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Abstract 

Background:  Emerging evidence has shown that intra-tumor immune features are associated with response to 
immune checkpoint blockade (ICB) therapy. Accordingly, patient stratification is needed for identifying target patients 
and designing strategies to improve the efficacy of ICB therapy. We aimed to depict the specific immune features of 
patients with pancreatic cancer and explore the implication of immune diversity in prognostic prediction and indi-
vidualized immunotherapy.

Methods:  From transcriptional profiles of 383 tumor samples in TCGA, ICGC, and GEO database, robust immune sub-
types which had different response immunotherapy, including ICB therapy, were identified by consensus clustering 
with five gene modules. DEGs analysis and tumor microarray were used to screen and demonstrate potential targets 
for improving ICB therapy.

Results:  Three subtypes of pancreatic cancer, namely cluster 1–3 (C1–C3), characterized with distinct immune 
features and prognosis, were generated. Of that, subtype C1 was an immune-cold type in lack of immune regulators, 
subtype C2, with an immunosuppression-dominated phenotype characterized by robust TGFβ signaling and stromal 
reaction, showed the worst prognosis, subtype C3 was an immune-hot type, with massive immune cell infiltration 
and in abundance of immune regulators. The disparity of immune features uncovered the discrepant applicability of 
anti-PD-1/PD-L1 therapy and potential sensitivity to other alternative immunotherapy for each subtype. Patients in C3 
were more suitable for anti-PD-1/PD-L1 therapy, while patients in the other two clusters may need combined strate-
gies targeted on other immune checkpoints or oncogenic pathways. A promising target for improving anti-PD-1/
PD-L1 treatment, TGM2, was screened out and its role in the regulation of PD-L1 was investigated for the first time.

Conclusion:  Collectively, immune features of pancreatic cancer contribute to distinct immunosuppressive mecha-
nisms that are responsible for individualized immunotherapy. Despite pancreatic cancer being considered as a poor 
immunogenic cancer type, the derived immune subtypes may have implications in tailored designing of immuno-
therapy for the patients. TGM2 has potential synergistic roles with ICB therapy.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) has been 
striking a heavy burden on human health by increas-
ing worldwide incidence and less than 9% survival rate 
[1]. Advances in chemotherapy regimens over the last 
two decades have only modestly prolonged the overall 
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survival of the patients [2]. More effective treatments are 
still needed for PDAC patients. A promising ICB therapy, 
programmed cell death protein 1 (PD-1)/programmed 
death 1 ligand 1(PD-L1) antibodies, has yielded signifi-
cant clinical efficacy in some tumor types [3]. However, 
low response rate and limited patients benefited from 
single-agent ICB were observed in PDAC, which can be 
attributed to the low immunogenicity and diverse immu-
nosuppression mechanisms [4]. To overcome the drug 
resistance, combination with other ICB targets or other 
therapeutic modalities has been regarded as a hope-
ful solution [5]. While the precondition for making an 
appropriate combination treatment strategy is a reason-
able method for patient stratification based on similar 
characteristics of the immune response.

Over the last decade, substantial progression in molec-
ular subtyping for PDAC has facilitated the understand-
ing of molecular pathogenesis and provided clues for 
advanced therapy designing [6]. However, to date, there 
is still lacking an immune feature-based molecular sub-
typing for better understanding the heterogeneity of 
immune response and reasons for the inefficiency of ICB 
therapy.

A recent pan-cancer study revealed a widely suitable 
immune-subtyping method based on five immune sig-
natures which provided a potential roadmap for PDAC 
[7]. Herein three distinct immune subtypes of PDAC 
were presented based on these five immune signature 
modules. Each subtype showed distinct immune cell 
composition and expression patterns of immunomodu-
lators, which provided a reasonable explanation for their 
survival discrepancy and inefficacy of single-agent ICB 
therapy. Furthermore, we screened out a potential immu-
nosuppression-related gene, transglutaminase 2 (TGM2). 
TGM2 is a multifunctional enzyme that, in addition to 
catalyzing protein crosslinking, can also serve in the 
regulation of signaling pathways by constitutively acti-
vating the key modulators, such as p53, Akt, and NF-κB 
[8–13]. The aberrant expression of TGM2 has been dem-
onstrated to be linked with a series of aggressive pheno-
types of tumor cells, such as tumor growth, metastasis, 
epithelial-mesenchymal transition, and cancer stem cell 
property [12, 14]. In vivo, based on orthotopic xenograft 
mouse models, downregulating the expression of TGM2 
by siRNA or shRNA could restrain the tumor growth and 
improve the treatment effect of Gemcitabine in PDAC 
[9, 15, 16]. At present, whether or how TGM2 is involved 
in the immune regulation of PDAC remains unknown. 
Therefore, we explored the association of TGM2 with the 
immune microenvironment and investigated its poten-
tially synergistic roles with ICB therapy.

Taken together, these findings provide a conceptional 
framework to understand the immune response diversity 

in the tumor microenvironment of PDAC, implicate 
PDAC patient stratification, and design combination 
therapeutic strategies based on ICB therapy.

Materials and methods
Transcriptional data resources and preprocessing
Human pancreatic cancer transcriptional profiles were 
downloaded from public databases, including The Cancer 
Genome Atlas (TCGA, https​://porta​l.gdc.cance​r.gov/), 
International Cancer Genome Consortium (ICGC, https​
://icgc.org/) and Gene Expression Omnibus (GEO, https​
://www.ncbi.nlm.nih.gov/geo/). Read count data from 
TCGA (PAAD) and ICGC (PACA-AU) were normalized 
in the TMM method by edgeR (R package). Then TPM 
value was calculated respectively and the batch effect 
was eliminated by Combat. There were 182 TCGA data 
samples, of which 4 para-cancer samples and 1 non-
primary sample were excluded, and finally, a total of 177 
tumor samples were collected. GSE28735 and GSE62452, 
which are two datasets downloaded from the GEO data-
base with the entire clinical following information, were 
integrated. The batch effect was eliminated by Combat. 
The combined datasets of GSE28735 and GSE62452 
contained a total of 220 samples, including 114 tumor 
samples and 106 para-cancer samples. Together with 92 
tumor samples from ICGC and 177 tumor samples from 
TCGA, 383 tumor samples were taken into analysis. To 
accomplish a combined analysis of tumor statistics, RNA-
Seq and gene array transcriptional data were normalized 
in the manner of z-score. The flow chart of data process-
ing was shown in Fig. 1.

Patient cohort
The use of clinical samples and clinical information 
for this study was approved by the institutional review 
board of Peking Union Medical Hospital (NO. JS-987). 
Totally, 97 pairs of tumor and para-tumor normal sam-
ples of patients diagnosed with PDAC were collected 
as the description of our previous study [17]. All of the 
cases were pathologically confirmed to be PDAC, and R0 
radical resection was achieved and at least three cycles of 
adjuvant chemotherapy were performed for each patient. 
Histological grading was made according to the 8th edi-
tion of the TNM system established by the American 
Joint Committee on Cancer (AJCC) [18]. None of the 
patients undergone neoadjuvant chemotherapy.

Immunohistochemistry (IHC) and digital analysis
Immunohistochemistry staining was implemented in 
accordance with the previous study [17]. The microar-
ray chip was stained with anti-TGM2 (15100-1-AP, Pro-
teintech, 1:200). Quant Center identified and analyzed 
the areas of strong positive, moderately positive, weak 
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positive, and negative pixels, as well as the percentage of 
positive pixels, and finally conducted an H-score.

Cell culture
Human pancreatic cancer cell lines, PANC-1 and Mia 
PaCa-2, were maintained in DMEM medium supple-
mented with 10% fetal bovine serum and 1% penicillin 
and streptomycin and cultured in the incubator with 5% 
CO2 at 37 °C.

Western blotting
Total protein was extracted using 2% SDS lysis buffer 
including protein phosphatase inhibitor (Applygen, Bei-
jing) and heated for 10 min. Protein samples were sepa-
rated by 8% (v/v) SDS-PAGE gels and transferred onto 
nitrocellulose membranes (Millipore, Ireland). After 
blocking in 5% (w/v) Albumin Bovine-V (BSA-V, Solar-
bio, China) for 1  h at room temperature, the protein 
bands were incubated with primary antibodies at a dilu-
tion ratio of 1:1000 overnight at 4 °C. The primary anti-
bodies contain anti-GAPDH (FL-335; Santa Cruz Bio 
technology), anti-TGM2 (Proteintech), anti-PD-L1 (Pro-
teintech), anti-STAT3 (CST) and anti-Phospho-STAT3 
(Ser705, CST), anti-Akt (CST), and anti-Phospho-Akt 
(Ser473, CST), anti-P65 (Abcam) and anti-Phospho-P65 
(Ser536, Abcam). The protein bands were incubated in 

HRP-conjugated secondary antibodies (Zsbio, China, 
1:5000) at room temperature for 1 h.

Transfection assay
Lentiviral particles for the TGM2 knockdown assay were 
purchased from Syngen Tech (Beijing, China). Lentiviral 
particles were added into PANC-1 cells and Mia PaCa-2 
cells supplemented with 5  μg/ml polybrene. After 48  h 
of transfection, target cells were selected with 1  μg/ml 
of puromycin for two weeks. The TGM2 knockdown in 
cells was validated by Western blotting. The sequence of 
shTGM2 is acquired from a previous study and showed 
as below: 5′-AAG​GGC​GAA​CCA​CCT​GAA​CAA-3′ [15].

Statistical analysis
Identification of immune subtypes
Five immune signature sets, including CSF1_response 
(Macrophages), LIexpression_score (Lymphocyte), 
Module3_IFN_score (IFN-γ), TGFB_score_21050467 
(TGF-β) and CHANG_CORE_SERUM_RESPONSE_UP 
(Wound healing) modules, were selected to run cluster-
ing analysis. They respectively represented the activation 
of macrophage/monocytes, overall lymphocyte infiltra-
tion, TGF-β response, IFN-γ response, and wound heal-
ing activity in tumor immune microenvironment. GSVA 
enrichment analysis was conducted and ssGSEA values 

383 PDAC tumor samples from TCGA(PAAD)/ICGC(PACA-AU)/GEO(GSE28735 and GSE62452)

Gene Matrix

Normalization by Z-score

Consensus clustering with five gene modules
CSF1_response (Macrophages)

LIexpression_score (Lymphocyte)
Module3_IFN_score (IFN-γ)

CHANG_CORE_SERUM_RESPONSE_UP(Wound healing)
TGFB_score_21050467 (TGF-β)
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Up-regulated DEGs
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X-cell 
cell types enrichment analysis

Advanced filter by GEPIA TIMER
negative with prognosis
positive with macrophages infiltration
positive with TGF-β expression
positive with GMCSF expression 
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TGM2

Comparison analysis 
in immune cell composition and immunomodulators expression

Prognostic analysis with immune features 
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Survival data of the patients
 in TCGA/ICGC/GEO databases

Fig. 1  Flowchart of data collection and analysis in present study. Transcriptional profiles were collected from TCGA (PAAD)/ICGC (PACA-AU)/GEO 
(GSE28735 and GSE62452). Three immune clusters were derived by consensus clustering with five gene modules. The enrichment scores of cell 
types were calculated by X-cell. Then, comparison analysis in immune cell composition and immunomodulators expression were performed in 
groups and whole cohort. Combined with survival data of the patients TCGA/ICGC/GEO cohort, the prognostic analysis with immune features 
(gene modules, immune cells, and immunomodulators) were performed. To find promising targets for anti-PD-1/PD-L1 treatment, DEGs analysis 
and correlation analysis were performed in GEO (GSE28735 and GSE62452) database. The results led to gene TGM2, an oncogenic target for PDAC. 
The comparison analysis and prognostic analysis were performed in high-/low- TGM2 groups
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were calculated. Unsupervised clustering with ssGSEA 
values of samples was conducted by McLust R pack-
age, and K values corresponding to maximized Bayes-
ian Information criterion (BIC) were selected to obtain 
immune subtypes.

Depiction of molecular and cellular signatures in immune 
subtypes
To further understand the cellular and molecular charac-
teristics of the immune microenvironment, we assessed 
the enrichment degree of 75 immunomodulatory genes 
and 64 immune cell types. The enrichment of immune 
cell types and immune-related genes were analyzed by 
xCel software and ImmuneCellAI (http://bioin​fo.life.
hust.edu.cn/ImmuC​ellAI​) and R software. Kruskal–wallis 
test or Wilcox test were used to analyze the differences 
in enrichment scores of immune cells or immunomodu-
latory genes among different groups. Boxplot was drawn 
for the distribution of immune cells. The accuracy of 
immune cells in predicting survival was analyzed by 
C-index analysis.

Prognostic analysis
To evaluate the impact of immune signatures on patients’ 
survival, we performed Kaplan–Meier analysis, univari-
ate and multivariate COX analysis. The results were pre-
sented as the mean ± standard deviation. C-index was 
used to analyze the accuracy of the gene sets model in 
predicting survival. p < 0.05 was considered statistically 
significant.

Identification of immune related gene target
Based on the gene expression profiles of GSE28735 
and GSE62452, differentially expressed genes (DEGs) 
were collected by limma (R package) with filtration of 
p-value < 0.05 and Fold Change (FC) > 1. To identify tar-
get genes among the DEGs, further filtration was set as 
negative relation with prognosis, positive relation with 
the infiltration of macrophages and the expression of 
PD-L1, PD-1, TGF-β1 and GM-CSF and analyzed by 
the online tool of GEPIA (http://gepia​.cance​r-pku.cn/) 
and TIMER (https​://cistr​ome.shiny​apps.io/timer​/). Set 
median expression value of target gene as cutoff and we 
divided the whole samples into high and low expression 
groups. The distribution of high and low groups in three 
immune subtypes then was described in a percentage 
and count manner. The prognostic analysis of the target 
gene was conducted by survival R package. The influ-
ence of immune modulator genes on patients’ survival in 
the above two high and low expression groups was also 
analyzed.

Results
Identification of immune subtypes in PDAC
PDAC harbored a highly heterogeneous tumor microen-
vironment. By performing clustering analysis with five 
immune signature gene sets, we classified three immune 
subtypes, namely C1–C3, in the 383 pancreatic tumor 
samples. The five immune signatures represented the 
activation of macrophage/monocytes (Macrophages), 
overall lymphocyte infiltration (Lymphocyte), TGF-β 
response (TGF-β), IFN-γ response (IFN-γ), and wound 
healing activity (Wound healing), respectively.

Five immune signatures showed disparate enrich-
ment patterns in three immune subtypes (Fig.  2a). Sub-
type C3 had the highest Lymphocyte and Macrophages 
as well as a favorable enrichment in IFN-γ, indicating an 
immune-hot phenotype (Fig. 2b). Subtype C1 had gener-
ally poor enrichment scores, especially the lowest enrich-
ment in IFN-γ, TGF-β, and Wound healing, indicating an 
immune-cold phenotype (Fig.  2b). In comparison, sub-
type C2 had the highest TGF-β enrichment scores and 
the lowest Lymphocytes enrichment scores, indicating an 
immune-suppressive phenotype (Fig. 2b). Meanwhile, C2 
also had the highest Wound healing enrichment scores 
indicating an active tissue remolding (Fig. 2b).

Cellular composition and immunomodulators diversity 
of immune subtypes
Immune cell composition varied across three subtypes. 
Subtype C3, the immune-hot phenotype, had dominant 
cellular enrichment scores with the highest T lympho-
cytes (both CD8+ and CD4+), NKT cells, dendritic cells 
(DCs), macrophages, and B cells as well as granulocytes 
(Fig.  3a, b). Meanwhile, three subtypes displayed dis-
tinct expression patterns of immunomodulators (Fig. 3c). 
Compared with subtype C1 and C2, subtype C3 had 
higher CD27 and inducible synergistic co-stimulation 
molecules (ICOS) expression, indicating a favorable lym-
phocyte activation. In addition, higher IL2, IFN-γ, and 
TNF families (e.g. CD40) represents a favorable cellu-
lar immunity and anti-tumor ability of C3 (Fig. 3d). The 
expression pattern of inhibitory immune regulators var-
ied from three subtypes. In addition to a higher TGF-β1, 
subtype C3 had higher immune checkpoint expression of 
CD274 (PD-L1, also as B7-H1), PDCD1 (PD-1), CTLA4, 
TIGIT, LAG3, HAVCR2 (TIM3) but lower expression of 
CD276 (B7-H3), and VTCN1 (B7-H4), compared with 
C1 and C2 (Fig. 3d, e).

Opposite enrichment patterns of immune-infiltrating 
cells were found between subtype C1 and C2. Subtype 
C1 had higher enrichment scores in T cells, NKT cells, 
DCs, and B cells but lower in macrophages, while C2 
had higher scores in macrophages but lower scores in T 

http://bioinfo.life.hust.edu.cn/ImmuCellAI
http://bioinfo.life.hust.edu.cn/ImmuCellAI
http://gepia.cancer-pku.cn/
https://cistrome.shinyapps.io/timer/
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cells, NKT cells, DCs, and B cells (Fig. 3a, b), indicating a 
stronger immunosuppressive microenvironment of sub-
type C2. On the other hand, both C1 and C2 showed a 
poor expression of stimulatory immunomodulators. As 
for the expression discrepancy of immune checkpoints, 
subtype C1 was mainly enriched in VTCN1, while C2 
was dominated by CD274, CD276, and VTCN1 (Fig. 3d, 
e), which may have the  clinical implication for further 
designing tailored immunotherapy strategy.

The stromal and immune scores of tumor samples 
were calculated by ESTIMATE software. Different from 
the discrete distribution of C1 and C2, subtype C3 was 
mostly enriched in the zones with high immune scores, 
which indicated a robust immune activity in C3 (Fig. 3f ).

Prognosis analysis of immune subtypes
The association between immune subtypes and patients’ 
survival was also analyzed. The immune-suppressive sub-
type C2 had the worst prognosis, while C1 and C3 had 
relatively favorable prognosis (C1:C2:C3, p = 0.0019, 
Fig.  4a; C1:C2, p = 0.00094; C1:C3, p = 0.24; C2:C3, 
p = 0.038, Additional file  1: Figure S1). The results of 
K-M analysis revealed that IFN-γ (p = 0.001) and Wound 
healing (p = 5.645e−04) modules were inversely corre-
lated with patients’ overall survival (Fig. 4b). The univari-
ate and multivariate cox analyses also showed the same 
results (Fig. 4c and Table 1). Furthermore, with concord-
ance index (CI) analysis, we evaluated the validity of the 
five immune signatures in survival prediction. The results 
showed that IFN-γ, Wound healing and TGF-β modules 
had favorable prediction accuracy on patient survival 
among the three subtypes (Fig.  4d). Especially, Wound 

healing module in C2, Macrophages module in C3, 
TGF-β and Lymphocyte module in C1 seemed to be the 
best predictor for each subtype, respectively (Fig. 4d).

The prognostic analysis showed that NKT cells corre-
lated with a favorable prognosis (p = 0.014) (Fig. 5a) while 
macrophages were associated with a poor prognosis 
(p = 0.0031) (Fig.  5b). The CI analysis showed that both 
NKT cells and macrophages could serve as favorable 
predictors for patients’ survival in C2 (Fig. 5c). Although 
other cell types showed no significant correlation with 
patients’ survival in our study (Additional file  1: Figure 
S2), immune cells especially CD8+ T cells, NKT cells, 
and B cells showed a greater impact on patients’ survival 
based on CI scores (Fig. 5d).

TGM2 was involved in the immune‑suppressive 
microenvironment in PDAC and high TGM2 expression 
predicted poorer survival
To find the underlying target for anti-PD-1/PD-L1 treat-
ment, we performed DEGs analysis with the two GEO 
datasets (GSE62452 and GSE28735). Among all the up-
regulated DEGs, following the set filters, the result led to 
the gene TGM2 (Additional file 1: Figure S3). With IHC 
analysis in our tissue microarray, we also verified that 
TGM2 was elevated in tumor tissue compared with adja-
cent normal tissue (Fig. 6a) and had a negative impact on 
prognosis (Fig.  6b). In addition, survival analysis within 
the TCGA-ICGC-GEO cohort verified the prognostic 
impact of TGM2 (Additional file 1: Figure S4).

Besides, the expression patterns of TGM2 across the 
three subtypes were different. Most patients comprising 
subtype C2 had high TGM2 expression, while subtype 
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a b
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f

Fig. 3  Immune cell composition and expression patterns of IMs in three subtypes. a, b Immune cell composition of three immune subtypes. c 
PCA analysis of IMs genes. d Expression patterns of IMs in three subtypes. e Enrichment disparity of CD274 and PDCD1 across the three subtypes. f 
Analysis of stromal and immune scores across the three subtypes: the distribution of samples in C3 was indicated by the red circle
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C1 and C3 were dominated by low TGM2 expression 
(Fig.  6c, d). Meanwhile, in the analysis of the immune 
cells composition between high- and low-TGM2 groups, 
we found that macrophages mostly enriched in the high-
TGM2 group, while NKT cells mostly enriched in the 
low-TGM2 group (Fig. 6e). Furthermore, compared with 
the low-TGM2 group, the high-TGM2 group seemed 
to have higher M2 macrophages (p = 0.014) and Treg 
cells (p = 0.068) but lower pro-B cells (p = 0.00052) and 

memory B cells (p = 3.7e−6) (Fig. 6f, g). And high-TGM2 
group harbored a higher expression pattern of inhibitory 
immunomodulators (CD274, CD276, CTLA4, EDNRB, 
HAVCR2, LAG3, PDCD1, TGFB1, TIGIT, and VTCN1) 
in the whole cohort (Fig. 6h). In the prognostic analysis 
with IMs between the two groups, higher CD276 was 
associated with worsen prognosis in the high-TGM2 
group and higher VTCN1 was related to poorer overall 
survival in the low-TGM2 group (Fig. 6i). Together, these 
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Fig. 4  Prognostic impact of immune subtypes and immune signatures. a Overall survival of three immune subtypes. b Correlation of immune 
signatures with overall survival. The Left was for IFN-γ module. The Right was for Wound healing module. c Multivariate COX analysis of three 
immune signatures. Wound healing module (coef = 1.45, HR = 4.28, 95%CI 1.03–17.67, p = 0.045), IFN-γ module (coef = 0.57, HR = 1.77, 95%CI 1.03–
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Table 1  Univariate and multivariate cox analyses of five immune signatures

Parameter Univariate analysis Multivariate analysis

HR 95%CI P HR 95%CI P

Wound healing 9 2.38–34.01 0.001 4.28 1.03–17.67 0.045

Macrophages 1.29 0.67–2.44 0.438 – – –

Lymphocyte 1.06 0.60–1.86 0.846 – – –

IFN-γ 2.22 1.32–3.76 0.003 1.77 1.03–3.06 0.04

TGF-β 5.42 1.80–16.34 0.003 3.21 0.99–10.34 0.051



Page 8 of 14Liu et al. Cancer Cell Int          (2021) 21:137 

findings suggested that TGM2 may be involved in the 
immunosuppression in PDAC.

TGM2 may regulate PD‑L1 expression via STAT3/NF‑κB 
signaling pathways in PDAC
To further explore the potential roles of TGM2 in 
immunosuppression, we analyzed the relation between 
TGM2 and the suppressive factors (Fig. 7a). The relative 

coefficient between TGM2 and PD-L1 is the most robust 
(Fig.  7b). We verified the correlation between TGM2 
and PD-L1 in human PDAC cell lines (PANC-1 and Mia 
PaCa-2). After TGM2 knocking-down in PANC-1, we 
found a decreased expression level of PD-L1 (Fig.  7c). 
In the cell line of Mia PaCa-2, we observed the same 
expression variation (Fig. 7d). STAT3 and NF-κB are two 
important transcriptional factors in tumor evolution and 
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Fig. 6  Relation between TGM2 and tumor immunosuppression in PDAC. a IHC analysis of TGM2 with our tissue microarray (n = 97). The scale bars 
were shown as indicated: 100 μm and 20 μm. b Survival analysis of TGM2 with tissue microarray data (p = 0.015). c, d Distribution of high- and 
low-TGM2 group across the three immune subtypes showed as percentage and number. e, f Immune cell composition of high- and low-TGM2 
groups. g Enrichment comparison of M2 type macrophages (p = 0.014), Tregs (p = 0.068), pro-B cells (p = 0.00052) and memory B cells (p = 3.7e−06) 
between high- and low-TGM2 groups. h Comparison of IMs expression between high- and low-TGM2 groups: row is for the immunomodulators 
and column is for the gene expression value. (CD274, p = 1.0e−14; CD276, p = 1.1e−10; CTLA4, p = 5.6e−07; CX3CL1, p = 1.6e−06; EDNRB, 
p = 3.8e−06; HAVCR2, p = 4.3e−10; LAG3, p = 0.0046; PDCD1, p = 0.0121; TGFB1, p = 1.2e−12; TIGIT, p = 6.5e−06; TLR4, p = 3.8e−08; VTCN1, 
p = 0.0585). i Survival analysis of CD276 expression in high-TGM2 group (top) and VTCN1 expression in low-TGM2 group (bottom)

(See figure on next page.)



Page 9 of 14Liu et al. Cancer Cell Int          (2021) 21:137 	

a b

c

e

f

d

g

h i



Page 10 of 14Liu et al. Cancer Cell Int          (2021) 21:137 

a

b c d

e
f

Fig. 7  Proposed mechanism that TGM2 may regulate PD-L1 expression via STAT3/NF-κB signaling pathways in PDAC. a Correlation analysis of TGM2 
and immunosuppressive factors with TIMER. b Correlation analysis of TGM2 and CD274 (PD-L1) by TIMER. c, d Western blot results showed that 
TGM2 knocking down resulted in a decreased expression of PD-L1 and p-STAT3 in PANC-1 and Mia PaCa-2 cells. e TGM2 knocking down in PANC-1 
cells led to a decreased expression of p-Akt (Ser473) and p-P65 (Ser536) which was consistent with previous studies. f TGM2 may regulate PD-L1 via 
NF-κB/STAT3 signaling pathways: a TGM2 activated AKT pathway and then promotes the activation of downstream transcription factor NF-κB which 
has been reported to be able to directly bind with the promoter of PD-L1 and stimulate its transcription. b TGM2 may promote the phosphorylation 
of STAT3 despite the underlying pathways remains unclear, and then p-STAT3 binds to the promoter of PD-L1 and stimulate its transcription
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are reported to be capable to regulate the expression of 
PD-L1 [19, 20]. We knocked down TGM2 in PANC-1 
and Mia PaCa-2 cells, a decreasing level of p-STAT3 was 
observed (Fig.  7c, d). The previous study demonstrated 
that TGM2 regulated the activation of NF-κB by modu-
lating phosphorylation of AKT [10]. In our study, we 
proved that TGM2 knocking down resulted in a decrease 
of p-Akt (Ser473) and p-P65 (Ser536) (Fig. 7e).

Discussion
ICB has become a promising immunotherapeutic modal-
ity for several refractory carcinomas, however, its roles in 
PDAC are limited. The challenges majored in the identi-
fication of target patients and finding effective combina-
tion therapeutic targets to amplify its clinical efficacy. In 
this study, we utilized published immune signature gene 
sets to depict the distinct immune features of PDAC and 
three immune subtypes are identified (the sample details 
of immune subtypes are shown in the Additional file 1). 
The prognostic impact of immune gene sets, immune cell 
composition, and immunomodulators are evaluated. The 
diversity of immune response reflects the inner cause of 
the prognostic discrepancy and immunotherapy failure in 
PDAC. Meanwhile, our study firstly put forward that the 
high expression of TGM2 tracked with an immunosup-
pression-promoting phenotype and TGM2 is involved in 
the modulation of PD-L1 expression by regulating down-
stream transcription factor STAT3/NF-κB in pancreatic 
cancer cells. In addition, the enrichment disparity of IMs 
in each subtype may suggest multiple potential combina-
tion immunotherapy strategies.

The prognostic impact of tumor immune features is 
emerging to be concerned. Among all subtypes in our 
study, patients comprising C2 have the worst overall sur-
vival. The reasons for the prognostic discrepancy can be 
attributed to the following points. Firstly, the immune 
signatures in C2 are dominated by TGF-β and Wound 
healing modules which were associated with an immu-
nosuppressive and pro-tumor phenotype [21, 22], and 
inversely correlated with patients prognosis based on 
our data. Meanwhile, the lowest enrichment degree in 
Lymphocyte module is another feature of C2. Consistent 
with that, the infiltration of T-, B-lymphocytes, and NKT 
cells in C2 is less than the other subtypes, indicating a 
poor preexisting anti-tumor immunity [23]. Moreover, 
the highest enrichment degree of IFN-γ module is found 
in C2. IFN-γ is a major mediator inducing the death of 
tumor cells. However, continuous exposure to IFN-γ 
also stimulates tumor cells to express multiple inhibi-
tory modulators including PD-L1 which are majorly 
enriched in C2 and C3 in our study, thereby suppress the 
secretion of IFN-γ by effector T cells and result in T cell 
exhaustion [24, 25]. Together, a more prominent feature 

of immunosuppression may be promoted by these fea-
tures of C2 and therefore the prognosis of C2 is worse. In 
addition to these molecular immune features, our results 
show that the overall burden of NKT cells is associated 
with a better prognosis in PDAC, while that is rarely 
reported before. Similar to CD8+ T cell, NKT cell is also 
regarded as one of the front-line anti-tumor forces [26]. 
Apart from directly targeting the tumor cells with CD1d 
positive, recent literature on the mice model demon-
strated that NKT cells could restrict the tumor evolution 
of PDAC indirectly by suppressing the pro-immuno-
suppression role of macrophages through prostaglandin 
E synthase-1 (mPGES-1) and 5-lipoxygenase (5-LOX) 
[27]. Consistent with that, subtype C2, with a high frac-
tion of macrophage and a low fraction of NKT, shows a 
more prominent immunosuppression phenotype than 
C1 and C3. These distinct molecular and cellular features 
across three subtypes show a diverse immune response 
of PDAC, which would be the condition for prognostic 
evaluation and immunotherapy strategy designing.

To improve the clinical efficacy of anti-PD1/PDL1 
therapy in PDAC, reasonable patient stratification and 
combination strategy designing should be concerned. For 
the former, prior studies indicated that the level of pre-
existing antitumor immunity and the expression level of 
PD-1/PD-L1 are two vital factors for the efficacy of anti-
PD-1/PD-L1 treatment [28]. In our study, tumor samples 
comprising C3 are rich in various anti-tumor cytokines, 
such as TNF and IFN-γ, and have abundant infiltration of 
immune cells including NKT cells and T lymphocytes as 
well as B lymphocytes. Despite the anti-tumor effect of B 
cells remained unclear, a recent study in melanoma indi-
cated that B cells may contribute to the response to ICB 
treatment by altering T cell activation and function [29]. 
As well, C3 has the highest PD-1 and PD-L1 enrichment 
across the three subtypes. Thus, patients within the C3 
subtype seem to be more suitable for anti-PD treatment. 
Meanwhile, based on our data, C3 is also rich in CTLA4, 
TIGIT, and HAVCR2 expression which may provide 
alternative options for combined targets. Compared with 
single-agent ICB therapy, combination treatment of anti-
CTLA4 (ipilimumab) and anti-PDL1 (nivolumab or pem-
brolizumab) led to better tumor response and patient 
survival in melanoma, sarcoma, and small cell lung can-
cer [30–34]. Besides, preclinical studies have demon-
strated that anti-TIGIT or anti-HAVCR2 can effectively 
control tumor evolution, suggesting a promising combi-
nation target for anti-PD-1/PD-L1 treatment [35, 36].

In contrary with subtype C3, anti-PD-1/PD-L1 treat-
ment may be not appropriate for the patients within 
subtype C1 due to the relatively low infiltration of T/B 
lymphocytes and the poorest enrichment in PD-1/
PD-L1. Of note, C1 has the highest VTCN1 expression 
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as well as favorable enrichment scores in NKT cells. As a 
newly discovered immune checkpoint expressed on APC 
cells and tumor cells, VTCN1 is expected to become a 
novel target for immunotherapy in the future despite its 
regulatory mechanism in cancer immunity remained to 
be further explored [37]. Due to the advantages of tar-
geted on tumor cells and suppressive effect on graft ver-
sus host disease, NKT cell (majorly invariant NKT cell) 
is regarded as a viable vector for the CAR or rTCR treat-
ments with multiple preclinical animal models support-
ing favorable anti-tumor effects in solid tumors [38–40].

Subtype C2 has favorable enrichment scores in PD-L1, 
CD276, and VTCN1 but is poor at lymphocytic infiltra-
tion. In addition to anti-PD-L1 treatment to restore the 
anti-tumor immunity, strategies to target the oncogenic 
pathway is needed for patients in C2 to restrict tumor 
progression. TGM2 is a promising target for improving 
the response to chemotherapy in solid tumors includ-
ing PDAC [12]. While its role in the immune evade pro-
cess of PDAC remains unclear. In this study, we find that 
TGM2 is positively related to the expression of multi-
ple inhibitory immunomodulators, and the high-TGM2 
group is mainly enriched in the immunosuppressive sub-
type C2, suggesting that TGM2 may be involved in the 
regulation of immunosuppression in PDAC. Through 
in vitro experiments, we verified that TGM2 has a posi-
tive impact on PD-L1 in PANC-1 and Mia PaCa-2 cells. 
The underlying mechanisms may refer to two aspects. 
Firstly, STAT3 has been reported to be involved in the 
regulation of PD-L1 expression as transcriptional fac-
tors and confirmed by Chip/EMSA assays [20, 41–43]. 
However, whether TGM2 alters the expression of PD-L1 
in PDAC via STAT3 signaling remains to be unknown. 
Our present study reveals that down-regulating TGM2 
in PANC-1 and Mia PaCa-2 cells results in a decreased 
phosphorylation of STAT3, which indicates a potential 
pathway for the regulation of PD-L1 by TGM2. Secondly, 
previous studies revealed that TGM2 promotes the acti-
vation of AKT by suppressing PTEN, then results in the 
activation of downstream substances including tran-
scription factor NF-κB in PDAC [9, 10]. Consistent with 
that, knocking down TGM2 in PANC-1 cells leads to a 
decrease in p-Akt and p-P65 expression. As a vital tran-
scriptional factor, NF-κB can regulate the transcription 
of PD-L1 by directly binding to the promoter region of 
PD-L1 [19, 44]. Thus, TGM2 may take a positive impact 
on PD-L1 expression via Akt/ NF-κB pathway. These 
findings provide insights into the regulation network of 
PD-L1 expression in PDAC (Fig. 7f ). In addition, inhibi-
tion of TGM2 may alleviate stroma fibrosis to facilitate 
the infiltration of immune effector cells and the entrance 
of drugs, can also restrain the tumor growth as previous 
studies reported [16, 45]. Thereby, targeting on TGM2, 

through siRNA/shRNA, CRISPR/Cas9 genetic silence, or 
inhibitor (e.g., miR1285, GK921, NC9) [11, 46–48], may 
be a promising combination strategy to enhance the sen-
sitivity to anti-PD-1/PD-L1 therapy.

Some limitations in this study need to be addressed. 
Firstly, as a retrospective study, the clinical value of these 
findings needs to be further validated in a larger pro-
spective cohort. Secondly, the potential selection bias 
of tumor specimens may exist. Thirdly, though tran-
scriptional profiles in our study provided us underlying 
features of the immune response in PDAC, with multi-
omics data gathering, more solid evidence will promote 
our insight into tailored treatment for PDAC.

In summary, our study uncovered the specific immune 
features among PDAC patients. For the discrepant 
immune response mechanisms, more personalized ICB 
treatment should be considered. Moreover, TGM2 may 
regulate the expression of PD-L1 in PDAC via STAT3 
and Akt/NF-κB signaling pathway and predicts poorer 
survival of PDAC patients, indicating a potential role in 
immunotherapy.
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