
Wang et al. Cancer Cell Int          (2021) 21:151  
https://doi.org/10.1186/s12935-021-01852-9

PRIMARY RESEARCH

RNA sequencing reveals the expression 
profiles of circRNA and identifies a four‑circRNA 
signature acts as a prognostic marker 
in esophageal squamous cell carcinoma
Weiwei Wang1,2,3†, Di Zhu1,2,3†, Zhihua Zhao1,2,3, Miaomiao Sun1,2,3, Feng Wang4, Wencai Li1,2,3, Jianying Zhang5* 
and Guozhong Jiang1,2,3* 

Abstract 

Background:  CircRNAs with tissue-specific expression and stable structure may be good tumor prognostic mark-
ers. However, the expression of circRNAs in esophageal squamous cell carcinoma (ESCC) remain unknown. We aim to 
identify prognostic circRNAs and construct a circRNA-related signature in ESCC.

Methods:  RNA sequencing was used to test the circRNA expression profiles of 73 paired ESCC tumor and normal tis-
sues after RNase R enrichment. Bioinformatics methods, such as principal component analysis (PCA), t-distributed Sto-
chastic Neighbor Embedding (t-SNE) algorithm, unsupervised clustering and hierarchical clustering were performed 
to analyze the circRNA expression characteristics. Univariate cox regression analysis, random survival forests-variable 
hunting (RSFVH), Kaplan–Meier analysis, multivariable Cox regression and ROC (receiver operating characteristic) 
curve analysis were used to screen the prognostic circRNA signature. Real-time quantitative PCR (qPCR) and fluores-
cence in situ hybridization(FISH) in 125 ESCC tissues were performed.

Results:  Compared with normal tissues, there were 11651 differentially expressed circRNAs in cancer tissues. A 
total of 1202 circRNAs associated with ESCC prognosis (P < 0.05) were identified. Through bioinformatics analysis, 
we screened a circRNA signature including four circRNAs (hsa_circ_0000005, hsa_circ_0007541, hsa_circ_0008199, 
hsa_circ_0077536) which can classify the ESCC patients into two groups with significantly different survival (log rank 
P < 0.001), and found its predictive performance was better than that of the TNM stage(0.84 vs. 0.66; 0.65 vs. 0.62). 
Through qPCR and FISH experiment, we validated the existence of the screened circRNAs and the predictive power of 
the circRNA signature.

Conclusion:  The prognostic four-circRNA signature could be a new prognostic biomarker for ESCC, which has high 
clinical application value.
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Background
Esophageal squamous cell carcinoma (ESCC) is a malig-
nant epithelial tumor with squamous cell differentia-
tion, accounting for 90% of esophageal cancer. Although 
the incidence of ESCC shows significant regional differ-
ences and is decreasing in recent years, it is still one of 
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the leading causes of cancer deaths [1]. In terms of prog-
nosis, the 5-year survival rate of ESCC is reported to be 
only 10% [2]. In the past few decades, the progress of 
ESCC treatment have not significantly increased the life 
expectancy of patients [3, 4]. The main reason is that 
most patients are diagnosed at advanced stages without 
effective treatment, and they are prone to recurrence or 
metastasis. Therefore, ESCC patients urgently need prog-
nostic markers that can evaluate disease progression and 
clinical outcome.

Circular RNA, also known as cirRNA, is a class of spe-
cial non-coding RNA (ncRNA) without a 5′ cap or 3′ tail, 
consisting mainly of exons and/or introns. Recently, cir-
cRNA has been reported to regulate gene expression by 
competitively binding microRNA and play a key regula-
tory role in the development of tumors, atherosclerosis, 
diabetes, and neurological diseases [5]. Due to the spe-
cial loop structure, circRNA is more resistant to exonu-
clease and thus has better stability and abundance than 
linear RNA. Besides, the advantage of circRNA over lin-
ear RNA as a prognostic marker is that circRNA can be 
detected from multiple components such as exosomes, 
cell-free saliva and plasma [6, 7]. Further, tissue expres-
sion specificity of circRNA make it possible as molecular 
marker [8]. Therefore, circRNA become a research hot-
spot for prognostic tumor markers.

With the development of biological sequencing tech-
nology [9–12], a large number of circRNAs have been 
discovered, and the role of cirRNAs in human cancer 
has gradually been revealed. For instance, Wang et  al. 
found that the high expression of circRHOT1 was asso-
ciated with poor prognosis of hepatocellular carcinoma 
(HCC), and confirmed that circRHOT1 promoted malig-
nant progression of tumors [13], Liang et  al. discov-
ered a new circRNA from breast cancer tissues, named 
circBMPR2, and identified its role in inhibiting cell pro-
liferation, migration, invasion  and tamoxifen resistance 
by regulating the circBMPR2/miR-553/USP4 axis [14]. 
A circRNA study of lung cancer found that the oncogene 
circHIPK3 and linear linHIPK could regulate autophagy, 
and the circHIPK3/linHIPK3 ratio had potential clinical 
use as a prognostic factor [15]. The mechanism study of 
cisplatin (CDDP) treatment resistance in gastric cancer 
(GC) patients found circAKT3 played an important role 
and could be a prognostic marker for GC patients receiv-
ing CDDP therapy [16]. Research on the pathogenetic 
and metastatic factor of colon cancer (CC)  indicated 
that circPPP1R12A had a promoting effect and could be 
a therapeutic target for CC [17]. From the perspective 
of ESCC, studies on the role of circRNA are increasing. 
After exploring the circRNA expression profiles of 10 
pairs of ESCC tissues by microarray assay, Shi et al. inves-
tigated a novel circRNA, termed as hsa_circ_0006168, 

and confirmed its role in promoting ESCC proliferation, 
migration and invasion by sponging microRNA-100 and 
regulating the expression of Mammalian Target of Rapa-
mycin (mTOR) [18]. It was found that Hsa_circ_0000337, 
hsa_circ_0067934 and ciRS-7 were significantly upregu-
lated in ESCC tissues, and may promote tumor cell pro-
liferation, migration and invasion, suggesting that these 
circRNAs may become potential therapeutic targets for 
ESCC [19, 20, 21]. Although circRNA plays an important 
role in ESCC, there is still a lack of a prognostic circRNA 
signature based on large samples.

Here, a total of 198 ESCC patients were collected and 
followed up. We aim to reveal the expression patterns of 
circRNA in ESCC tissues using RNA sequencing, and to 
find a clinically valuable circRNA molecular signature 
that can accurately predict the survival of ESCC patients.

Materials and methods
Sample collection and preparation
Anyang is one of the areas with high prevalence of ESCC 
in China. We collected 73 postoperative patients from 
Anyang Tumor Hospital with their ESCC and paired 
non-tumor tissues (approximately 5 cm away from the 
tumor [22]) and corresponding clinical follow-up data 
during 2014–2019, then examined the circRNA expres-
sion profile of ESCC by next-generation sequencing 
(NGS) [23]. In addition, we collected an independent val-
idation cohort of 125 ESCC postoperative patients from 
the same hospital to detect the circRNA expression level 
using the qRT-PCR. The patients were coded to protect 
their anonymity. All pathological information of ESCC 
patients in this study was shown in Additional file  1: 
Table  S1. Tumor-node-metastasis (TNM) classification 
of the International Union against Cancer (7th edition) 
was used to categorize. The informed consent document 
was obtained through the institutional review board. The 
study was approved by the Ethical Committee of Anyang 
Tumor Hospital.

RNA isolation and next generation RNA sequencing 
analysis
After TRIZOL lysis and purification, total RNA was 
isolated by the miRNeasy Mini Kit (QIAGEN) with a 
DNase digestion step. A total amount of 5  μg RNA per 
sample was used as input material for the RNA sample 
preparation. First, ribosomal RNA(rRNA) was removed 
by Epicentre Ribozero™ rRNA Removal Kit (Epicen-
tre, USA), and the rRNA free residue was cleaned up by 
ethanol precipitation. Subsequently, the linear RNA was 
digested by 3U RNase R(Epicentre, USA) per μg of RNA. 
The sequencing libraries were generated by NEBNext 
Ultra™ Directional RNA Library Prep Kit for Illumina 
(NEB, USA) following manufacturer’s recommendation. 
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Briefly, fragmentation was carried out using divalent 
cations under elevated temperature in NEBNext First 
Strand Synthesis Reaction Buffer(5X). The first strand 
cDNA was synthesized using random hexamer primers 
and M-MuLV Reverse Transcriptase (RNaseH-). Then 
DNA Polymerase I and RNase H were used for second-
strand cDNA synthesis. In the dNTPs reaction buffer, 
dTTP were replaced by dUTP. The remaining overhangs 
were converted into blunt ends by exonuclease/polymer-
ase activities. After adenylation of 3′ ends of DNA frag-
ments, NEBNext Adaptor with a hairpin loop structure 
were ligated to prepare for hybridization. In order to 
select cDNA fragments preferably 250–300 bp in length, 
the library fragments were purified by AMPure XP sys-
tem (Beckman Coulter, Beverly, USA). Then, 3 μl USER 
Enzyme (NEB, USA) was used with size-selected, adap-
tor-ligated cDNA at 37 °C for 15 min followed by 5 min 
at 95  °C before PCR. Then PCR was performed with 
Phusion High-Fidelity DNA polymerase, Universal PCR 
primers and Index (X) Primer. The product was purified 
(AMPure XP system), and library quality was assessed on 
the Agilent Bioanalyzer 2100 system. According to the 
manufacturer’s instructions, we used TruSeq PE Clus-
ter Kit v3-cBot-HS (Illumia) to cluster the index-coded 
samples on the cBot Cluster Generation System. After 
generating the clusters, the libraries were sequenced on 
an Illumina Hiseq platform and 150 bp paired-end reads 
were generated. We used bwa to map RNA-Seq reads 
to hg19, and used the circRNA detection tool CIRI for 
circRNA identification with default options. Then the 
alternative splice tool CIRI-AS was used for circRNA 
internal structure prediction [24]. The data of circBase 
[25] was combined with the identification results of cir-
cRNA. TPM (Transcripts Per Kilobase of exon model 
per Million mapped reads) was employed to calculate the 
expression level of individual circRNA. The differential 
expression of circRNA was assessed by the edgeR algo-
rithm [26, 27].

Validation of circRNA expression by RT‑PCR
CircRNA reverse transcriptions were amplified by TIAN-
Script II RT Kit (KR107, TIANGEN, Beijing, China). We 
used real-time quantitative PCR (qRT-PCR) to meas-
ure the expression of circRNA with TB Green® Premix 
Ex Taq™ (Tli RNaseH Plus, TaKaRa, Dalian,China). The 
relative quantification of circRNA expression was nor-
malized by the −ΔΔCt method, and GAPDH was used 
for normalization with the corresponding primers (Addi-
tional file 2: Table S2). All reactions were carried out in 
triplicate by the StepOnePlus™ Real-Time PCR System 
(Applied Biosystems) as described previously [28–30]. In 
order to assess the existence of relevant circRNA candi-
dates, Sanger Sequencing was used to further verify the 
PCR products at the the circRNA backspliced junction.

Construction of multi‑circRNA prognostic signature
Univariate cox analysis was used to identify circRNAs 
associated with overall survival (OS). We used the ran-
dom survival forest algorithm [31] to further screen 
based on the expression value of circRNA, and then con-
structed a prognostic risk model. The model was esti-
mated as follows [28, 29, 32].

N is the number of prognostic circRNA, Expressioni rep-
resents the circRNA expression value, and Coefficienti is 
the Cox regression coefficient of circRNA. We plotted 
ROC curves and calculated their area under the curve 
(AUC) values, and then selected the prognostic signature 
with largest AUC value in the training set [32].

RNA Fluorescence in situ hybridization (FISH)
FISH probe was designed at the backspliced junction 
of circRNA and labeled Cy3 fluorescence at 5′ end 
(Table  1). The esophageal cancer cells were laid into 

Risk Score (RS) =

N∑

i= 1

(Expressioni ∗ Coefficienti)

Table 1  Identities of circRNAs in the prognostic signature and univariable cox association with prognosis

FISH: RNA Fluorescence in situ hybridization

Database ID Parent gene Coefficient P Expression 
with poor 
prognosis

Chromosome circRNA type FISH Probe

hsa_circ_0008199 ATXN10 − 1.181 0.001 Low chr22:46085591-46136418 Exon CTG​GGT​GCT​GTT​TCT​CTT​GTC​
TTG​GT

hsa_circ_0007541 USP13 0.742 0.024 High chr3:179481789-179483636 Intron CGG​CTC​AGC​AAA​ATT​TCC​AGA​
TCC​AT

hsa_circ_0000005 CDK11A 0.916 0.004 High chr1:1586822-1650894 Exon CAT​CTT​CTT​CTC​CTC​TGT​CTT​
CCA​TA

hsa_circ_0077536 ATG5 1.065 0.001 High chr6:106727535-106756366 Exon CTT​GGC​AAA​AGC​AAC​ATT​TTG​
CAA​TC
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12-well plates with cell climbing tablets, and FISH 
hybridization test by RiboTM Fluorescent In  Situ 
Hybridization Kit (RiboBio, Guangzhou, China) was 
performed after the cells were fully extended. The cells 
were washed with PBS and fixed with 4% paraform-
aldehyde for 10  min at room temperature; then 0.5% 
Triton X-100 (prepared with PBS) was pre-cooled with 
1 ml for 5 min at 4 °C; then the pre-hybridization liquid 
was preheated at 37 °C, and put the pre-hybridization 
liquid of 200 UL into the cell pore plate, and blocked 
it at 37  °C for 30  min. Then the probe hybridization 
liquid was replaced with the prepared one, and the 
next day the hybridization lasted for 42  °C. The cells 
were washed by hybrid lotion I (4 * SSC, 0.1% Tween-
20), hybrid lotion II (2 * SSC) and hybrid lotion III (1 * 
SSC) in a constant temperature shaker at 42  °C. After 
rinsing once with PBS, the nucleic acid dye DAPI was 
added dropwise and stained for 5  min. After sealing, 
the cells were observed by a fluorescence microscope 
(OLMPUS BX51, Japan). All used cell lines including 
KYSE270, KYSE520, KYSE410, were obtained from 
German Collection of Microorganisms and Cell Cul-
tures GmbH (DSM: Z https​://www.dsmz.de/).

Statistical and bioinformatics analysis
Kaplan–Meier (KM) survival analyses were used to test 
the difference in survival between groups. Receiver 
operating characteristic (ROC) curve was performed 
to calculate the survival prediction power [11]. To 
explore transcription heterogeneity and to perform 
initial tissues clustering, we used principal compo-
nent analysis (PCA) to reduce dimensionality. For the 
entire dataset, we selected 3 principal components 
(PCs), which explained more variability than expected 
by chance using the permutation-based test imple-
mented in Seurat [33]. We used PC loadings as input 
for a graph-based approach to cluster ESCC samples 
[34], and as input for t-distributed stochastic neighbor 
embedding (t-SNE) to simplify it to two dimensions 
for visualization [35–37]. The R program performed 
the above analysis, including packages called Seurat, 
pROC, randomForestSRC and Survival which were 
downloaded from Bioconductor (http://www.bioco​
nduct​or.org/). The co-expressed relationships between 
circRNA and protein-coding genes were computed 
using Pearson correlation test visualized by Cytoscape. 
Then Gene Ontology (GO) and the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment 
analyses of the co-expressed genes were performed to 
predict the biological function by the ClueGo plugin of 
Cytoscape (version 3.2.3) Functional annotation with 
P < 0.05 was considered significant.

Results
The expression pattern of circRNAs in ESCC
To identify the expression pattern of circRNA in esopha-
geal squamous cell carcinoma, we extracted total RNA 
from 73 pairs of tumors and normal tissues adjacent to 
cancer, and used the RNase R method to enrich the cir-
cular transcript. After next-generation sequencing (NGS) 
analysis, a total of 128,165 circRNAs were detected from 
these samples, of which 25,945 circRNA candidates were 
consistent with circBase (Fig. 1a). Then, we analyzed the 
relationship between the abundance of circRNA and the 
ratio of circRNA to linear RNA (Fig. 1b). The abundance 
of circRNA was positively correlated with the ratio of 
circRNA to linear RNA. When the ratio increased, the 
abundance of circRNA increased, indicating that highly 
expressed circRNA accounted for the majority of tran-
scripts transcribed from genes at corresponding posi-
tions. The number of circular transcripts increased in 
proportion to the number of gene exons (Fig. 1c). Moreo-
ver, we found thousands of alternative splice in circRNAs, 
including four types: exon skipping (ES), intron retention 
(IR), alternative 5′ or 3′ splicing site (A3SS and A5SS) 
(Fig.  1d). We also found that highly abundant circular 
transcripts were often extensive and can be detected in 
most ESCC samples.

Differentially expressed circRNAs in normal and ESCC 
tissues
Based on the circRNA expression of 73 pairs of ESCC 
samples, we performed PCA and t-SNE (See Method) 
and found the expression of circRNA could be reduced 
to two distinct expression patterns. According to the 
circRNA expression pattern, we performed unsuper-
vised clustering on the samples and identified that sam-
ples were clustered into two distinct tissues clusters. 
After checking their clinical information, we found one 
group of samples were all tumor tissues, while the other 
group of samples were completely normal tissues (Fig. 1e, 
Additional file 3: Figure S1). The results showed that the 
expression of circRNA was different in normal and ESCC 
tissues. Compared with normal tissues, 11651 circRNAs 
were differentially expressed in cancer tissues, 5031 were 
up-regulated, and 6620 were down-regulated. Hierarchi-
cal clustering displayed the top 40 differentially expressed 
circRNAs in the ESCC samples and matched normal 
samples (Fig. 1f ).

To verify the existence of differentially expressed cir-
cRNAs in ESCC tissues, we randomly selected 10 dif-
ferentially expressed circRNAs from the top 20, and 
conducted qPCR and agarose gel electrophoresis in 7 
pairs of tissues randomly chose from the independent 
ESCC cohort. Figure 2a showed the expression of these 
ten circRNAs detected in 73 pairs of cancer and adjacent 

https://www.dsmz.de/
http://www.bioconductor.org/
http://www.bioconductor.org/
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tissues. Compared with normal tissues, five circRNAs 
were down-regulated in ESCC, while the other five cir-
cRNAs were up-regulated. Consistent with the sequenc-
ing data, Fig.  2b revealed that all the ten circRNAs and 

similar expression pattern can be detected in seven 
paired ESCC and normal tissues (the primers showed in 
Additional file 4: Figure S2), indicating that circRNA was 
stable and can be further used as a prognostic marker.

a b

c d

e f

Fig. 1  Transcriptomic landscape of circRNAs expression characteristics in ESCC. a The overlap of circRNAs in RNA sequencing species by detection 
tool CIRI and CircBase. b Average expression of circRNA abundance (in normalized back splice junction reads) versus average expression of parental 
expression (in Reads). c Distribution of circRNAs detected in the 73 pairs of ESCC transcriptomes. d The plot for the mean abundance (adjusted 
TPM = log10 (TPM + 1)) of every circRNA by the percentage of samples. e Two major clusters identified after unsupervised clustering in 146 tissues. 
Each point represents a single tissue. f Heatmap showing top 40 differentially expressed circRNAs between ESCCs and paired normal samples
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Identification of survival‑related circRNAs and construction 
of a prognostic circRNA signature in ESCC
Based on the expression data and the corresponding 
clinical follow-up information of 73 ESCC samples, we 
performed univariate cox analysis and identified 1202 
circRNAs that were significantly associated with ESCC 
OS (P < 0.05). Among them, 1029 circRNAs were from 
exons, 68 circRNAs were from intergenic regions and 105 
were from introns (Additional file 5: Table S3, Fig. 3a).

Considering that genes as prognostic markers should 
be highly expressed in tissues, we first ranked the expres-
sion of the 1202 circRNAs, and then performed two times 
random survival forests-variable hunting (RSFVH) analy-
ses on the 300 or 200 circRNAs with the highest expres-
sion. Through discarding one-third of the least important 
circRNAs in each step according to the importance score, 
ten circRNAs were screened in two analyses, 3 circR-
NAs of which were the same (Fig. 3b and c). Therefore, a 
total of 17 highly expressed circRNAs were screened out, 
which are related to the prognosis of ESCC. According to 
the sequence in Circbase, we designed 17 pairs of reverse 

primers for the above 17 circRNAs. After PCR amplifi-
cation, target band recovery and Sanger sequencing, we 
blasted the sequence at the the back-spliced junction 
of each circRNA (Fig. 3d) to verify the expression of 17 
circRNAs in ESCC tissues and cell lines. As a result, we 
found that 9 circRNAs were actually expressed(Fig. 3e, f, 
Additional file 6: Figure S3), while the other 8 circRNAs 
can not be detected in ESCC.

To construct a prognostic signature with good per-
formance from 29−1 = 511 combinations, we per-
formed ROC analyses in the dataset with 73 ESCC 
samples which was considered as the training dataset 
(Additional file  7: Table  S4). The circRNA combina-
tion composed of hsa_circ_0005314, hsa_circ_0007541, 
hsa_circ_0000005 and hsa_circ_0077536 was selected 
since its AUC value was the largest (Fig.  3g, Table  1). 
The risk score of the selected circRNA signature was 
as follows:Risk score = (− 1.181 × expression value 
of  hsa_circ_0008199) + (0.742 × expression value 
of hsa_circ_0007541) + (0.916 × expression value 
of hsa_circ_0000005) + (1.065 × expression value 

a

b

Fig. 2  Validation of the selected differentially expressed circRNAs. a Visualization of selected circRNAs expression patterns for expression validating. 
b Agarose electrophoresis of selected circRNAs PCR products. b Fold change of circRNAs detected by qPCR between Cancer and Normal
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of hsa_circ_0077536). The AUC of the screened circRNA 
signature in the prognostic model was 0.839, demon-
strating its good performance in survival prediction. 

Interestingly, subcellular localization experiment showed 
that all four circRNAs were mainly located in the nucleus 
(Additional file 8: Figure S4).
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Survival prediction ability of the circRNA signature
After obtaining the risk score of every ESCC patient in 
the training group, patients were classified into a high-
risk (n = 36) group and a low-risk (n = 37) group based 
on the median risk score. KM analysis found that the 
prognosis of the two groups was significantly differ-
ent. The OS of high-risk ESCC patients was significantly 
shorter than that of the low-risk group (median survival: 

1.91 years vs. 3.72 years, log-rank test P < 0.001; Fig. 4a). 
The 3-year survival rate of the high-risk group was only 
19.4%, while that of the low-risk group was 78.4%. To var-
ify the prognostic performance, the circRNA signature 
was also evaluated in another independent ESCC dataset 
(n = 125). We performed qPCR experiment to test the 
expression of four circRNAs and calculated risk scores 
and median risk score based on the circRNA signature 

a b

c d

Fig. 4  The circRNA signature classification power for ESCC prognosis. Kaplan–Meier curves classify ESCCs into two different risk groups based on 
the risk score of the signature in the training (a) and test (b) dataset. Risk score distribution, survival status of ESCC patients in high- and low-risk 
groups by the four-circRNA signature in the two datasets (c, d)
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for 125 ESCC samples. The prognosis of patients in the 
high-risk and low-risk groups in the test group was sig-
nificantly different, as shown in Fig.  4b (log-rank test 
P < 0.001). The 3-year survival rate of ESCC patients in 
the low-risk group was still significantly higher than that 
of the high-risk group.

From Fig.  4c, d, we can see the relationship between 
survival time and risk score in the training and test data-
sets. ESCC patients with low risk scores survived longer, 
while patients with high scores survive shorter.

The four‑circRNA signature is an independent prognostic 
marker for ESCC
We explored the relationship between circRNA signa-
ture and clinicopathological factors, including age, sex, 
smoking, drinking, T stage, N stage, and pTNM stage, 
and found that the TNM stage in the training group 
was related to the signature (Additional file 9: Table S5). 
Therefore, whether the circRNA signature is an inde-
pendent factor for ESCC survival is necessary to confirm. 
Using the risk score based on the circRNA signature and 
other clinical features as variables, we performed mul-
tivariable Cox regression analysis in the training and 
test datasets. The results showed the circRNA signature 
for ESCC survival prediction was indeed independent 
of other clinical features (High-risk group vs. Low-risk 
group, HR training = 2.79, 95% CI 1.484–5.260, P = 0.001, 
n = 73; HR test = 2.58, 95% CI 1.363–4.896, P = 0.004, 
n = 125, Table 2).

Comparing the survival predictive power 
of the four‑circRNA signature and TNM stage
TNM stage is a commonly used prognostic indica-
tor in clinical practice. Therefore, we performed ROC 

analysis to compare the predictive performance of the 
four-circRNA signature with TNM stage [38, 39]. In the 
training and test datasets (n = 73/125), the area under 
the ROC curve (AUC) of the circRNA signature was 
significantly larger than that of TNM stage (AUC train-
ing = 0.839 vs. 0.657; AUC test = 0.651 vs. 0.619, Fig. 5a, 
b). When the circRNA signature was used in combina-
tion with the TNM stage in both training and test data-
sets, the AUC value was greater than the TNM stage or 
the circRNA signature alone (AUC = 0.874/0.699, 95% 
CI = 0.792–0.955/0.605–0.793, Fig. 5a, b).

To further test the good predictive ability of the 
signature, we conducted time ROC analysis in the 
two ESCC groups. The AUC of the signature was 
0.704/0.753/0.903 at 1/2/4.2 years in the training set and 
0.658/0.615/0.689 at 1/2/5 years in the test set (Fig. 5c, 
d), while the AUC of TNM was 0.671/0.607/0.826 at 
1/2/4.2 years in the training set and 0.628/0.629/0.547 
at 1/2/5  years, indicating the four-circRNA signature 
outperformed TNM stage in terms of ESCC prognosis.

Functional prediction of circRNAs in the signature
Through Pearson correlation test in the 73 ESCC 
expression profiles (|Pearson coefficient| > 0.3, P < 0.05, 
Fig.  6a), co-expression network of the four circRNAs 
and the 1425 protein-coding genes was constructed. 
GO and KEGG analysis suggested the four circRNAs 
were significantly enriched in 78 different GO terms 
and KEGG pathways (P < 0.05), which implies that four 
circRNAs may affect important biological processes, 
such as circulatory system development, angiogenesis 
and cell migration (Fig. 6b).

Table 2  Univariable and  multivariable Cox regression analysis of  the  circRNA signature and  survival of  ESCCs 
in the training and test group

Univariable analysis Multivariable analysis

Variables HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Training dataset (n = 73)

 Sex Male vs. Female 1.375 0.718 2.635 0.337 1.336 0.682 2.617 0.398

 Age > 62 vs. ≤ 62 1.241 0.667 2.311 0.495 1.585 0.819 3.066 0.171

 pTNM stage III, IV vs. I, II 2.424 1.362 4.314 0.003 1.639 0.884 3.039 0.117

 circRNA-signature High risk vs. low risk 7.746 3.519 17.051 0.000 6.705 2.951 15.237 0.000

Test set (n = 125)

 Sex Male vs. Female 1.185 0.659 2.130 0.570 1.109 0.614 2.003 0.732

 Age > 62 vs. ≤ 62 0.987 0.543 1.793 0.966 1.084 0.596 1.974 0.791

 pTNM stage III, IV vs. I, II 1.825 1.163 2.863 0.009 1.635 1.032 2.590 0.036

 circRNA signature High risk vs. low risk 2.794 1.484 5.260 0.001 2.583 1.363 4.896 0.004



Page 10 of 14Wang et al. Cancer Cell Int          (2021) 21:151 

Discussion
Esophageal squamous cell carcinoma has a poor progno-
sis, but lacks good prognostic markers. Recently, it has 

been continuously reported that circRNA is involved in 
the occurrence and progression of tumors [19, 20, 40, 
41]. However, the expression characteristics and roles of 
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circRNAs in ESCC are still elusive. Thus, we sequenced 
73 pairs of esophageal squamous cell carcinoma and 
adjacent normal tissues to reveal the circRNA expression 
profile, and constructed a prognostic circRNA signature.

CircRNAs are a class of closed continuous loop non-
coding RNA molecules. Due to its various biological 
functions, including acting as miRNA sponge to regu-
late the expression of downstream target genes, regulat-
ing gene transcription and translating proteins [42–46], 
circRNA has attracted the attention of scientists for its 
potential role in ESCC. As mentioned in the background, 
some studies have carried out circRNA sequencing 
on ESCC tissues or cell lines. It is reported that cer-
tain circRNAs can promote cell proliferation, migra-
tion, and invasion of ESCC, such as hsa_circ_0006168, 
hsa_circ_0000337, hsa_circ_0067934 [18–20]. However, 
there is little research based on clinical large cohorts of 
ESCC and high-throughput circRNA sequencing. Our 
study included 198 ESCC patients from high-risk areas in 
China, of which 73 patients recieved circRNA sequenc-
ing and the other 125 patients were used to verify the 
expression of circRNA. We found that the abundance of 
circRNA in cancer tissues was lower than that in normal 
tissues, 5031 up-regulated and 6620 down-regulated.

CircRNAs fall into  three  broad  categories based on 
their source in the genome: exonic, intronic and inter-
genic [17, 47]. The circRNAs from gene exons are the 
most common [47, 48]. Our sequencing results showed 
that most of the circRNAs expressed in ESCC were 
mainly derived from exons. Bioinformatics analysis 
revealed differences in circRNA expression patterns 
between tumor and normal tissues (Additional file  10: 
Table  S6), suggesting ESCC tissues could be distin-
guished by the expression of circRNA. Further analysis 
of the expression profile of esophageal squamous cell 
carcinoma found that 17 circRNAs were significantly 
associated with OS, and a four-circRNA signature was 
constructed for ESCC, which had a good survival pre-
dictive performance in the training dataset and another 
independent cohort of 125 ESCC patients. The independ-
ence of the predictive power of circRNA signature was 
also confirmed. Thus, we suggest that the four-circRNA 
signature is a potential prognostic marker for patients 
with ESCC.

TNM stage is a commonly used tumor classification 
standard in clinical practice and a recognized prog-
nostic marker [49, 50]. However, TNM stage is flawed 
in prognostic assessment. We found that the prog-
nostic ability of signature is better than TNM stage, 

a

b

Fig. 6  Co-expression network (a) and function analysis (b) of the circRNAs in the signature
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suggesting that the strong prognostic ability of the 
four-circRNA signature. Consistent with the findings of 
some scholars, the combination of TNM classification 
and molecular marker can more accurately predict out-
come of ESCC patients [51], indicating the signature is 
useful for prognosis evaluation.

In the process of exploring circRNA-based prognostic 
signature, we discovered some new circRNAs. The 10 
differentially expressed circRNAs in tumor tissues and 
adjacent tissues (hsa_circ_0026782, hsa_circ_0006867, 
hsa_circ_0018064, hsa_circ_0000099, hsa_circ_0003949, 
hsa_circ_0001821, hsa_circ_0002874, hsa_circ_0001707, 
hsa_circ_0000479, hsa_circ_0001944)) were amplified 
by qPCR in ESCC tissues. Agarose gel electrophoresis 
verified the expression of 9 prognostic cicRNAs (hsa_
circ_0001726, hsa_circ_0007541, hsa_circ_0000005, 
hsa_circ_0005314, hsa_circ_0003028, hsa_circ_0007619, 
hsa_circ_0008199, hsa_circ_0077536, hsa_circ_0002663). 
Most importantly, we detected the expression of the four 
circRNAs of the signature in ESCC tissues and cell lines 
by agarose gel electrophoresis, sanger sequencing and 
FISH. This study has confirmed the existence of the four 
circRNAs and their prognostic significance. Coinciden-
tally, we found all four circRNAs (hsa_circ_0005314, hsa_
circ_0007541, hsa_circ_0000005 and hsa_circ_0077536) 
were mainly expressed in the nucleus. Therefore, we 
speculate that these cirRNAs may interact with some 
proteins on the nucleus to regulate the development of 
ESCC. What are the specific functions of these circRNAs 
and the mechanisms by which they regulate the develop-
ment of ESCC remain to be further studied.

The high tissue specificity, high expression abun-
dance [52], high stability [53] and other properties of 
the circRNA contribute to the clinical application of cir-
cRNA signature. Furthermore, circRNAs are abundantly 
enriched in exosomes. This means that they are widely 
present in body fluids, including blood, tears, urine, 
saliva, milk, ascites, etc., and are easily detected, which 
increases the clinical value of using four-circRNA signa-
ture to analyze the prognosis of ESCC patients. From a 
pan-cancer dataset, circRNAs in body fluids have been 
discovered to be novel biomarkers to monitor cancer 
development and progression [54]. For ESCC,  research-
ers have detected that cricRNAs in plasma have prognos-
tic value, such as circ-TTC17 [55], hsa_circ_0004771 [56] 
and circ-SLC7A5 [57]. The prognostic value of the four 
circRNAs from the signature in body fluids has not been 
reported, and we plan to explore it in future studies.

In the analysis and validation of the circRNA expres-
sion profile of ESCC patients, we found that not all circR-
NAs identified by database or software are expressed in 
ESCC tissues and cells. This is worthy of the attention of 
the researchers, reminding researchers that the circRNA 

molecules for bioinformatics mining need to be experi-
mentally verified. Otherwise, false positives may mislead 
the research direction.

Conclusion
In summary, we investigated the expression of circRNAs 
in ESCC and identified a prognostic signature that could 
divide patients into groups with different survival. As far 
as we know, it is the first circRNA signature that can pre-
dict the overall survival of ESCC patients with high pre-
diction accuracy.
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