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Identification and development of a novel 
invasion‑related gene signature for prognosis 
prediction in colon adenocarcinoma
Jiahua Liu†, Chunhui Jiang†, Chunjie Xu, Dongyang Wang, Yuguang Shen, Ye Liu and Lei Gu* 

Abstract 

The overall survival of metastatic colon adenocarcinoma (COAD) remains poor, so it is important to explore the 
mechanisms of metastasis and invasion. This study aimed to identify invasion-related genetic markers for prognosis 
prediction in patients with COAD. Three molecular subtypes (C1, C2, and C3) were obtained based on 97 metastasis-
related genes in 365 COAD samples from The Cancer Genome Atlas (TCGA). A total of 983 differentially expressed 
genes (DEGs) were identified among the different subtypes by using the limma package. A 6-gene signature (ITLN1, 
HOXD9, TSPAN11, GPRC5B, TIMP1, and CXCL13) was constructed via Lasso-Cox analysis. The signature showed strong 
robustness and could be used in the training, testing, and external validation (GSE17537) cohorts with stable predic-
tive efficiency. Compared with other published signatures, our model showed better performance in predicting out-
comes. Pan-cancer expression analysis results showed that ITLN1, TSPAN11, CXCL13, and GPRC5B were downregulated 
and TIMP1 was upregulated in most tumor samples, including COAD, which was consistent with the results of the 
TCGA and GEO cohorts. Western blot analysis and immunohistochemistry were performed to validate protein expres-
sion. Tumor immune infiltration analysis results showed that TSPAN11, GPRC5B, TIMP1, and CXCL13 protein levels were 
significantly positively correlated with CD4+ T cells, macrophages, neutrophils, and dendritic cells. Further, the TIMP1 
and CXCL13 proteins were significantly related to the tumor immune infiltration of CD8+ T cells. We recommend 
using our signature as a molecular prognostic classifier to assess the prognostic risk of patients with COAD.
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Introduction
Colorectal cancer (CRC) is the third most commonly 
diagnosed malignancy and the fourth leading cause of 
cancer-related death worldwide, with more than 2.2 mil-
lion new cases and 1.1 million related deaths predicted 
by 2030 [1]. About 20% of CRC patients have meta-
static disease when first diagnosed, and about 30–50% of 
patients with primary colon cancer relapse and die from 
metastatic cancer [2, 3]. Surgery is the main treatment 

for colon cancer, and the 5-year survival rate is 50% 
[4]. Tumor recurrence after radical surgery is the main 
obstacle when it comes to improving overall survival. 
Diagnoses of advanced colon cancer, the paucity of safe 
chemotherapy drugs, and the lack of effective therapeu-
tic targets are serious obstacles in the treatment of colon 
cancer.

Metastasis is a major cause of death in cancer patients. 
Metastasis requires cancer cells to leave the primary 
tumor and acquire the ability to migrate and invade. 
Understanding the mechanisms involved in cell inva-
sion and migration in complex environments is a critical 
step in successful anti-metastasis therapy. The process 
of epithelial-mesenchymal transition has been found 
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to mediate cell-to-cell adhesion, regulate cell-to-matrix 
adhesion, and induce proteolytic enzyme secretion in the 
extracellular matrix [5]. Further, the S100P protein has 
been found to promote CRC invasion and metastasis by 
activating RAGE/ERK signaling and promoting the epi-
thelial-mesenchymal transition process [6]. In addition, 
Hecht et al. focused on the basic principles of metastatic 
aggression, including motion, invasion, proliferation, and 
metabolism, by using experimental data-based modeling 
[7].

Due to the poor prognosis of colon cancer, it is nec-
essary to identify prognostic biomarkers to determine 
molecular changes in patients with colon cancer, which 
will ultimately facilitate appropriate individualized treat-
ments for patients with a high risk of recurrence. The 
tumor-node-metastasis staging system is the gold stand-
ard for predicting prognosis in patients with CRC [8]. 
The detection of blood-based tumor markers has been 
accepted as a potential non-invasive alternative method 
to detect cancer, but the incidence rates of false-positives 
and false-negatives are high [9]. Clinical markers, such 
as poor differentiation, vascular invasion, and/or nerve 
invasion, and molecular markers, such as microsatellite 
instability status, KRAS mutation status, NRAS mutation 
status, and BRAF mutation status, can also be used [10–
12]. Furthermore, recent studies have emphasized the 
prognostic value of immune infiltration [13, 14]. There-
fore, there is an urgent need to identify highly robust 
biomarkers to enable individualized treatment decisions, 
which may then guide drug development and the use of 
combination therapies, targeted therapies, and immuno-
therapies. With the development of genomic technology, 
many epigenetic changes have been identified as poten-
tial clinical biomarkers in CRC patients, particularly in 
terms of aberrant DNA methylation processes, micro-
RNA and noncoding RNA disorders, and histone modi-
fication changes [15, 16]. However, genetic changes are 
still important factors in the development of colon can-
cer. Therefore, finding prognostic markers is critical for 
better patient management.

In this study, invasion-related genes were selected, 
and colon adenocarcinoma (COAD) subtypes based on 
tumor invasion-related genes were identified by using 
gene expression data from the public databases of The 
Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO). The molecular subtypes’ relationships 
with prognosis and clinical features were evaluated. A 
prognostic risk model was constructed by using differen-
tially expressed genes (DEGs) among the molecular sub-
types of COAD, and it could effectively predict prognosis 
in COAD samples. A 6-gene signature was developed by 
using the robust likelihood-based survival model. We 
verified the good performance of the prognostic risk 

model by using the GEO gene expression cohort. Finally, 
gene set enrichment analysis (GSEA) was used to study 
the biological and functional enrichment features of the 
6-gene signature. Our 6-gene signature may be useful in 
the classification of colon cancer patients with different 
prognoses, and some of the genes in the signature may 
represent new therapeutic targets.

Materials and methods
Data download and preprocessing
The latest RNA sequencing expression profiles and clini-
cal follow-up information of COAD samples were down-
loaded from the TCGA database. The following steps 
were performed for the RNA sequencing data of the 
TCGA-COAD cohort:

1.	 Samples with the pathological type of “Colon Adeno-
carcinoma” were selected for analysis;

2.	 Samples without clinical follow-up information were 
removed;

3.	 Samples with a survival time of < 30  days were 
removed;

4.	 Samples without survival status information were 
removed;

5.	 Ensembl was converted to Gene Symbol; and
6.	 The median value of the expression levels of multiple 

Gene Symbols was obtained.

GEO data were downloaded from the GEO database, 
and the GSE17537 chip data set with survival time was 
selected. The GEO data were preprocessed as follows:

1.	 Samples without clinical follow-up information were 
removed;

2.	 Samples without survival time and survival status 
information were removed;

3.	 Probe was transferred to Gene Symbol;
4.	 Probes corresponding to multiple genes were 

removed; and
5.	 The median value of the expression levels of multiple 

Gene Symbols was obtained.

There were 365 samples in the TCGA-COAD cohort 
and 54 COAD samples in the GSE17537 cohort after pre-
processing. The clinical features of the samples are given 
in Table 1.

Identification of molecular subtypes based 
on invasion‑related genes and functional enrichment 
analysis
A gene set containing 97 invasion-related genes was 
obtained from the CancerSEA database (Additional file 1: 
Table S1).
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The expression profiles of these 97 invasion-related 
genes were extracted from the TCGA database, and they 
were analyzed by using the coxph function for univariate 
Cox analysis. Next, ConsensusClusterPlus (parameters: 
reps = 100, pItem = 0.8, pFeature = 1, distance = “Can-
berra”) was used to obtain molecular subtypes of colon 
cancer by consensus clustering of the significant genes 
gathered from the univariate Cox analysis. DEGs between 
the different molecular subtypes were identified by using 
the limma package. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis and Gene Ontology 
(GO) functional enrichment analysis were performed on 
the DEGs between the molecular subtypes with the R 
software package WebGestaltR (v0.4.2).

Construction of a prognostic risk model based 
on invasion‑related genes
The 365 samples from the TCGA database were divided 
into training and validation cohorts. To prevent random 

allocation bias from affecting the stability of subsequent 
modeling, all samples were randomly grouped with 
replacement 200 times in advance. Group sampling was 
based on a training cohort-to-verification cohort ratio of 
3:2. For DEGs between molecular subtypes and survival 
data in the training cohort, the coxph function of the 
survival package in R was applied to the univariate Cox 
proportional hazards regression model, and a P-value 
of < 0.05 was the threshold for filtering.

Multivariate analysis in the training cohort
We used the R software package glmnet to perform least 
absolute shrinkage and selection operator (Lasso) analy-
sis per Tibshirani (1996) and Cox regression analysis on 
the significant genes from the univariate analysis in order 
to reduce the number of genes in the risk model. The 
Lasso method is a compression estimate. It can be used 
to construct a penalty function to obtain a more refined 
model, compressing some coefficients and setting oth-
ers to 0. It therefore retains the advantage of subset con-
traction and is a kind of biased estimation for processing 
multicollinearity data. This method can be used to real-
ize the selection of variables while estimating parameters 
and better solve the problem of multicollinearity that is 
present in regression analysis.

The stepwise regression used the Akaike informa-
tion criterion (AIC), which is a measure of the statistical 
goodness of fit and penalized for the number of param-
eters. The step method in the stats package starts from 
the most complex model and removes single variables 
in turn to decelerate the AIC. The smaller the value, the 
more superior the model. The model therefore has better 
fit with fewer parameters.

Risk score and pathway relationships
To observe the relationships between risk score and bio-
logical functions in different samples, we selected the 
gene expression profiles corresponding to these samples 
and performed single-sample gene set enrichment analy-
sis (ssGSEA) with the R software package GSVA. By cal-
culating the score of each sample for different functions, 
that is, by obtaining each sample’s ssGSEA score corre-
sponding to each function, we calculated the correlations 
between the functions and risk score.

Construction of a nomogram based on clinical features
A nomogram can be used to predict the outcome of a 
risk model intuitively and effectively, and it is convenient 
to apply. The lengths of the lines in the nomogram indi-
cate the degrees to which different variables influence 
the outcome and the effects of different variable values 
on the outcome. Furthermore, the calibration curve was 
used to estimate the prediction accuracy of the model. A 

Table 1  Sample clinical features

Clinical features TCGA-COAD GSE17537

OS

 0 287 35

 1 78 19

T stage

 T1 9

 T2 65

 T3 251

 T4 39

 TX 1

N stage

 N0 214

 N1 89

 NX 62

M stage

 M0 270

 M1 54

 MX 41

Stage

 I 61 4

 II 138 14

 III 101 19

 IV 54 17

 X 11

Gender

 Male 201 25

 Female 164 29

Age

 ≤ 65 153 33

 > 65 212 21
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calibration curve that is close to the standard curve indi-
cates that the model has good predictive performance. 
We also used decision curve analysis (DCA) to evaluate 
the clinical utility of the model.

Clinical expression of genes in the Oncomine and GEO 
cohorts
Oncomine (http://www.oncom​ine.org) is a gene chip-
based database and integrated data-mining platform. In 
this study, we set the screening criteria as follows: (1) 
cancer type: COAD; (2) analysis type: Cancer vs Nor-
mal Analysis; and (3) threshold criteria: P < 0.05, fold 
change > 1.5, and gene rank = top 10%. The COAD cohort 
was downloaded from the GEO and TCGA databases. 
The ggplot2 and ggpubr R packages were used to visual-
ize the expression levels of 6 genes in the colon cancer 
data set.

Correlations between gene expression levels 
in pan‑carcinoma and immune infiltrating cells
We downloaded the scores of 6 immune infiltrating cells 
from 33 cancers from the TIMER database (https​://cistr​
ome.shiny​apps.io/timer​/), and we analyzed the correla-
tions between gene expression levels and immune cell 
scores by using Spearman’s method. We also used the 
TIMER database to analyze the expression levels of 6 
genes in 33 cancer tissues.

Immunohistochemistry and protein expression validation
The Human Protein Atlas (HPA) provides information 
on the tissue and cell distributions of 26,000 human pro-
teins. We explored the expression levels of the single bar 
proteins of 6 genes (ITLN1, HOXD9, TSPAN11, GPRC5B, 
TIMP1, and CXCL13) in normal colon tissues and tumor 
tissues.

Sample collection
The Ethics Committee of Renji Hospital Affiliated with 
Shanghai Jiaotong University approved this study. COAD 
tissues and adjacent normal tissues were collected from 3 
patients, placed in liquid nitrogen immediately, and pre-
served at − 80 °C. The included patients and their fami-
lies were fully informed, and the participants provided 
informed consent.

Western blot analysis
Western blot analysis was carried out according to stand-
ard protocols. We used primary antibodies raised against 
GAPDH, CXCL13, ITLN1, HOXD9, and GPRC5B 
(Santa-Cruz Biotechnology, CA, USA), as well as TIMP1 
and TSPAN11 (Proteintech, China). Goat anti-mouse 
and anti-rabbit antibodies conjugated with horseradish 
peroxidase were used as secondary antibodies (Jackson 

ImmunoResearch, PA, USA). We detected the blots by 
using enhanced chemiluminescence (Dura, Pierce, NJ, 
USA).

RNA extraction and real‑time polymerase chain reaction 
assay
Total RNA was extracted by using TRIzol Reagent (Inv-
itrogen, CA, USA) following the manufacturer’s proto-
col, and it was reverse transcribed into complementary 
DNA (cDNA) by using a Superscript Reverse Tran-
scriptase Kit (Transgene, France). A Super SYBR Green 
Kit (Transgene, France) was used to carry out real-time 
polymerase chain reaction in an ABI7300 real-time poly-
merase chain reaction system (Applied Biosystems). The 
primer pairs were: CXCL13 forward: GCT​TGA​GGT​
GTA​GAT​GTG​TCC, CXCL13 reverse: CCC​ACG​GGG​
CAA​GAT​TTG​AA; ITLN1 forward: ACG​TGC​CCA​ATA​
AGT​CCC​C, ITLN1 reverse: CCG​TTG​TCA​GTC​CAA​
CAC​TTTC; TIMP1 forward: CTT​CTG​CAA​TTC​CGA​
CCT​CGT, TIMP1 reverse: ACG​CTG​GTA​TAA​GGT​GGT​
CTG; TSPAN11 forward: CAT​CTT​TGC​GGG​CGT​ACT​
TG, TSPAN11 reverse: CAG​GCA​GAA​ATA​CGT​GGA​
GAG; HOXD9 forward: GGA​CTC​GCT​TAT​AGG​CCA​
TGA, HOXD9 reverse: GCA​AAA​CTA​CAC​GAG​GCG​
AA; and GPRC5B forward: CCT​CCT​CCC​TCA​GTA​CGT​
GTC, GPRC5B reverse: AAG​GCA​AAC​GTC​AGC​CCA​
AA.

Results
Identification of molecular subtypes based on NMF
We designed a protocol (Fig. 1) to analyze the invasion-
related genes associated with the prognosis of colon car-
cinoma. Eight genes (Additional file  2: Table  S2) were 
found to be associated with the prognosis of colon car-
cinoma (P < 0.05). Next, ConsensusClusterPlus was used 
to identify molecular subtypes based on these genes. The 
cluster was stable when k was equal to 3 (Fig.  2a). The 
expression levels of prognostic invasion-related genes 
in the 3 subtypes (Cluster 1 [C1], Cluster 2 [C2], and 
Cluster 3 [C3]) were plotted (Fig. 2b). The gene expres-
sion levels in C1, C2, and C3 were different, and most of 
the genes were highly expressed in the C1 subtype and 
lowly expressed in the C3 subtype. Furthermore, prog-
noses among the 3 subtypes were significantly different. 
Patients with the C1 subtype showed the worst progno-
sis, and patients with the C3 subtype showed the best 
prognosis (log-rank P < 0.05; Fig. 2c, d).

Identification of differentially expressed genes
The DEGs between C1 and C3, C2 and C3, and C1 and 
C2 were obtained by using the limma package, with a 
false discovery rate of < 0.05 and |log2FC| value of > 1 
as the threshold. As shown in Fig.  3a, there were 38 

http://www.oncomine.org
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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upregulated and 942 downregulated genes between C1 
and C3, and the genes were predominantly downregu-
lated (Additional file  3: Table  S3); as shown in Fig.  3b, 
there were 17 upregulated and 96 downregulated genes 
between C1 and C2, and the genes were predominantly 
downregulated (Additional file 4: Table S4); as shown in 
Fig. 3c, there were 2 upregulated and 150 downregulated 
genes between C2 and C3, and the DEGs are shown in 
Additional file 5: Table S5.

Further, we used the R software package WebGestaltR 
(v0.4.2) to perform KEGG pathway analysis and GO 
functional enrichment analysis of the 983 DEGs between 
C1 and C3, C1 and C2, and C2 and C3.

The 10 most significant GO functional annota-
tions in biological processes (Fig.  3d), cellular compo-
nents (Fig.  3e), and molecular functions (Fig.  3f ) were 
visualized.

The top 10 KEGG pathways of the DEGs showed that 
most DEGs were significantly enriched in tumor patho-
genesis signaling pathways, such as the intestinal immune 
network for IgA production, extracellular matrix-recep-
tor interactions, the AGE-RAGE signaling pathway in 
diabetic complications, focal adhesions, and the PI3K-
Akt signaling pathway (Fig. 3g).

Comparisons of immune scores between molecular 
subtypes
To determine the relationships between immune scores 
and molecular subtypes, the ESTIMATE package was 
used to evaluate stromal scores, immune scores, and 
ESTIMATE scores. MCPcounter was used to assess the 
scores of 10 immune cells, and the GSCA package for 
ssGSEA was used to calculate the scores of 28 immune 
cells. The results of comparisons of immune scores 

Fig. 1  The protocol of colon carcinoma invasion-related prognosis features
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between molecular subtypes showed that the immune 
scores of C1 in the 3 software programs were higher than 
those of C2 and C3 (Fig.  4a–c). We also plotted a heat 
map of the immune scores of the 3 subtypes (Fig. 4d).

Comparisons of immune molecular subtypes
There are 4 consensus molecular subtypes of colon can-
cer: CMS1 (MSI-immune), CMS2 (canonical), CMS3 
(metabmal), and CMS4 (mesenchymal). Most of the 
colon cancer patients in the TCGA cohort were CMS2 
and CMS4 (about 66.26%). In addition, we obtained 
4 subtypes of TCGA colon cancer from the literature 
[17]: CIN, GS, HM-indel, and HM-SNV. A Sankey dia-
gram was used to show the distribution of relationships 
between them (Fig. 5a).

In the C1 subtype, the proportion of the CMS4 sub-
type was significantly higher than that in the C2 and C3 

subtypes, and the proportion of the CMS1 subtype was 
significantly less than that in the C2 and C3 subtypes 
(Fig. 5b). In addition, in the C1 subtype, the proportion of 
the CIN subtype was significantly higher than that in the 
C3 subtype, and the proportion of the GS subtype in the 
C3 subtype was higher than that in the C1 and C2 sub-
types (Fig. 5c).

Construction of a prognostic risk model based 
on invasion‑related genes
The 365 samples in the TCGA data set were divided into 
training and verification cohorts (219 and 146 samples, 
respectively) according to the ratio of 3:2. For the train-
ing cohort, 983 DEGs between the molecular subtypes 
were analyzed by univariate Cox analysis, and P < 0.05 
was selected as the threshold for filtering. We obtained 
17 genes related to prognosis (Additional file 6: Table S6). 

Fig. 2  a Samples cluster heatmap with consistent cluster k = 3; b cluster heatmap of 8 prognostic genes; c OS survival curves of all TCGA colon 
carcinoma samples molecular subtypes; d PFS survival curves of all TCGA colon carcinoma samples molecular subtypes
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The R package glmnet was used to perform Lasso-Cox 
regression. First, the change trajectory of each inde-
pendent variable was analyzed (Fig.  6a). The results 
showed that the number of independent variable coeffi-
cients approaching 0 increased with the gradual increase 

of lambda. A tenfold cross-validation was applied to 
construct the model, and the confidence interval of 
each lambda is shown in Fig.  6b. Nine genes (ITLN1, 
AKR1B10, FABP4, HOXD9, TSPAN11, GPRC5B, TIMP1, 
SNAI1, and CXCL13) were selected as target genes for 

Fig. 3  a Volcano map of C1 and C3 subtypes DEGs; b Volcano map of C1 and C2 subtypes DEGs; c Volcano map of C2 and C3 subtypes DEGs; d The 
significant top 10 GO functional annotations in biological process; e The significant top 10 GO functional annotations in cellular component; f M 
The significant top 10 GO functional annotations in molecular function; g the top 10 KEGG pathway of DEGs
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the next analysis when the model reached the optimal 
value, with lambda equal to 0.01429895.

Furthermore, the stepwise regression algorithm 
was used to reduce the 9 genes to 6: ITLN1, HOXD9, 
TSPAN11, GPRC5B, TIMP1, and CXCL13.

The final 6-gene signature formula was: RiskScore = − 
0.0918378 * ITLN1 + 0.2165212 * HOXD9 − 0.7173256 * T
SPAN11 + 0.6454939 * GPRC5B + 0.6350192 * TIMP1 − 0.
2074915 * CXCL13.

Construction and verification of risk model
The risk score of each sample of the training cohort was 
calculated according to expression levels. The risk score 
distribution is shown in Fig.  7b. The overall survival 

rates of the samples with high risk scores were signifi-
cantly lower than those of samples with low risk scores, 
suggesting worse prognoses in samples with high risk 
scores. Furthermore, receiver operating characteris-
tic (ROC) analysis was conducted by using the R soft-
ware package timeROC. We analyzed the classification 
efficiency of prognosis prediction (Fig.  7c). The aver-
age areas under the curve (AUCs) of 1, 2, and 3  years 
reached 0.71, 0.77, and 0.70, respectively. Finally, the 
Z-score method was applied in the preprocessing of 
the risk scores, and samples with risk scores > 0 were 
divided into the high-risk group (106 samples), while 
samples with risk scores < 0 were divided into the low-
risk group (113 samples). The Kaplan–Meier curve 

Fig. 4  a Comparison of ssGSEA Immune score among molecular subtypes in TCGA dataset; b Comparison of Mcpounte Immune score among 
molecular subtypes in TCGA dataset; c Comparison of Estimate Immune score among molecular subtypes in TCGA dataset; d Comparison of 
different immune immune scores among molecular subtypes in TCGA dataset



Page 9 of 20Liu et al. Cancer Cell Int          (2021) 21:101 	

showed that there was a significant difference between 
the 2 risk groups (P < 0.0001; Fig. 7a).

To determine the robustness of the model, we used 
the same model and the same coefficient as the training 
cohort in the different cohorts. We calculated the risk 
scores of the samples according to the expression levels 
of each sample and plotted the risk score distributions of 
the samples.

The risk score distributions of the TCGA testing 
cohort, the entire TCGA cohort, and the independent 
verification cohort (GSE17537) are shown in Fig. 7e, h, k. 
In the testing cohort, the predictive efficiency of 1, 2, and 

3 years reached 0.76, 0.81, and 0.70, respectively (Fig. 7f ). 
The prognosis of the high-risk group (69 samples) was 
significantly worse than that of the low-risk group (77 
samples) (P = 0.0046; Fig. 7d).

Similarly, in the entire TCGA cohort, the predictive 
efficiency of 1, 2, and 3 years reached 0.72, 0.78, and 0.70, 
respectively (Fig.  7i). There was a significant difference 
between the high-risk group (173 samples) and low-risk 
group (192 samples) (P < 0.0001; Fig. 7g).

In the independent verification cohort (GSE17537), the 
predictive efficiency of 1, 2, and 3 years reached 0.75, 0.76, 
and 0.30, respectively (Fig.  7l). There was a significant 

Fig. 5  a Sankey map between our molecular subtype and existing subtypes; b Distribution comparison of CMS subtypes between different 
molecular subtype; c Distribution comparison of Thorsson subtypes between different molecular subtype

Fig. 6  a The changing trajectory of each independent variable. The horizontal axis represents the log value of the independent variable lambda, 
and the vertical axis represents the coefficient of the independent variable. b The confidence interval under each lambda
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difference between the high-risk group (30 samples) and 
low-risk group (24 samples) (P = 0.037; Fig. 7j).

Prognostic analysis of risk model and clinical features
Based on risk score, age, sex, T stage, N stage, M stage, 
and clinical stage could be grouped into high- and 
low-risk groups, and there were significant prognostic 

differences (P < 0.05; Fig. 8). This result further suggested 
that the risk score model had good predictive ability in 
terms of different clinical features.

Correlations between risk score and clinical features
By comparing the risk score distribution with clinical fea-
tures, we found that there were significant differences in 

Fig. 7  a Survival curves between two risk groups based on 6-gene signature classification; b distribution of RiskScore and survival status of 6-gene 
signature in TCGA training cohort; c ROC curve of 6-gene signature classification in TCGA training cohort; d–f survival curves between two risk 
groups, distribution of RiskScore and survival status, ROC curve of 6-gene signature in TCGA testing cohort; g–i survival curves between two risk 
groups, distribution of RiskScore and survival status, ROC curve of 6-gene signature in entire TCGA cohort; j–l survival curves between two risk 
groups, distribution of RiskScore and survival status, ROC curve of 6-gene signature in GSE17537cohort
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T stage, N stage, M stage, clinical stage, and consensus 
molecular subtypes (P < 0.05; Fig.  9a–e). We also com-
pared the risk score distribution with molecular sub-
types. The results showed that the risk score of the C1 
subtype with poor prognosis was significantly higher 
than the risk scores of the C2 and C3 subtypes (Fig. 9f ).

We calculated the ssGSEA scores of each sample 
for different functions and calculated the correlations 
between these functions and risk score according to “Dis-
cussion” of the Methodology. Functions with correlation 
coefficients > 0.3 were selected, and there were signifi-
cant negative correlations between KEGG_APOPTOSIS, 
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATH-
WAY, and risk score (Fig. 9g–h).

Univariate and multivariate analyses and nomogram 
construction
Univariate Cox regression analysis results showed a sig-
nificant correlation between risk score and prognosis. 
Multivariate Cox regression analysis results showed that 

risk score (HR = 1.86, 95% CI 1.42–2.45, P < 1e-5), clini-
cal stage (HR = 5.9  s, 95% CI 1.60–21.71, P = 0.008), M 
stage (HR = 2.63, 95% CI 1.42–4.86, P = 0.002), and age 
(HR = 2.51, 95% CI 1.43–4.41, P = 0.001) were independ-
ent risk factors for prognosis in patients with colon can-
cer (Fig. 10a, b).

A nomogram was constructed with the variables that 
had the most significant values in the multivariate anal-
ysis (Fig.  10c). The results showed that risk score had 
the greatest influence on survival prediction, suggesting 
that the risk model based on 6 genes could predict prog-
nosis well. The calibration curve analysis results showed 
that at 1, 3, and 5 years, the predicted calibration curve 
was close to the standard curve, which suggested 
that the risk model had good predictive performance 
(Fig. 10d).

The DCA curve showed that the risk score and nom-
ogram benefits were higher than those of the extreme 
curve, while the nomogram’s benefit was higher than 
that of the risk score, and age, M stage, and clinical 

Fig. 8  The prognostic performance of the risk model in different clinical features
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Fig. 9  a comparison of the risk score in T Stage grouping samples; b comparison of the risk score in N Stage grouping samples; c comparison of 
the risk score in M Stage grouping samples; d comparison of the risk score in clinical stage grouping samples; e comparison of the risk score in CMS 
Subtypes; f comparison of the risk score in our molecular subtypes; g correlation between RiskScore with KKEGG_APOPTOSI; h correlation between 
RiskScore with KEGG_NOD_LIKE_ RECEPTOR_SIGNALING_PATHWAY​
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Figure10  a Univariate analysis of clinical features and RiskScore; b multivariate analysis of clinical features and RiskScore; c construction of 
nomogram model; d the Calibration curves of 1-, 3-, 5- year in nomogram; e DCA analysis of Age, M Stage, clinical Stage, risk score and nomogram
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stage were close to the extreme curve, suggesting good 
reliability of the risk score and nomogram (Fig. 10e).

Comparison of risk model with other models
Four recurrence prognostic risk models were identi-
fied in the literature: a 15-gene signature by Xu et al., a 
15-gene signature by Dai et al., a 12-gene signature by 
Sun et al., and a 9-gene signature by Mo et al. To make 
the models comparable, the same method was con-
ducted to calculate the risk score of each COAD sam-
ple in the TCGA cohort based on the corresponding 
genes in these 4 models, and the Z-score method was 
used in the preprocessing of risk scores. Samples with 
risk scores > 0 were divided into the high-risk group, 
and samples with risk scores < 0 were divided into the 
low-risk group. The differences in COAD progno-
ses between the 2 groups were calculated. The results 
showed that the differences in COAD prognoses 
between the high- and low-risk groups in our model 
were significantly different from those in 3 of the other 
models (log-rank P < 0.05; Fig. 11b, f, h), excepting the 
15-gene signature of Dai et al. (Fig. 11d). However, the 
AUCs of all 4 models were lower than the AUC of our 
6-gene risk score model, whether at 1, 2, or 3  years 
(Fig.  11a, c, e, g). In summary, our 6-gene risk score 
model was found to be a more reasonable and efficient 
model with fewer genes.

Correlations between gene expression and tumor immune 
cell infiltration
The results showed that the expression levels of the 
GPRC5B, TIMP1, and TSPAN1 genes were significantly 
positively correlated with CD4+ T cells, macrophages, 
neutrophils, and dendritic cells. GPRC5B (R = 0.53, 
P = 1.9e−30) and TSPAN1 (R = 0.581, P = 1.16e−37) had 
the strongest correlations with CD4+ T cells.
CXCL13 had significantly positive correlations with 6 

immune cells. Specifically, there were significant positive 
correlations with neutrophils (R = 0.61, P = 1.03e−42), 
dendritic cells (R = 0.59, P = 1.59e−39), and CD8+ T 
cells (R = 0.53, P = 3.39e−30).
HOXD9 was positively correlated with CD4+ T cells, 

macrophages, neutrophils, and dendritic cells. ITLN1 
was only significantly correlated with B cells (R = 0.189, 
P = 1.29e−04). See Fig. 12a–f for related details.

Gene expression in 33 pan‑cancers
The box diagram showed that HOXD9 expression was 
low in colon cancer with no significant difference; 
HOXD9 was significantly lowly expressed in BRCA, 
UCEC, PRAD, KIRC, KIRP, and other tumors, while 
in CHOL, ESCA, HNSC, LUSC, and STAD tumors, 
HOXD9 was significantly highly expressed and showed 
tissue specificity (Fig. 13a).

Compared with the expression levels in normal sam-
ples, ITLN1, TSPAN11, CPRC5B, and CXCL13 showed 

Fig. 11  a, b The ROC of 15-gene signature (Xu) risk model and KM curves of the High/Low COAD samples; c, d the ROC of 15-gene signature (Dai) 
risk model and KM curves of the High/Low COAD samples; e, f the ROC of 12-gene signature (Sun) risk model and KM curves of the High/Low 
COAD samples; g, h the ROC of 9-gene signature (Mo) risk model and KM curves of the High/Low COAD samples
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significantly low expression levels in most cancer 
types, including COAD (Fig.  13b–e), while TIMP1 was 
expressed highly in most cancer types (Fig. 13f ).

Clinical validation of genes via protein and mRNA 
expression levels
The TCGA-COAD and GSE10972 cohorts were used to 
verify the 6 genes’ expression levels in the cancer and 

Fig. 12  Correlation between the 8 genes’ expression and immune cell infiltration score; a–g correlation between the expression of HOXD9, ITLN1, 
TSPAN1, GPRC5B, CXCL13, TIMP1 with B cell, CD8+ T cell, CD4+ T cell, Macrophage, and Dendritic Cell, respectively. The horizontal axis refers to the 
infiltration level, and the vertical axis represents gene expression
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normal samples with the ggplot2 R package. The box 
plots suggested that the ITLN1, TSPAN11, CPRC5B, and 
CXCL13 genes were significantly lowly expressed in the 
colon cancer samples and the TIMP1 gene was highly 
expressed in the colon cancer samples in the TCGA 
cohort (Fig. 14a).

In the GSE10972 cohort, ITLN1 and CPRC5B did not 
show significant differences. They both showed a trend of 
low expression in the cancer samples (Fig. 14b). In gen-
eral, the results from the GEO and TCGA databases were 
consistent.

Using the HPA database, the immunochemistry results 
of the 6 genes were analyzed. Only 3 genes (ITLN1, 
TIMP1, and CXCL13) had protein expression data. The 
results showed that the expression levels of the ITLN1 and 
CXCL13 genes in normal tissues were higher than those 
in colon cancer tissues, and the expression was located in 
the cytoplasm and cell membrane. TIMP1 expression in 
colon cancer tissues was greater than that in normal tis-
sues, and the expression was located in the cytoplasm and 
cell membrane (Fig.  14c–e), which was consistent with 
the expression trends of the GEO and TCGA cohorts.

Subsequently, we measured the protein expression lev-
els of the 6 genes in 3 pairs of COAD tumor tissues and 
normal tissues. We found that, compared with normal 
tissues, the TIMP1 protein was expressed highly and sig-
nificantly in cancer samples, while the ITLN1, TSPAN11, 
CPRC5B, and CXCL13 proteins were expressed poorly 
in cancer samples (Fig.  14f ). Further, polymerase chain 
reaction analysis results showed that the mRNA expres-
sion trends of the 6 genes were consistent with protein 
expression levels (Fig. 14g–l).

Discussion
The prognosis of CRC is poor. About half of patients with 
CRC die from recurrent, metastatic disease or complica-
tions. We conducted a comprehensive study to establish 
and validate a 6-gene signature, which was applied to 
explore the potential relationship between risk score and 
the survival rate of patients with colon cancer in order to 
provide a novel biomarker for predicting the prognosis of 
colon cancer.

A total of 365 COAD samples in the TCGA cohort 
were divided into 3 subtypes based on 97 invasion-related 

Fig. 13  Expression box diagram of gene expression in pan-cancer. a–f The gene expression of HOXD9, CPRC5B, ITLN1, CXCL13, TSPAN11 and TIMP1 
in different tumors, respectively
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genes. The expression levels of genes in the C1, C2, and 
C3 subtypes were different, and most of the genes were 
overexpressed in the C1 subtype and under-expressed 
in the C3 subtype. There were significant differences in 
the prognoses of C1, C2, and C3. By using the limma 
package, 983 DEGs were found among the different sub-
types. KEGG pathway analysis and GO functional enrich-
ment analysis were performed to find DEGs that were 

significantly correlated with pathways of tumorigenesis 
and tumor development, including the intestinal immune 
network for IgA production, extracellular matrix-recep-
tor interactions, the AGE-RAGE signaling pathway in 
diabetic complications, focal adhesions, and the PI3K-
AKT signaling pathway. Subsequently, 17 of these genes 
were identified in the univariate Cox analysis, and 9 
were selected as target genes by using Lasso regression. 

Fig. 14  Clinical validation of 6 genes in protein and mRNA expression. a The expression box graph of 6 genes in TCGA-COAD; b the expression box 
graph of 6 genes in GSE10972; c ITLN1 protein expression in cancer and normal control; d CXCL13 protein expression in cancer and normal control; 
e TIMP1 protein expression in cancer and a normal control; f Westernblot expression of 6 genes in 3 pairs of cancer and adjacent normal tissues; g–l 
mRNA expression of GPRC5B, HOXD, TSPAN1, ITLN1, TIMP1 and CXCL13, respectively in 3 pairs of cancer and adjacent normal tissues
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The stepwise regression algorithm was used to obtain 6 
genes (ITLN1, HOXD9, TSPAN11, GPRC5B, TIMP1, and 
CXCL13) to construct a 6-gene signature as a prognostic 
risk model.

Omentin-1, also known as intelectin-1 (ITLN1), is 
a novel adipokine with 313 amino acids; it can be used 
as a marker of obesity and metabolic disorders, includ-
ing insulin resistance, diabetes, and metabolic syn-
drome [18–20]. ITLN1 also acts as a tumor suppressor 
in various cancers, such as gastric cancer, ovarian can-
cer, neuroblastoma, and colon cancer [21–25]. Katsuya 
showed that the ITLN1 protein was lowly expressed 
in 87 of 148 CRC cases (59%) by immunohistochem-
istry; CRC cases with reduced ITLN1 expression had 
higher M grades than CRC cases in which ITLN1 was 
retained (P = 0.0017), and patients with retained ITLN1 
expression tended to have more favorable prognoses 
than those with reduced ITLN1 expression [25]. The 
transcription factor HOXD9 is a member of the HOX 
family and plays an important role in tumorigenesis. 
By exploring the regulatory mechanism of HOXD9 on 
a molecular level, HOXD9 overexpression was found 
to significantly enhance the migration, invasion, and 
metastasis of hepatoma cells, gastric cancer cells, cervi-
cal cancer cells, and CRC cells [26–30]. The TSPAN11 
protein has not been thoroughly studied in tumors. 
It has been reported that the direction of bone matrix 
organization is determined by fibrillar focal adhesion 
assembly mediated by TSPAN11. TSPAN11 silencing 
significantly destroys the arrangement of osteoblasts, 
and with further construction of bone matrix, the align-
ment is orthogonal [31]. G protein-coupled recep-
tor class C group 5 member B (GPRC5B) controls the 
contractility and differentiation of smooth muscle [32]. 
There is no correlation between GPRC5B and tumors. 
However, molecular biological methods and knockout 
mouse studies have shown that proteins in the GPRC5 
family play key roles in the control of tumor progression 
and metabolic homeostasis [33]. GPRC5A disorders 
have been associated with a variety of cancers, includ-
ing non-small-cell lung carcinoma, breast cancer, CRC, 
liver cancer, and gastric cancer [34]. Tissue inhibitor 
of metalloproteinase 1 (TIMP1) is an intrinsic inhibi-
tor of matrix metalloproteinases [35]. TIMP1 acts as 
an effective biomarker in patients with metastatic CRC 
with good sensitivity [36–38]. TIMP1 level increases in 
CRC have been associated with lymph node metastasis, 
distant metastasis, and vascular invasion, and TIMP1 
mediation of the AK-PI3K/AKT and MAPK pathways 
may be involved in inhibiting proliferation, metastasis, 
and increased apoptosis [39]. Chemokine CXC ligand 
13 (CXCL13) is an inflammatory factor in the microen-
vironment and plays a crucial role in the development 

of inflammatory diseases and tumors. The CXCL13 
and chemokine receptor 5 (CXCR5) signaling axis has 
a key role in the occurrence and development of several 
human cancers [40, 41]. CXCL13 and CXCR5 are asso-
ciated with poor prognosis in advanced colon cancer 
[42]. Further, the CXCL13-CXCR5 axis may promote 
the growth, migration, and invasion of colon cancer 
cells via the PI3K/AKT pathway [43].

The results of the prognostic analysis of risk models 
with clinical features suggested that our model had good 
predictive power in different clinical features, and the 
multivariate Cox analysis results showed that our risk 
model could be used as an independent prognostic risk 
factor. We also compared risk scores among molecular 
subtypes, and the results showed that the risk score of the 
C1 subtype with poor prognosis was significantly higher 
than the risk scores of the C2 and C3 subtypes. We fur-
ther observed the relationships between risk score and 
biological functions in different samples and found that 
KEGG_APOPTOSIS and KEGG_NOD_LIKE_RECEP-
TOR_SIGNALING_PATHWAY were negatively corre-
lated with risk score.

Dysregulation of the death mechanism of apoptotic 
cells is a mark of cancer. Apoptotic changes are not only 
responsible for tumorigenesis and cancer development, 
but also for the resistance of tumors to treatment [44–
46]. In CRC development, the balancing between cell 
growth rate and apoptosis, which maintains the homeo-
stasis of intestinal epithelial cells, is disturbed [47].

NOD-like receptors (NLRs) are cytosolic pattern-
recognition receptors, and they are involved in mucosal 
immune defense. NLRs have been identified as key reg-
ulators of inflammation-related tumorigenesis, angio-
genesis, cancer stemness, and chemical resistance, 
orchestrating the tumor microenvironment and enhanc-
ing the risk of tumors [48, 49]. The association between 
the NLR NOD2 and inflammatory bowel disease is indic-
ative of the potential ability of NLRs to protect the gut 
barrier. NLRs work in maintaining intestinal homeosta-
sis, protecting against intestinal infection, and shaping 
the gut microbiota [50]. Estrogen receptor alpha regu-
lates the Wnt/β-catenin signaling pathway in colon can-
cer by targeting NLRs [51]. In short, NLRs are potential 
biomarkers for cancer.

In recent years, there have been more and more stud-
ies of colon cancer prognosis models. We selected 4 
published gene signatures of colon cancer to demon-
strate the superiority of our model. Xu et al. identified 
a 15-gene signature by using support vector machine 
analysis and 5 gene expression profile data confirma-
tions, and it could distinguish high- and low-risk groups 
of colon cancer recurrence and predict prognosis [52]. 
Dai et al. developed an mRNA signature, and the 1-year 
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AUC suggested that the predictive accuracy of the clas-
sifier was higher than that of the American Joint Com-
mission on Cancer tumor-node-metastasis staging 
system. This mRNA signature may help detect early 
recurrence of stage I-III colon cancer to help patients 
with high-risk colon cancer receive more positive treat-
ment interventions [53]. Sun et  al. applied a 2-step 
supervised machine learning approach to establish a 
12-gene signature. Seven of the 12 genes were involved 
in immune system function and regulation, so the sig-
nature may be used to guide decision-making in adju-
vant therapy in patients with stage II-III and proficient 
DNA mismatch repair COAD [54]. Mo et al. established 
a 9-gene autophagy-related signature, which was found 
to be a reliable method for predicting the early relapse 
of stage I-III colon cancer [55]. The results of ROC 
analyses of these 4 models revealed that their 1-, 2-, and 
3-year AUCs were all lower than those of our 6-gene 
signature, suggesting that our model had a reasonable 
number of genes and a significantly high discrimination 
ability to predict overall survival.

Finally, based on data from the GEO, TCGA, and 
HPA databases and our clinical samples, we found that 
compared with normal tissues, the TIMP1 protein was 
expressed highly and significantly in COAD samples, 
while the ITLN1, TSPAN11, CPRC5B, and CXCL13 pro-
teins were poorly expressed in colon cancer samples.

There were some limitations in our study. The limited 
sample size may have led to selection bias. For better 
clinical application value, further studies with larger sam-
ple sizes are needed to support these findings, and more 
biological function studies should be conducted on the 6 
genes in this research. Furthermore, animal studies and 
clinical practice should be conducted to test the predic-
tive accuracy of our model and to identify potential inva-
sion-related mechanisms.

Conclusion
In this study, we constructed a 6-gene signature (ITLN1, 
HOXD9, TSPAN11, GPRC5B, TIMP1 and CXCL13) 
prognostic stratification system based on the colon can-
cer invasion-related genes, and evaluated the stability and 
accuracy of the model. The risk model had better AUC in 
both the training cohort and the independent validation 
cohort and was independent of clinical features. There-
fore, we recommend this classifier as a molecular diag-
nostic test to assess the prognostic risk in patients with 
colon cancer.
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