genes and 
tumor-infiltrating cells.

Methods:  RNA-sequencing (RNA-seq) of 261 STS samples downloaded from the Cancer Genome Atlas (TCGA) 
database were used to identify metastasis-related differentially expressed immune genes and transcription factors 
(TFs), whose relationship was constructed by Pearson correlation analysis. Metastasis-related prediction model was 
established based on the most significant immune genes. CIBERSORT algorithm was performed to identify significant 
immune cells co-expressed with key immune genes. The GSVA and GSEA were performed to identify prognosis-
related KEGG pathways. Ultimately, we used the Pearson correlation analysis to explore the relationship among 
immune genes, immune cells, and KEGG pathways. Additionally, key genes and regulatory mechanisms were vali-
dated by single-cell RNA sequencing and ChIP sequencing data.

Results:  A total of 204 immune genes and 12 TFs, were identified. The prediction model achieved a satisfactory effec-
tiveness in distant metastasis with the Area Under Curve (AUC) of 0.808. LTB was significantly correlated with PAX5 
(P < 0.001, R = 0.829) and hematopoietic cell lineage pathway (P < 0.001, R = 0.375). The transcriptional regulatory pat-
tern between PAX5 and LTB was validated by ChIP sequencing data.

Conclusions:  We hypothesized that down-regulated LTB (immune gene) modulated by PAX5 (TF) in STSs may have 
the capability of inducing cancer cell metastasis in patients with STS.
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Background
Soft tissue sarcomas (STSs) are a group of rare and het-
erogeneous malignancies arising from resident cells of 
connective tissues that are comprised of more than 50 
different histological subtypes and account for approxi-
mately 1% of all malignancies [1]. Despite advances 
in understanding STS tumorigenesis, management 
options have remained unchanged over the past few 
decades because of its rarity, complexity, late diagnosis 
and early metastasis [2]. In addition, due to the limited 
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responsiveness to chemotherapy, surgery remains the 
standard treatment for patients with localized STS, but 
over 50% of patients may experience recurrence and 
metastasis after surgery [3]. Thus, novel treatments, such 
as targeted therapies, and the identification of biomark-
ers for identifying early metastatic disease are desperately 
needed.

Both molecular and cellular features have been shown 
to exert important influences on tumorigenesis and 
metastasis [4]. Transcription factors (TFs) are a group 
of proteins that regulate the transcription rate of genetic 
information from DNA to mRNA by binding to the spe-
cific DNA sequences. A large number of studies have 
indicated that TFs are actively involved in many human 
diseases, including cancers, in which they constitute 
approximately 20% of currently identified oncogenes [5]. 
Some abnormal biological behaviours, such as apopto-
sis, epithelial-mesenchymal transition (EMT), invasion, 
and metastasis, have also been attributed to the aber-
rant expression of TFs in various cancers [6, 7]. On the 
other hand, interactions and complicated communica-
tion among diverse tumour-infiltrating immune cells also 
plays a role in tumour metastasis and mortality predic-
tion [8]. However, metastasis-related TFs and tumour-
infiltrating immune cells in STS have not been explored 
and need to be further analysed.

In this study, we conducted a comprehensive analysis 
of TFs and immune gene profiling to examine the over-
all survival (OS) and metastasis-related TFs and immune 
genes in patients with STS and constructed a prog-
nostic model. Then, we used the “Cell Type Identifica-
tion by Estimating Relative Subsets of RNA Transcripts 
(CIBERSORT)” algorithm to detect tumour-infiltrating 
immune cells and their proportions in STSs. We also 
performed gene set enrichment analysis (GSEA), gene 
set variation analysis (GSVA) and Pearson correlation 
analysis to examine potential metastasis-related signal-
ling pathways. Finally, we proposed an innovative and 
systematic hypothesis about aberrantly expressed TFs 
that regulate the expression of corresponding immune 
genes and promote STS metastasis, which may unveil sig-
nificant and novel biomarkers and help to improve clini-
cal management. Additionally, key genes and regulatory 
mechanisms were validated by single-cell RNA sequenc-
ing (scRNA-seq) and chromatin immunoprecipitation 
(ChIP-seq) data.

Methods
Data collection, differentially expressed genes (DEGs) 
and functional enrichment analysis
The Ethics Committee of the First Affiliated Hospi-
tal of Zhengzhou University approved this study. RNA 
sequencing profiles and clinical information of localized 

and metastatic STS samples were collected from the 
Cancer Genome Atlas (TCGA) database (https​://tcgad​
ata.nci.nih.gov/tcga/). Cancer-related transcription fac-
tors (TFs) were collected from the Cistrome Cancer 
database (http://cistr​ome.org/). Immune-related genes 
were retrieved from the ImmPort database (https​://
www.impor​t.org/) and Molecular Signatures Database 
(MSigDB) v7.0 (https​://www.gsea-msigd​b.org/gsea/
msigd​b/index​.jsp). HTseq-count and Fragments Per Kilo-
base of transcript per Million mapped reads (FPKM) pro-
files of 261 samples, including 121 localized STS and 55 
metastatic STS samples, were assembled. “edgeR” was 
used to identify DEGs after removing non-STS-specific 
genes. Counts per million (CPM) and trimmed mean of 
M-values (TMM) algorithms were used for data normali-
zation. Genes with a false discovery rate (FDR) P < 0.05 
and log2(fold change) > 1 or < −1 were regarded as DEGs. 
Heatmaps and volcano plots were created to illustrate 
DEGs. Then, DEGs were analysed using Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) datasets to examine potential mechanisms of 
STS metastasis.

Identification of OS‑related immune genes
The expression of all immune-related genes and immune-
related DEGs was extracted from previously downloaded 
RNA-seq profiles and the DEG list, respectively, and 
was used to generate a heatmap and volcano plot. Then, 
immune-related DEGs and clinical data were used in 
univariate Cox regression analysis to identify OS-related 
immune genes.

Construction of a prognostic model based on OS‑related 
immune genes
Based on the results of univariate Cox regression analy-
sis, we extracted the most significant OS-related immune 
genes (P < 0.05 in univariate Cox regression analysis), all 
of which were included in multivariate Cox regression 
analysis to evaluate the significance of each OS-related 
immune gene with a β value (the regression coefficient of 
each integrated gene in the model). The risk score of No. i 
patient was calculated with the following formula:

Then, individuals were divided into two risk groups 
based on the median risk score. The area under the ROC 
curve was analysed to assess the accuracy of the model. 
Kaplan–Meier survival analysis was used to compare 
the survival probability between the high- and low-risk 
groups. Individuals were reordered based on the risk 
score and a risk curve, survival state-related scatterplot, 

Risk scorei =

n
∑

a=1

βa×
(

expression level of gene a
)
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and heatmap of OS-related immune genes were plot-
ted. Univariate and multivariate Cox regression analyses, 
modified by baseline information, were used to iden-
tify the independent prognostic value of the risk score, 
age, sex, race, and metastatic diagnosis (in multivariate 
Cox regression analysis, the variables were all corrected 
for demographics and clinical information, which also 
reduced the bias among individual patients).

Identification of differentially expressed transcription 
factors
The expression of all the -related TFs and cancer-related 
DEGs was extracted from the previously downloaded 
RNA-seq profiles and DEG list, respectively, and was 
used to create a heatmap and volcano plot. Pearson cor-
relation analysis was performed to examine the interac-
tion and correlation between differentially expressed 
transcription factors and overall survival-related 
immune genes. Interaction pairs with correlation coef-
ficients > 0.300 and P < 0.001 were included in the subse-
quent analysis.

Identification of potential immune cell and KEGG pathway 
mechanisms
The quantity of 21 immune cell types in localized primary 
STS and metastatic samples was evaluated by CIBER-
SORT to further examine immune cells that drove metas-
tasis. Then, correlation analysis was used to identify the 
correlation between immune cells and the biomarker, 
which was illustrated by a co-expression heatmap. Lin-
ear plots of biomarkers and immune cells with P < 0.001 
were generated. Prognosis-related signalling pathways, 
identified by univariate Cox regression analysis based on 
gene set variation analysis (GSVA), were then subjected 
to correlation analysis with crucial metastasis-related 
biomarkers and illustrated by a co-expression heatmap. 
Metastasis-related signalling pathways were also iden-
tified by gene set enrichment analysis (GSEA). KEGG 
pathways in both GSEA and GSVA analysis are displayed 
by Venn plots. Then, linear plots were generated to show 
the correlation between the crucial biomarker and metas-
tasis- and prognosis-related KEGG signalling pathways.

Construction of a network with TFs, key biomarkers, 
immune cells, and KEGG pathways
To further discover the metastatic mechanisms in 
patients with STS, we constructed a network based on 
the interaction among prognosis-related and/or metas-
tasis-related transcription factors, biomarkers, immune 
cells, and KEGG pathways with Cytoscape. Finally, the 
STS metastasis-related hypothesis based on bioinformat-
ics was illustrated by a signalling diagram.

Online database external validation
To obtain the complete annotation of selected TFs, key 
biomarkers, immune cells, and signalling pathways, 
multiple online databases were used to detect gene and 
protein expression levels, including cBioPortal [9, 10], 
GEPIA [11], K-M Plotter [12], PathCards [13], Linke-
dOmics [14], STRING [15], TISIDB [16], UALCAN [17] 
and CellMarkers [18].

Immunohistochemistry (IHC) validation
Twenty-nine formalin-fixed paraffin-embedded (FFPE) 
tissue blocks from 29 sarcoma patients were deparaffi-
nized and dehydrated. The slides were incubated over-
night (4  °C) with an anti-PAX5 antibody (1:50 dilution, 
Proteintech), anti-LTB antibody (1:200 dilution, Bio-
world), anti-CHSY1 antibody (1:100 dilution, Abcam), 
anti-CD19 antibody (1:50 dilution, Proteintech), anti-
CD38 antibody (1:50 dilution, Proteintech), anti-CD138 
(1:100 dilution, Cell Signalling Technology) and anti-
SPM310 (1:100 dilution, Novus NBP2-34359) after 
routine rehydration, antigen retrieval, and blocking pro-
cedures. Next, all slides were labelled with polymer HRP 
for 30 min and haematoxylin as a counterstain for 5 min 
at room temperature.

Two pathologists examined the pathological sections 
and identified positive results when the cytoplasm of 
cancer cells was stained. The percentage score of tumour 
cells was as follows: negative (0), yellowish (1–4), light 
brown (5–8), and dark brown (9–12). The markers of B 
cells (CD19 and CD38) and plasma cells (CD138 (Syn-
dean-1) [19] and SPM310 (Novus NBP2-34359)) were 
scored in the tumour and in the surrounding lymph 
nodes, respectively. In negative controls, the primary 
antibody was replaced by buffer. Additionally, correlation 
analysis and nonparametric tests (Mann–Whitney U test) 
were performed to evaluate the relationship between the 
IHC score and clinical features (grade of differentiation 
and metastasis during follow-up).

Validation of the regulatory mechanism of transcription 
factors
Two algorithms (ENCODE Transcription Factor Targets 
and JASPAR) [20, 21] were used to re-predict the tran-
scriptional regulatory pattern of LTB and PAX5 to fur-
ther support our hypothesis. In addition, we conducted 
a comprehensive retrieval of a public database and found 
five ChIP-seq datasets for PAX5 (four from Homo sapi-
ens and one from Mus musculus) [22–25]. Integrative 
Genomics Viewer (IGV) was used to normalize and visu-
alize binding regions and peaks from different datasets 
[26].
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Validation of scRNA‑seq data
The scRNA-seq data of the human alveolar rhabdomyo-
sarcoma cell line Rh41 were downloaded from Gene 
Expression Omnibus (GEO) (GSE113660) to validate 
the distribution and expression of key genes [27, 28]. To 
integrate data analysis, the Seurat method was used [29]. 
During quality control, only genes expressed in more 
than 200 single cells and cells with transcript counts rang-
ing from 1500 to 100,000 were integrated into further 
analysis. The “vst” method was utilized to identify vari-
able genes. Then, principal component analysis (PCA) 
was performed based on variable genes, and jackstraw 
analysis was used to select the principal components 
(PCs) [29]. In terms of dimension reduction analysis, 
the UMAP (Uniform Manifold Approximation and Pro-
jection) method with a resolution of 0.50 was applied to 
identify cellular clusters based on the top 20 significant 
PCs [30]. DEGs were filtered when the absolute value 
of log2(FC) was > 0.5 and FDR was < 0.05 in each cluster. 
The distribution and expression of DEGs are illustrated 
in feature plots and violin plots, respectively. In addi-
tion, every cluster was annotated by the singleR method 
[31] and CellMarker database [18]. Moreover, the GSVA 
method was used to quantify the signalling pathway (50 
hallmark pathways) activity in each single cell.

Statistical analysis
All statistical analyses were performed with R version 
3.5.1 (Institute for Statistics and Mathematics, Vienna, 
Austria; https​://www.r-proje​ct.org). For descriptive 
statistics, the mean ± standard deviation was used for 
continuous variables with a normal distribution, while 
the median (range) was used for continuous variables 
with an abnormal distribution. Categorical variables are 
described by counts and percentages. Two-tailed P < 0.05 
was regarded as statistically significant.

Results
Identification of DEGs and functional enrichment analysis
The analysis in this study is illustrated in Fig. 1. The base-
line features of samples collected from the TCGA data-
base are described in Additional file  1: Table  S1. Genes 
with a log2(fold change) > 1 or < − 1 and FDR < 0.05 
between localized STS and samples without metastasis 
were defined as DEGs. We identified 1947 differentially 
expressed genes (1375 down- and 572 upregulated), 
which is illustrated by a heatmap and volcano plot (Addi-
tional file  1: Figure S1A, B). To examine the potential 
mechanisms of the identified DEGs, GO and KEGG 
enrichment analyses were performed. Several immune 
response processes, such as “humoral immune response”, 
“complement activation”, and “immunoglobulin medi-
ated immune response” in biological process (BP), 

“immunoglobulin complex” in cellular component (CC), 
and immune function, including “antigen binding” and 
“immunoglobulin receptor binding”, in molecular func-
tion (MF), were significantly different in GO analysis 
(Fig. 2a). KEGG enrichment analysis indicated that some 
key pathways, such as “cytokine–cytokine receptor inter-
action”, were significantly different between localized STS 
with and without metastasis (Fig. 2b).

Identification of differentially expressed 
and prognosis‑related immune genes
Differentially expressed immune genes (log2(fold 
change) > 1 or < − 1 and FDR < 0.05) are illustrated in the 
heatmap and volcano plot (Additional file 1: Figure S1C, 
D). To identify prognosis-related immune genes, univari-
ate Cox regression analysis was performed, in which 6 
protective factors and 9 risk factors were found. Among 
these factors, LTB (HR = 0.999, 95% CI (0.998–0.999), 
P = 0.027) was found to be inversely correlated with 
prognosis in patients with STS (Fig. 2c).

Establishment of the prediction model
Immune genes identified by univariate Cox regression 
analysis were included in Lasso regression analysis, and 
we found that key immune genes were significantly cor-
related with patient prognosis. Individuals were medially 
divided into the low- or high-risk group based on the risk 
score. The results indicated the good effectiveness of the 
prediction model with a high area under the curve (AUC) 
of the ROC curve (0.808) (Fig. 3a) and a significant differ-
ence in Kaplan–Meier analysis (P < 0.001) (Fig. 3b).

Risk curves and scatterplots were created to display the 
risk score and survival status of each patient with STS. 
Patients in the high-risk group had a higher mortality 
than those in the low-risk group (Fig. 3d, e). The heatmap 
shows the expression of CRH, S100A7L2, UCN3, TRH, 
IL1RL1, S100A1, CCR7, and CX3CR1, which were all 
included in the prognostic model (Fig. 3f ).

To verify the independent prognostic value of the risk 
score and other clinical features, including age, sex, race, 
and metastatic diagnosis, both univariate and multivari-
ate Cox regression analyses were performed. The risk 
score was proven to be an independent predictor in both 
univariate (HR = 1.064, 95% CI 1.041–1.087, P < 0.001) 
and multivariate Cox regression analyses (HR = 1.078, 
95% CI 1.053–1.104, P < 0.001) (Fig. 3c).

PAX5 regulated LTB to promote STS metastasis
Differentially expressed TFs (log2(fold change) > 1 or < −1 
and FDR < 0.05) are illustrated in the heatmap and vol-
cano plot (Additional file 1: Figure S1C). To explore the 
relationship between the identified TFs and key immune 
genes, Pearson correlation analysis was performed. Only 

https://www.r-project.org
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Fig. 1  The analysis flowchart
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Fig. 2  Functional enrichment analysis of significantly differentially expressed genes: GO (a) and KEGG (b) enrichment analysis of significantly 
differentially expressed genes. c The univariate Cox regression analysis for evaluating the prognostic value of identified immune genes. GO: Gene 
Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; STS: soft tissue sarcoma

(See figure on next page.)
Fig. 3  Prognostic model for STS patients: a The ROC curve for evaluating the accuracy of the prediction model. bThe Kaplan–Meier analysis of the 
prediction model. c The univariate and multivariate Cox regression analysis of risk score, age, gender, race, and metastatic diagnosis for evaluating 
the independent prognostic value of the risk score. d The risk curve of each patient by risk score. e The scatter plot of the samples. The green and 
red dots representing survival and death, respectively. f The heatmap of immune genes screened by Lasso regression
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Fig. 4  Identification of cytological and signaling pathways mechanisms in STS metastasis: a Co-expression heatmap between LTB and 21 immune 
cells. b Co-expression heatmap between LTB and prognosis-related KEGG pathways screened by GSVA and univariate Cox regression analysis. c–f 
Correlation relationship between LTB and immune cells
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regulation pairs with correlation coefficients < −0.300 
or > 0.300 and P < 0.001 were selected to construct the 
regulatory network in subsequent analysis. We found 
that ASCL1-TPBV29-1 (P < 0.001, R = 0.36), PAX5-CD1C 
(P < 0.001, R = 0.31), PAX5-CCR7 (P < 0.001, R = 0.67), 
PAX5-LTB (P < 0.001, R = 0.829), and TFAP2A-S100A7L2 
(P < −0.001, R = 0.361) were 5 pairs that met the screen-
ing threshold. Moreover, the PAX-LTB interaction had 
the greatest correlation coefficient among the pairs; thus, 
we entered that pair into the subsequent analysis (Figure 
S2).

Molecular and signalling pathway mechanisms of LTB 
triggering STS metastasis
To further explore the potential cellular and signalling 
pathway mechanisms, CIBERSORT and GSVA were per-
formed, in which the quantity of 21 immune cell types 
was evaluated, and 39 signalling pathways related to 
prognosis in patients with STS were screened. Pearson 
correlation analysis was applied to examine the correla-
tion among LTB, immune cells, and prognosis-related 
KEGG pathways (Fig.  4a, b). The results showed that 
LTB was significantly correlated with B cell memory 
expression (P < 0.001, R = 0.658), plasma cells (P < 0.001, 
R = 0.448), follicular helper T cells (P < 0.001, R = 0.409), 
and M2 macrophages (P < 0.001, P = −0.272) (Fig. 4c–f).

Identification of signalling pathways
To further identify metastasis- and prognosis-related 
KEGG pathways, GSEA was also performed. The results 
showed that 5 key KEGG pathways were significant in 
both GSEA and GSVA, including the arachidonic acid 
metabolism pathway, basal transcription factor pathway, 
cytokine–cytokine receptor interaction pathway, haema-
topoietic cell lineage pathway, and primary immunodefi-
ciency pathway (Fig.  5a–g). Pearson correlation analysis 
showed that LTB was significantly correlated with the 
primary immunodeficiency pathway (P < 0.001, R = 0.432) 
(Fig. 5h), haematopoietic cell lineage pathway (P < 0.001, 
R = 0.375) (Fig.  5i), cytokine–cytokine receptor interac-
tion pathway (P < 0.001, R = 0.369) (Fig.  5j), arachidonic 
acid metabolism pathway (P < 0.001, R = 0.322) (Fig. 5k), 
and basal transcription factor pathway (P < 0.001, 
R = −0.249) (Fig.  5l). Our hypothesis regarding STS 
metastasis mechanisms is illustrated in Fig. 6.

External validation with multiple online databases
To reduce the bias induced by pure bioinformatics analy-
sis, we used multiple online databases to further prove 
the reliability of our study. First, we used the CellMarker 
and PathCards databases to explore the biomarkers of 
plasma cells (IL1A, IL5RA, and IL7) and haematopoietic 

cell lineage pathways (IL5RA, LY9, SLAMF7, and 
ICAM1), respectively. The Oncomine database showed 
that LTB, LY9, SLAMF7, and ICAM1 were downregu-
lated, while IL5RA was upregulated in different STS-
related studies (Additional file  1: Figure S2). UALCAN, 
K-M Plotter, TISIDB, and LinkedOmics revealed that 
LTB, IL1A, IL5RA, IL7, LY9, SLAMF7, and ICAM1 
were all significantly correlated with STS patient prog-
nosis (Additional file 1: Figure S3–S6). In addition, LTB, 
IL1A, LY9, and SLAMF7 were differentially expressed 
between normal and tumour tissues (Additional file  1: 
Figure S3). GEPIA showed that LTB, IL5RA, LY9, and 
ICAM1 were significantly correlated with prognosis 
(Additional file  1: Figure S7). To examine the relation-
ship between LTB and other biomarkers, we conducted 
Spearman correlation analysis with different databases. 
In LinkedOmics, LTB was significantly correlated with 
PAX5 (P < 0.001, R = 0.31), IL1A (P = 0.008, R = 0.17), 
IL5RA (P < 0.001, R = 0.43), IL7 (P < 0.001, R = 0.51), 
LY9 (P < 0.001, R = 0.82), SLAMF7 (P < 0.001, R = 0.79), 
and ICAM1 (P < 0.001, R = 0.61) (Additional file  1: Fig-
ure S5). In GEPIA, LTB was significantly correlated with 
PAX5 (P < 0.001, R = 0.34), IL1A (P = 0.016, R = 0.15), 
IL5RA (P < 0.001, R = 0.41), IL7 (P < 0.001, R = 0.50), LY9 
(P < 0.001, R = 0.81), SLAMF7 (P < 0.001, R = 0.79), and 
ICAM1 (P < 0.001, R = 0.56) (Additional file  1: Figure 
S7). In cBioPortal, LTB was significantly correlated with 
PAX5 (P < 0.001, R = 0.31), IL1A (P = 0.009, R = 0.16), 
IL5RA (P < 0.001, R = 0.43), IL7 (P < 0.001, R = 0.52), LY9 
(P < 0.001, R = 0.83), SLAMF7 (P < 0.001, R = 0.79), and 
ICAM1 (P < 0.001, R = 0.60) (Additional file  1: Figure 
S8B-H). In addition, K-M survival analysis that integrated 
all the biomarkers in cBioPortal showed that the over-
all expression of biomarkers was significantly related to 
patient prognosis (Additional file  1: Figure S8I). Finally, 
the STRING database suggested that all the biomarkers 
were strongly connected with each other based on the 
protein–protein interaction network (Additional file  1: 
Figure S9). Table 1 summarizes the results of the external 
validation of biomarkers in SARC with multiple online 
databases. Additionally, we tried to apply two other 
algorithms (ENCODE Transcription Factor Targets and 
JASPAR) [20, 21] to re-predict the transcriptional regula-
tory pattern between LTB and PAX5 to further support 
our hypothesis, which suggested that the DNA binding 
domain of PAX was similar to the sequence of the pro-
moter region of LTB (Fig. 6).

Immunohistochemistry (IHC)
Among 29 patients, 15 were diagnosed with liposarcoma 
(metastasis occurred in eight patients during follow-up), 
and 14 were diagnosed with leiomyosarcoma (metastasis 
occurred in nine patients during follow-up). PAX5 and 
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Fig. 6  The illustration of our scientific hypothesis

Table 1  External Validation of Biomarkers in SARC via Multiple Online Database

PAX5: Paired Box 5; LTB: Lymphotoxin Beta; IL1A: Interleukin 1 Alpha; IL5RA: Interleukin 5 Receptor Subunit Alpha; IL7: Interleukin 7; LY9: Lymphocyte Antigen 9; 
SLAMF7: Signaling Lymphocytic Activation Molecule Family Member 7; ICAM1: Intercellular Adhesion Molecule 1

PAX5 LTB (anti-
oncogene)

IL1A (anti-
oncogene)

IL5RA (anti-
oncogene)

IL7 (anti-
oncogene)

LY9 (anti-
oncogene)

SLAMF7 (anti-
oncogene)

ICAM1 (anti-
oncogene)

Oncomine Expression: NA Expression: 
Low

Expression: NA Expression: 
High

Expression: NA Expression: 
Low

Expression: 
Low

Expression: Low

UALCAN Expression: NA
Survival: 

P = 0.290

Expression: 
P < 0.001

Survival: 
P = 0.006

Expression: 
P < 0.001

Survival: 
P = 0.019

Expression: 
P = 0.781

Survival: 
P = 0.031

Expression: 
0.471

Survival: 
P = 0.041

Expression: 
P < 0.001

Survival: 
P = 0.008

Expression: 
P < 0.001

Survival: 
P = 0.013

Expression: 
P = 0.521

Survival: 
P = 0.030

K-M Plotter Survival: 
P = 0.084

Survival: 
P < 0.001

Survival: 
P = 0.003

Survival: 
P < 0.001

Survival: 
P = 0.010

Survival: 
P < 0.001

Survival: 
P = 0.006

Survival: 
P = 0.015

GEPIA Survival: 
P = 0.380

Correlation: 
P < 0.001

R = 0.34

Survival: 
P = 0.004

Survival: 
P = 0.056

Correlation: 
P = 0.016

R = 0.15

Survival: 
P < 0.001

Correlation: 
P < 0.001

R = 0.41

Survival: 
P = 0.120

Correlation: 
P < 0.001

R = 0.50

Survival: 
P = 0.006

Correlation: 
P < 0.001

R = 0.81

Survival: 
P = 0.078

Correlation: 
P < 0.001

R = 0.79

Survival: 
P = 0.037

Correlation: 
P < 0.001

R = 0.56

LinkedOmics Survival: 
P = 0.500

Correlation: 
P < 0.001

R = 0.31

Survival: 
P < 0.001

Survival: 
P = 0.015

Correlation: 
P = 0.008

R = 0.17

Survival: 
P = 0.030

Correlation: 
P < 0.001

R = 0.43

Survival: 
P = 0.022

Correlation: 
P < 0.001

R = 0.51

Survival: 
P = 0.001

Correlation: 
P < 0.001

R = 0.82

Survival: 
P = 0.008

Correlation: 
P < 0.001

R = 0.79

Survival: 
P = 0.035

Correlation: 
P < 0.001

R = 0.61

TISIDB Survival: NA Survival: 
P = 0.006

Survival: 
P = 0.019

Survival: NA Survival: 
P = 0.021

Survival: 
P < 0.001

Survival: 
P = 0.006

Survival: 
P = 0.043

cBioportal Correlation: 
P < 0.001

R = 0.31

Correlation: 
P = 0.009

R = 0.16

Correlation: 
P < 0.001

R = 0.43

Correlation: 
P < 0.001

R = 0.52

Correlation: 
P < 0.001

R = 0.83

Correlation: 
P < 0.001

R = 0.79

Correlation: 
P < 0.001

R = 0.60
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LTB proteins were significantly downregulated in the 
tumour cells of primary sarcomas with metastasis, while 
markers of B cells (CD19 and CD38) were not detected in 
almost all primary tumours (Fig. 7a). Although CD19 and 
CD38 were found in lymph nodes, as noted by a patholo-
gist at our hospital, these findings were not surprising, as 
B cells are abundant in lymph nodes. Therefore, the IHC 
results of CD19 and CD38 did not prove or disprove the 
hypothesis that plasma cells were downstream of LTB. 
However, PAX5 and LTB proteins were shown to be sig-
nificantly downregulated in the tumour cells of primary 
sarcomas with metastasis. Furthermore, in the absence of 
a good CD19 and CD38 antibody, we used anti-CD138 
(Syndean-1) and anti-SPM310 antibodies as antibodies 
for plasma cell marker detection (Novus NBP2-34359), 
as these were other proven plasma cell markers. How-
ever, only four of 29 sarcomas were found to have plasma 
cells in HE staining of the tumour, and none of these four 
patients had metastases (Fig. 7b). This might be because 
tumour-infiltrating immune cells tended to be located 
around the tumour rather than within it, and sarcomas 
tended to be excised en bloc, so there were no paracan-
cerous tissues that could be used as a control. The results 
of the Mann–Whitney U test suggested that PAX5 
(P < 0.001) and LTB (P < 0.001) were all highly expressed 
in well-differentiated primary sarcomas and primary sar-
comas without metastasis (Fig. 7c, d).

ChIP‑seq validation
A comprehensive retrieval of public databases (Sequence 
Read Archive (SRA), European Genome-phenome 
Archive (EGA) and The European Bioinformatics Insti-
tute (EBI)) was conducted, and five ChIP-seq datasets 
for PAX5 were filtered (four from Homo sapiens and one 
from Mus musculus) (Table S3) [22–25]. In the three dif-
ferent kinds of B lymphocytes in Hodgkin’s lymphoma 
and Burkitt’s lymphoma (Raji, Namalwa and L428 cells) 
(PRJNA190710), compared to that in cells in the con-
trol group, the binding regions of PAX5 in LTB showed 
higher binding strength (input samples) (Fig.  8a). Simi-
larly, higher binding strength of PAX5 and LTB was also 
illustrated in NALM6, DOHH2, OCI-LY-7, GM1287 and 
GM12892 cells compared to that in cells in the control 
group (PRJNA63447, PRJNA285847 and PRJNA475974) 
(Fig.  8b). In addition, in Pax5 ChIP-seq data of acti-
vated B cells and plasmablasts (Mus musculus), upregu-
lated binding peaks were also found in Ltb sequences 
(PRJNA625028) (Fig.  8c). Moreover, the binding peaks 
of Ltb were higher in activated B cells and plasmablasts 
from IghPax5/+ mice than in those from mice in the con-
trol group.

Validation of scRNA‑seq data
The scRNA-seq data of the human alveolar rhabdomyo-
sarcoma cell line Rh41 were downloaded from Gene 
Expression Omnibus (GEO) (GSE113660) to validate the 
distribution and expression of key genes (PAX5, LTB, 
IL1A, IL5RA, IL7, LY9, SLAMF7, SDC1 and ICAM1). 
First, 7261 human alveolar rhabdomyosarcoma cells were 
reduced and clustered into ten cellular clusters by the 
UMAP method with a resolution of 0.50 (Fig. 9a). PAX5, 
LTB and CD44 (markers of stem cells) were significantly 
colocalized in the No. 7 cluster; SLAMF7, SDC1 (Synde-
can-1) and ICAM1 were scattered among different clus-
ters of rhabdomyosarcoma cells; while IL1A, IL5RA, IL7 
and LY9 were not detected in rhabdomyosarcoma cells 
(Fig. 9b). In cell cycle analysis, rhabdomyosarcoma cells 
with high expression of PAX5 and LTB were significantly 
located in the G2M and S phases (Fig. 9c, d). Moreover, 
the GSVA heatmap demonstrated that some metastasis-
related signalling pathways, such as epithelial-mesenchy-
mal transition (EMT) and angiogenesis, were active in 
cells with high expression of PAX5 and LTB (Fig. 9e).

Discussion
STSs, accounting for 1% of all malignancies, are diffi-
cult diagnosis early and accurately. In addition, effective 
management methods have not been established due to 
its rarity, histological heterogeneity, and diverse biologi-
cal behaviours [32]. Moreover, STS is notorious for its 
high rate of wide, early metastasis [2]. Recently, many 
researchers reported that the aberrant expression of 
transcription factors, immune genes, and tumour-infil-
trating immune cells played important roles in promot-
ing multiple abnormal biological behaviours in tumour 
progression, including metastasis [33–35]. However, 
related mechanisms in STS have not yet been clearly 
explored. In this study, we identified 204 differentially 
expressed immune genes and 12 TFs. Based on 15 OS-
related immune genes, we established a prediction model 
that was highly effective based on the K-M survival curve 
(P < 0.001) and ROC curve (AUC: 0.808). Based on the 
results of Pearson correlation analysis between TFs and 
immune genes, we found that LTB (an immune gene) 
was significantly correlated with PAX5 (a TF) (P < 0.001, 
R = 0.83). PAX5 and LTB proteins were shown to be sig-
nificantly downregulated in the tumour cells of primary 
sarcomas with metastasis based on IHC. Compared to 
the control group, the binding regions of PAX5 in LTB 
showed higher binding strength in five different ChIP-seq 
datasets. Additionally, PAX5, LTB and CD44 (markers of 
stem cells) were significantly colocalized in the scRNA-
seq data of the human alveolar rhabdomyosarcoma cell 
line Rh41. These results all suggested that PAX5 and LTB 
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Fig. 7  The results of immunohistochemistry (IHC). In total of 29 patients, 15 were diagnosed with liposarcoma (Metastasis occurred in eight 
patients during follow-up) and 14 were diagnosed with leiomyosarcoma (Metastasis occurred in nine patients during follow-up). Proteins of PAX5 
and LTB were shown to be significantly down-regulated in the tumor cells of primary sarcomas with metastasis while the markers of B cells (CD19 
and CD 38) were not detected in almost all primary tumor (a). Although CD19 and CD 38 were found in lymph node, as the advice of a pathologist 
in our hospital, these were not surprising as B cells are abundant in lymph node. Therefore, the IHC results of CD19 and CD 38 did not prove or 
disprove the hypothesis. Furthermore, in the absence of a good CD19 and CD38 antibody, we considered CD138 (Syndean-1) and SPM310 plasma 
cell marker antibody (Novus NBP2-34359) as other proven plasma cell markers. However, only four of 29 sarcomas were found plasma cells in the 
HE staining section of the tumor and none of the four patients had metastases (b). This might be because tumor-infiltrating immune cells tended 
to be located around the tumor rather than within it, and sarcomas tended to be excised en bloc, so there were no paracancer tissues as a control. 
Fortunately, the results of Mann–Whitney U test suggested that PAX5 (P < 0.001), LTB (P < 0.001) in were all highly expressed in well differentiated 
primary sarcomas and primary sarcomas without metastasis (c, d)

Fig. 8  The results of ChIP-seq validation. In the three different kinds of B Lymphocyte in Hodgkin’s Lymphoma and Burkitt’s Lymphoma (Raji, 
Namalwa and L428 cells) (PRJNA190710), compared to the control group, the binding regions of PAX5 in LTB showed more bonding strength 
(input samples) (a). Similarly, more bonding strength of PAX5 and LTB was also illustrated in the NALM6, DOHH2, OCI-LY-7, GM1287 and GM12892 
cells comparing to the control group (PRJNA63447, PRJNA285847 and PRJNA475974) (b). Besides, in Pax5 ChIP-seq data of activated B cells and 
plasmablasts (mus musculus), upregulated binding peaks were also found in Ltb sequences (PRJNA625028) (c). What’s more, binding peaks of Ltb 
were higher in activated B cells and plasmablasts from IghPax5/+ mice than the control group

(See figure on next page.)



Page 14 of 19Huang et al. Cancer Cell Int            (2021) 21:3 



Page 15 of 19Huang et al. Cancer Cell Int            (2021) 21:3 	

might be potential predictors and therapeutic targets for 
STS metastasis.

Paired Box  5 (PAX5) encodes a member of the PAX 
family and functions as a TF through a DNA-binding 
motif, which is also known as a paired box. Paired box 
transcription factors are vital regulators of early organ 
development and tissue differentiation, and alterations 
in their expression are considered catalysts in neoplas-
tic transformation [36]. Previous studies revealed that 
as a B-lymphoid transcription factor, PAX5 was down-
regulated in over 80% of pre-B cell acute lymphoblastic 
leukaemia (ALL), and its downregulation in lymphoid 
neoplasms was associated with promoter hypermeth-
ylation and poor clinical outcomes [37, 38]. In addition, 
aberrantly expressed PAX5 contributed to the tumo-
rigenesis and malignant progression of many other can-
cers. In gastric cancer, PAX5 functioned as a tumour 
suppressor via promoter hypermethylation and sup-
pressed cell proliferation and apoptosis. In addition, 
PAX5 also constrained cell invasion and metastasis by 
inducing MTSS1 (MTSS I-BAR Domain Containing 1) 
and TIMP1 (Tissue Inhibitor of Metalloproteinase 1) 
and inhibiting MMP1 (Matrix Metallopeptidase 1) [39]. 
Moreover, in non-small cell lung cancer (NSCLC), meso-
thelioma and oesophageal cancer, the expression of PAX5 
was also decreased [40, 41]. In this study, we also found 
that the downregulation of PAX5 in STS was significantly 
correlated with distant metastasis and poor prognosis, 
which was in accordance with previous studies.

As a member of the tumour necrosis factor (TNF) 
ligand superfamily, Lymphotoxin Beta (LTB) forms a 
heteromeric complex with LT-alpha by acting as the 
primary ligand of the LT-beta receptor [42]. Previously, 
its function and mechanism were mainly believed to be 
involved in inflammatory responses, such as immune cell 
interactions and cytokine secretion regulation [43, 44]. 
Recently, its role in tumorigenesis and tumour evolution 
has received attention. The upregulation of LTB and its 
downstream targets, CXCL10 and NF-κB, was associ-
ated with tumorigenesis in HCV-related hepatocellular 
carcinoma (HCC) [45]. Additionally, LTB also interacted 
with methylated epithelial growth factor receptor (EGFR) 
in head and neck squamous cell carcinoma (HNSCC) 

to induce cetuximab resistance, leading to unfavour-
able outcomes. In papillary thyroid carcinoma, upregu-
lated LTB also triggered metastasis [46]. However, in 
this study, the favourable prognostic role of LTB was evi-
denced by univariate Cox regression analysis and multi-
ple online databases that showed that the expression of 
LTB was negatively correlated with metastasis and prog-
nosis, which may help uncover the novel mechanisms of 
LTB as a tumour suppressor in tumorigenesis and metas-
tasis. However, all of the above studies on PAX5 and 
LTB were conducted in cancer cells rather than tumour-
infiltrating immune cells (tumour-infiltrating B cells and 
plasma cells).

To identify immune cells that are actively involved in 
metastasis in tumour tissues, we conducted CIBERSORT 
and Pearson correlation analysis of LTB and key immune 
cells, the results of which suggested the importance of 
plasma cells (P < 0.001, R = 0.45). Multiple online data-
bases were also used to test the prognostic values of the 
biomarkers of plasma cells, including IL1A, IL5RA, and 
IL7. Plasma cells are a group of terminally differentiated 
B cells originating from marginal zone or germinal centre 
B cells. As an indispensable component of the humoural 
immune system, plasma cells play an important role in 
immune protection by secreting clonospecific immuno-
globulins. The differentiation, development, and function 
of plasma cells are regulated and influenced by a variety 
of cytokines and transcription factors [47]. In several 
cancers, the dense infiltration of plasma cells was associ-
ated with prolonged survival [48]. In mice with hepato-
cellular carcinoma (HCC), the depletion of plasma cells 
suppressed the growth of tumours by promoting the 
antitumour T cell immune response, and the upregu-
lated plasma cells were associated with poor prognosis 
in HCC patients [49]. However, unlike the definitive roles 
of tumour-infiltrating CD8+ T cells in antitumour immu-
nity, the roles of tumour-infiltrating B cells and plasma 
cells are still unclear and controversial. Thus, our study 
may provide another potential mechanism [50]. The IHC 
results of CD19, CD38, CD138 (Syndean-1) and SPM310 
did not prove or disprove the hypothesis that plasma 
cells were downstream of LTB. Thus, based on the results 
of this study, we could determine the transcriptional 

(See figure on next page.)
Fig. 9  Validation of scRNA-seq data. The scRNA-seq data of the human alveolar rhabdomyosarcoma cell line Rh41 was downloaded from Gene 
expression omnibus (GEO) (GSE113660) to validate the distribution and expression of key genes (PAX5, LTB, IL1A, IL5RA, IL7, LY9, SLAMF7, SDC1 and 
ICAM1). Firstly, 7261 human alveolar rhabdomyosarcoma cells were reduced and clustered into ten cellular clusters by the UMAP method with a 
resolution of 0.50 (a). Except for PAX5, LTB and CD44 (Markers of stem cells) were significantly colocalization in the No. 7 clusters, SLAMF7, SDC1 
(Syndecan-1) and ICAM1 were scattered among different clusters of rhabdomyosarcoma cells while IL1A, IL5RA, IL7 and LY9 were not detected in 
rhabdomyosarcoma cells (b). In cell cycle analysis, rhabdomyosarcoma cells with high expression of PAX5 and LTB were significantly located in the 
G2M and S phases (c–d). Moreover, GSVA heatmap demonstrated that some metastasis-related signaling pathways such as epithelial mesenchymal 
transformation (EMT) and angiogenesis were active in cells with high expression of PAX5 and LTB (E)
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regulatory pattern between LTB and PAX5 and their cel-
lular colocalization in cancer cells, and whether this reg-
ulatory mechanism existed in tumour-infiltrating B cells 
and plasma cells needs to be further validated.

Furthermore, to uncover the deeper mechanism under-
lying STS metastasis, GSEA and GSVA were performed 
to find prognosis-related KEGG pathways, including the 
arachidonic acid metabolism pathway, basal transcrip-
tion factor pathway, cytokine–cytokine receptor interac-
tion pathway, haematopoietic cell lineage pathway, and 
primary immunodeficiency pathway. In multiple online 
databases, we found that IL5RA, LY9, SLAMF7, and 
ICAM1, biomarkers of the haematopoietic cell lineage 
pathway, were significantly correlated with metastasis 
and prognosis in patients with STS. The haematopoietic 
cell lineage pathway is a complex renewal and differen-
tiation process of blood cells, in which haematopoietic 
stem cells (HSCs) differentiate into common lymphoid 
progenitors (CLPs) and common myeloid progenitors 
(CMPs), ultimately promoting the lymphoid lineage and 
the myeloid lineage, respectively [51, 52]. Defects in the 
haematopoietic cell lineage pathway reportedly contrib-
ute to malignant cell transformation [53, 54]. In addition, 
reductions in haematopoietic stem cells were also associ-
ated with leukaemic stem cell persistence and poor prog-
nosis in acute myeloid leukaemia [55].

Although many methods were used to control the bias 
introduced by pure bioinformatics analysis, there were 
still some weaknesses in this study. First, STS patients 
identified in the TCGA database in this study were 
mainly from Western countries. Thus, whether this pre-
diction model is applicable for Asian populations remains 
unknown. In addition, most conclusions were made 
based on several computational predictions and few 
direct experiments. Thus, the evidence that LTB directly 
regulates PAX5 in STSs is not extensive. However, we 
have been performing a series of experiments, including 
flow cytometry, ChIP-seq, and single-cell sequencing, to 
further support the hypothesis proposed in this study.

Conclusions
In conclusion, we established a satisfactory prediction 
model for patients with STS. Based on comprehensive 
bioinformatics analysis and preliminary experiments, 
we hypothesized that excessively downregulated LTB 
(an immune gene) modulated by PAX5 (a TF) in STSs 
induced cancer cell metastasis in patients with STS by 
modifying the haematopoietic cell lineage pathway. The 
transcriptional regulatory pattern between LTB and 
PAX5 could be determined by a bioinformatics algorithm 
and public ChIP-seq data.
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(P = 0.041) (D), LY9 (P < 0.001) (E), SLAMF7 (P = 0.006) (F), and ICAM1 (P 
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(P = 0.021) (C), LY9 (P < 0.001) (D), SLAMF7 (P = 0.006) (E), and ICAM1 (P 
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S6 LinkedOmics database validation. LTB (P < 0.001) (A), IL1A (P < 0.015) 
(C), IL5RA (P < 0.030) (D), IL7 (P < 0.022) (E), LY9 (P = 0.001) (F), SLAMF7 (P 
= 0.008) (G), and ICAM1 (P = 0.035) (H) were significantly correlated with 
patients’ prognosis. LTB were significantly correlated with PAX5 (P < 0.001, 
R = 0.31) (B), IL1A (P = 0.008, R = 0.17) (C), IL5RA (P < 0.001, R = 0.43) 
(D), IL7 (P < 0.001, R = 0.51) (E), LY9 (P < 0.001, R = 0.82) (F), SLAMF7 (P < 
0.001, R = 0.79) (G), and ICAM1 (P < 0.001, R = 0.61) (H). (I) Volcano plot 
and heatmaps displayed the genes most significantly correlated with LTB; 
Figure S7 GEPIA database validation. LTB (P = 0.004) (A), IL5RA (P < 0.001) 
(B), LY9 (P = 0.006) (C), and ICAM1 (P = 0.037) (D) were significantly corre-
lated with prognosis. LTB was significantly correlated with PAX5 (P < 0.001, 
R = 0.34) (E), IL1A (P = 0.016, R = 0.15) (F), IL5RA (P < 0.001, R = 0.41) (G), 
IL7 (P < 0.001, R = 0.50) (H), LY9 (P < 0.001, R = 0.81) (I), SLAMF7 (P < 0.001, 
R = 0.79) (J), and ICAM1 (P < 0.001, R = 0.56) (K); Figure S8 cBioportal 
database validation. (A) mRNA expression of each biomarker illustrated by 
heatmap. Spearman correlation analysis shown that LTB was significantly 
correlated with PAX5 (P < 0.001, R = 0.31) (B), IL1A (P = 0.009, R = 0.31) 
(C), IL5RA (P < 0.001, R = 0.43) (D), IL7 (P < 0.001, R = 0.52) (E), LY9 (P < 
0.001, R = 0.83) (F), SLAMF7 (P < 0.001, R = 0.79) (G), and ICAM1 (P < 0.001, 
R = 0.60) (H). (I) K-M survival analysis integrated with all the biomarkers 
shown that the overall expression of biomarkers was significantly related 
to patients’ prognosis; Figure S9 Protein-protein interaction network. (A) 
PathCards database provided the main biomarkers actively involved in 
hematopoietic cell lineage pathway, including IL5RA, LY9, SLAMF7, and 
ICAM1. (B) STRING database shown that all the biomarkers were tightly 
connected with each other.
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Antigen 9; SLAMF7: Signaling Lymphocytic Activation Molecule Family 
Member 7; ICAM1: Intercellular Adhesion Molecule 1; TIMP1: Tissue Inhibitor 
of Metalloproteinase; MMP1: Matrix Metallopeptidase 1; NSCLC: Non-small 
cell lung cancer; TNF: Tumor necrosis factor; EGFR: Epithelial growth factor 
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receptor; HNSCC: Head and neck squamous cell carcinoma; HCC: Hepato-
cellular carcinoma; HSC: Hematopoietic stem cell; CLP: Differentiate into 
common lymphoid progenitors; CMP: Common myeloid progenitors; ASCL1: 
Achaete-Scute Family BHLH Transcription Factor 1; TFAP2A: Transcription Fac-
tor AP-2 Alpha; TRBV29-1: T Cell Receptor Beta Variable 29-1; CD1C: Clustering 
of Differentiation 1C; CCR7: C-C Motif Chemokine Receptor 7; S100A7L2: S100 
Calcium Binding Protein A7 Like 2.
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