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Abstract 

Background:  Esophageal cancer is associated with high incidence and mortality worldwide. Differential expression 
genes (DEGs) and weighted gene co-expression network analysis (WGCNA) are important methods to screen the core 
genes as bioinformatics methods.

Methods:  The DEGs and WGCNA were combined to screen the hub genes, and pathway enrichment analyses were 
performed on the hub module in the WGCNA. The CCNB1 was identified as the hub gene based on the intersection 
between DEGs and the greenyellow module in WGCNA. Expression levels and prognostic values of CCNB1 were veri‑
fied in UALCAN, GEPIA2, HCMDB, Kaplan–Meier plotter, and TIMER databases.

Results:  We identified 1,044 DEGs from dataset GSE20347, 1,904 from GSE29001, and 2,722 from GSE111044, and 32 
modules were revealed by WGCNA. The greenyellow module was identified as the hub module in the WGCNA. CCNB1 
gene was identified as the hub gene, which was upregulated in tumour tissues. Moreover, esophageal cancer patients 
with higher expression of CCNB1 showed a worse prognosis. However, CCNB1 ‘might not play an important role in 
immune cell infiltration.

Conclusions:  Based on DEGs and key modules related to esophageal cancer, CCNB1 was identified as the hub gene, 
which offered novel insights into the development and treatment of esophageal cancer.

Keywords:  Esophageal cancer, Integrated transcriptomic analysis, Weighted gene co-expression network analysis, 
Bioinformatics, CCNB1
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Introduction
Esophageal cancer (ESCA) is the seventh most common 
cancer and the sixth leading cause of cancer-related death 
worldwide [1, 2]. In 2018, there were 572,034 new victims 
and 508,585 deaths globally, and almost half of the cases 
occur in China [1, 3]. The 5-year survival rate of early-
stage cancer may reach 85%, while it drops to less than 
15% when the cancer progress to advanced stage [4, 5]. 
Despite the rapid development of multimodal treatments 
in recent years, esophagectomy remained the standard 

curative method for advanced ESCA, and patients still 
experience poor life quality and face risk of long-term 
recurrence [6–8].

Currently, clinical screening of early ESCA mainly 
depends on endoscopic observation combined with 
biopsy-based histopathological diagnosis, however, it 
can find only 19% of ESCA at early stages [9]. The reli-
ability of such approaches encounter limitations due 
to variation in endoscopic sampling site and observ-
er’s experience, and may lead to unnecessary biopsies, 
costs, and high false-positive rates. Even the molecu-
lar and cellular changes may appear indolent in endo-
scopic histology to avoid surveillance [10, 11]. Thus, it 
is urgent to explore novel approaches or biomarkers to 
ameliorate the early detection, treatment guidance, and 
prognosis prediction for patients. Currently, several 
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researchers have reported their exploration of biomark-
ers for esophageal cancer and their effects [12–14]. 
Defects of a mitotic checkpoint may bring about mis-
takes in the chromosome segregation, and the higher 
level of Cyclin B1 (CCNB1) is a marker of poor prog-
nosis in many cancer types [15, 16]. However, there are 
few reports about CCNB1 as a biomarker of ESCA.

Recently, many researchers focus on microarray 
analysis of gene expression datasets. They succeeded 
in revealing characteristic genes with the involved key 
pathways as new cancer biomarkers, with the use of dif-
ferentially expressed genes(DEGs)and weighted gene 
co-expression network analysis (WGCNA) [17, 18]. 
WGCNA tends to identify a co-regulated transcrip-
tional profile of functional gene assemblies, thus ena-
bling a precise network of hub genes and clinical traits 
[19]. Our study may help understanding the potential 
molecular mechanism of ESCA initiation and progres-
sion and provide a novel prospect for the clinical diag-
nosis and treatment in ESCA.

Methods
Data acquisition and preprocessing
The expression profile of GSE20347, GSE29001, and 
GSE111044 was achieved based on gene expression 
omnibus (GEO, https​://www.ncbi.nlm.nih.gov/geo/), 
which is a public database containing comprehen-
sive data of gene profiling and sequencing. GSE20347 
included 17 pair-wise ESCA tissues and normal adja-
cent tissues. GSE29001 included matched normal 
basal epithelial cells, normal differentiated squamous 
epithelium, and ESCA from 12 patients. GSE111044 
included 3 ESCA tissues and corresponding 3 normal 
tissues from 3 patients. The experiment GSE20347 
and GSE29001 were conducted on platform GPL571 
(Affymetrix Human Genome U133A 2.0 Array), and 
GSE111044 was on platform GPL570 (Affymetrix 
Human Genome U133 Plus 2.0 Array). After eliminat-
ing redundant data (e.g., null value, time), all the gene 
symbols were matched with probes and were subse-
quently screened with the ‘limma’ package of R soft-
ware 3.4.1 to perform background correction, quartile 
normalization, and quantiles summarization.

Identification of DEGs between ESCA and normal tissues
In this study, we utilized the ‘limma’ package in biocon-
ductor (http://www.bioco​nduct​or.org/) to uncover DEGs 
between normal and ESCA tissues. Adjusted P < 0.05 and 
|log2 fold change| > 1 was set as the criteria for select-
ing significant DEGs according to the normalized gene 
expression levels.

Establishment of WGCNA on ESCA
WGCNA is regard to a methodology to reconstruct a 
free-scale gene co-expression network and concurrently 
identify modules consisted of highly correlated genes 
to appraise connectivity between external clinical traits 
and the module, in which eigengene is used for summa-
rizing relationship among internal gene membership. In 
the study, we applied the one-step network construction 
and module detection function of WGCNA package in R 
to handle the analysis of microarray dataset GSE70409, 
which contains 17 cancerous tissues and 17 normal tis-
sues. First, a weighted adjacency matrix was calculated 
to represent the connecting strength over each pair of 
gene with outliers removed and ensure a co-expression 
network. The soft thresholding power was set as 7 to 
obtain a scale‑free topology network. Then, a hierarchi-
cal clustering dendrogram was established constituted of 
abundant branches, and each branch was assigned with 
a colour to reveal a module. Finally, the modules were 
used to the association with clinical traits by using mod-
ule-trait associations according to module membership 
(MM) and gene significance (GS). Moreover, topological 
overlap matrix method was utilized for verifying correla-
tion character of eigengenes in different modules.

Module preservation evaluation and principal component 
analysis (PCA) analysis
Zsummary is usually used to evaluate the preservation 
of modules. It takes into consideration several statistics, 
such as the density and connectivity patterns of module 
nodes, as well as the overlap among module member-
ship. However, a huge difference in module size is easy 
to induce deviation in Zsummary value. In our study, 
the green module had far more genes than the greenyel-
low module, and consequently, we adopted medianRank, 
since it eliminates the impact of module size. The mod-
ule with a lower medianRank has more preservation 
value than that with a higher medianRank. The finally 
preserved greenyellow module was processed with PCA 
to examined the ability of gene in the module to dis-
criminate tumor tissues from normal tissues. PCA was 
conducted through ‘gmodels’ and ‘scatterplot3d’ in R 
software.

Pathway enrichment analyses of genes in the hub module
Gene ontology (GO) is a common method for gene 
analysis [20]. In the study, we used GO analysis to clas-
sify the genes in greenyellow module into three cat-
egories based on their bio-function, including biological 
process (BP), cellular component (CC), and molecular 
function (MF). Meanwhile, Kyoto encyclopedia of genes 
and genomes (KEGG) pathway enrichment analysis was 

https://www.ncbi.nlm.nih.gov/geo/
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also performed for exploration of their biological char-
acteristics. Both the GO and KEGG pathway analyses 
were conducted using the ‘clusterProfiler’ package in R, 
with adjusted P-value of the analysis calculated by the 
Benjamini and Hochberg false discovery rate algorithm. 
Furthermore, a circular chordal graph of the data was 
generated utilizing gene network analysis via the default 
euclidean distance and average linkage.

Extract of hub genes from DEGs and the hub module 
in WGCNA
39 candidate genes were screened out from the inter-
section of venn diagram between 3 set of DEGs and the 
greenyellow module in WGCNA (Fig.  5). CCNB1 was 
chosen for the next research for the most significant P 
value. For further study, the protein–protein interac-
tion (PPI) network was constructed among 39 candidate 
genes (string, https​://strin​g-db.org/), and Cytoscape soft-
ware was applied to visualize the PPI network.

Verification of gene aberrant expression in UALCAN, 
GEPIA2, and HCMDB
UALCAN (http://ualca​n.path.uab.edu/index​.html) is 
a comprehensive web resource for analyzing cancer 
OMICS data with the use of TCGA and MET500 data-
bases. In our study, CCNB1 expression data was obtained 
through ‘Expression Analysis’ module for the contrast of 
promoter methylation and gene overall expression level. 
Further stratified analysis based on gender, age, cancer 
stages, and histology was also conducted. Additionally, 
GEPIA2 (http://gepia​2.cance​r-pku.cn/) and Human Can-
cer Metastasis Database (HCMDB, http://hcmdb​.i-sange​
r.com/index​) analysis was performed to explore the dif-
ferential expression of CCNB1 between normal tissues 
and ESCA tissues. GEPIA2 is based on CGA and the 
GTEx databases with a total of 84 cancer subtypes analy-
sis. HCMDB is designed to examine gene expression of 
primary and metastasis tumour from 124 previously 
published transcriptome datasets from TCGA and GEO 
databases.

Survival analysis with Kaplan–Meier (KM) plotter database
KM plotter (http://kmplo​t.com/) was used to plot the 
overall survival status and estimate prognostic valve of 
CCNB1, which is an interactive website containing 54 k 
genes impact data on survival of 21 cancer types. Accord-
ing to median gene expression level, all patients’ survival 
data was divided into two group: high expression group 
and low expression group. The P value was set < 0.05 to 
ensure statistically significance.

Tumor infiltration analysis of TIMER database
TIMER database provides a systematical analysis of infil-
trating abundances in 6 types of immune cells (B cells, 
CD4+ T cells, CD8+ T cells, neutrophils, macrophages, 
and dendritic cells) and the infiltration relevant clinical 
outcome. Hence, we adopted this method to research the 
tumor infiltration as well as the survival data on CCNB1.

Results
DEGs screening from normal and cancerous tissues
After preprocessing and normalization (Fig. 1a–c), 1044 
DEGs from dataset GSE20347, 1904 from GSE29001, 
and 2722 from GSE111044 were respectively identified 
by comparing their expression in cancerous esophageal 
tissues with normal tissues. As is shown in the volcano 
plot, there were 571 upregulated and 473 downregulated 
genes observed in the GSE20347 dataset (Additional 
file 1: Fig. S1A). Whereas for the dataset GSE29001 and 
GSE111044, the amount was 894 upregulated genes, 
1010 downregulated genes, and 1370 upregulated genes, 
1352 downregulated genes, separately (Additional file 1: 
Fig. S1B, C). The heatmap of upregulated and downregu-
lated genes were shown in Fig. 2a, b.

WGCNA for genes in GSE70409 dataset
We utilized WGCNA package in R software to build 
a weighted co-expression network. The samples of 
GSE70409 were clustered to filter outlier for subse-
quent analysis, and one discrete sample (GSM1727139) 
was noticed and removed out. (Fig.  3a). In our study, 
the power of β = 7 (scale-free R2 = 0.95) was chosen as 
the soft-thresholding parameter to ensure a scale-free 
network (Fig.  3b, c). A total of 32 modules were identi-
fied from 19,827 genes, and each module was assigned 
a colour in hierarchical clustering dendrogram (Fig. 3d). 
The heatmap was plotted to indicate the similarity of co-
expression genes at the network topology level (Fig. 3e). 
The green module (containing 1906 genes) and gree-
nyellow module (containing 469 genes) were found to 
have the most prominent module significance (Fig.  3f ), 
and they all shown great clinical meaning (green: cor-
relation coefficient = − 0.92, P < 0.01; greenyellow: cor-
relation coefficient = 0.87, P < 0.01; Fig.  3g). Clustering 
of module eigengenes illustrated that the green and 
greenyellow modules were derived from different meta-
modules (Fig. 3h). Consequently, the green and greenyel-
low modules were set as candidate modules for further 
identification.

Identification of key module and PCA analysis
In view of the large difference of genes amount in 
green module than in greenyellow module, we adopted 

https://string-db.org/
http://ualcan.path.uab.edu/index.html
http://gepia2.cancer-pku.cn/
http://hcmdb.i-sanger.com/index
http://hcmdb.i-sanger.com/index
http://kmplot.com/
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medianRank with replace of Zsummary to conduct mod-
ule preservation, because medianRank is more stable in 
this situation. The result demonstrated that the gree-
nyellow module had a lower medianRank than green 

module, so it was selected as the key module (Fig. 4a, b). 
The greenyellow module presented a bunching relation-
ship with purple module in the eigengene adjacency heat-
map (Fig. 4c). In addition, the result of PCA indicated a 
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Fig. 1  Identification of DEGs. Box plot of genes expression data before and after normalization in GSE20347 (a), GSE29001 (b), and GSE111044 (c)
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satisfactory concentration of genes within greenyellow 
module and the great ability to distinguish tumor from 
normal tissues (Fig. 4d).

GO and KEGG analysis of key module and PPI network 
construction
In order to take a deeper insight into the biological func-
tion of these genes in greenyellow module, we used the 
‘clusterProfiler’ package in R to perform the GO and 
KEGG pathway analyses. The noteworthy pathway of GO 
analysis is visualized through a chordal graph (Fig.  5a). 
As presented in Fig. 5c, in BP group, genes were primar-
ily involved in chromosome segregation, mitotic nuclear 
division, DNA replication, and mitotic sister chromatid 
segregation; in CC group, genes were markedly enriched 
in chromosomal region, spindle, chromosome centro-
meric region, and condensed chromosome; in MF group, 
the significantly enriched pathway were helicase activ-
ity, structural constituent of cytoskeleton, histone kinase 
activity, and 3’-5’ DNA helicase activity. According to 

KEGG pathway analysis, the most markedly enriched 
pathways included oocyte meiosis, cellular senescence, 
progesterone-mediated oocyte maturation, and cell cycle 
(Fig. 5d).

Furthermore, the venn diagram showed the intersec-
tion 39 genes of DEGs and key module (Additional file 2: 
Fig. S2), and The CCNB1 was found as hub genes based 
on the P-value. A PPI network was built for those 39 
genes (Fig. 5b).

The expression level, survival analysis, and immune 
infiltration abundance analysis of CCNB1 in patients 
with ESCA
  The results of GEPIA2, HCMDB, and UALCAN all 
showed a significantly higher expression level of CCNB1 
for patients with ESCA (Fig.  6a–c, P < 0.01). Promoter 
methylation level was lower in ESCA patients than in 
normal people for CCNB1 (Fig.  6d, P < 0.05). To deeply 
explore the association between clinicopathological 
parameters with expression level of CCNB1, stratified 
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Fig. 2  Heatmap of DEGs. a Heatmap of DEGs in GSE20347. b Heatmap of DEGs in GSE29001. c Heatmap of DEGs in GSE111044

(See figure on next page.)
Fig. 3  WGCNA analysis. a Clustering dendrogram of samples with trait heatmap. b Analysis of the scale-free fit index for various soft-thresholding 
powers (β). c Analysis of the mean connectivity for various soft-thresholding powers. d Cluster dendrogram of genes based on dissimilarity of 
topological overlap. Each module is assigned a colour, with each branch representing a gene. e Network heatmap based on the selected genes. 
f Gene significance distribution of modules. g Module-trait heatmap of the correlation between module eigengenes and clinical traits of ESCA. h 
Cluster dendrogram of eigengenes in modules
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analysis was performed based on patients’ gender, age, 
cancer stages, and histology. As is shown in Fig.  6E, 
CCNB1 got significantly higher expression in both men 
and women than in healthy people (P < 0.01). People 
over 40 years old had higher CCNB1 expression (Fig. 6F, 
P < 0.01), and the top expression of CCNB1 occurred in 
41–60 years. Compared with healthy people, the expres-
sion of CCNB1 was higher in ESCA patients of stage 1–4 
(P < 0.01), and reached the highest expression in stage 2 
(Fig. 6g). With regard to histology (Fig. 6h), the expres-
sion of CCNB1 in adenocarcinoma or squamous cell car-
cinoma subtypes was remarkably higher than in normal 

tissues (P < 0.01). Notably, squamous cell carcinoma had 
more CCNB1 expression than adenocarcinoma, the dif-
ference is significant (P < 0.01). KM curve demonstrated 
the better overall survival of ESCA patients in low-risk 
group than in high-risk group (HR = 2.25, P = 0.038) in 
Fig. 6i. The correlation among gene expression, immune 
cells infiltration, and clinical outcome was achieved 
through TIMER analysis. There was no significant corre-
lation observed between CCNB1 and 6 kinds of immune 
cells infiltration (Fig.  6j). Furthermore, no significant 
correlation was observed between infiltration status and 
cumulative survival (Fig. 6k).
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Discussion
In the present study, we achieved gene microar-
ray data from GEO database and identified DGEs 
between ESCA patients and normal people. WGCNA 

was performed to reveal key modules with clinical 
significance, and greenyellow module was screened 
out through preservation evaluation. Meanwhile, we 
applied GO and KEGG analysis to research the mainly 
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correlated biological pathway of the hub module. After 
that, intersection genes were extracted between gree-
nyellow module and DEGs, and a PPI network was 
built. Finally, CCNB1 was selected and was verified 
expression and prognostic value through multiple tests.

GO analysis indicated that the genes in greenyellow 
module primarily participate in such pathways, includ-
ing chromosome segregation, mitotic nuclear division, 
chromosomal region, helicase activity, and structural 
constituent of cytoskeleton. Some of the pathways have 
been proved in former studies [21–23]. KEGG pathway 
analysis found that oocyte meiosis, cellular senescence, 
progesterone-mediated oocyte maturation, and cell 
cycle were markedly enriched, and recently Shao et al. 
also reported important enriched pathways of cellular 
senescence in ESCC [24, 25].

It is well-known that CCNB1 is involved in cell prolif-
eration by binding to CDK1 to form a complex [26]. The 
target substrates were phosphorylated by the CCNB1-
CDK1 complex, which leads to cell cycle progression. 
Many important steps in mitosis will be initiated by 
the activated CCNB1-CDK1 complex, including con-
densation of chromosomes, assembly of spindle pole, 
and breakdown of nuclear envelope [27, 28], which is 
consistent with our results. The enrichment analysis 
suggests that the key module, including CCNB1 in the 
WGCNA, plays a vital role in mitosis. Furthermore, 
abnormal CCNB1 expression is often associated with a 
variety of cancers [29–31], and CCNB1 can be used as a 
biomarker to predict cancer. However, there have been 
few reports on the direct correlation between CCNB1 
and esophageal cancer, and our research has made 
important explorations in this area.

Jiang et  al. reported that oridonin could downregu-
late the CCNB1 to arrest the cell cycle in ESCA [32]. 
Zhang et  al. reported that secalonic acid D induced 
cell G2/M phase arrest by downregulating the expres-
sion of CCNB1 and increasing the phosphorylation of 
CDK1 [33]. Zeng et al. [34] also reported a similar con-
clusion that EPB41L3 was a potential ESCA suppressor 
gene and induced G2/M cell cycle arrest by activating 
CDK1/CCNB1 signaling. Therefore, these studies all 
suggested that CCNB1 was correlated with ESCA and 
clarified the feasibility of a biomarker in ESCA. How-
ever, the current studies all focused on mediating the 
upstream gene of CCNB1 to inhibit the ESCA. Our 
study focused on the analysis of the role of CCNB1 as 
a biomarker on ESCA expression and prognosis and 
achieved good results. In addition, many studies also 
reported that the sensitivity to chemoradiotherapy for 
ESCA would increase via arresting the cell cycle at the 
G2/M phase and downregulating expression levels of 
CCNB1 and CDK1 [35–37].

In conclusion, based on DEGs and key modules 
related to esophageal cancer, CCNB1 was identified 
as the hub gene, which offered novel insights into the 
development and treatment of esophageal cancer.
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