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Abstract 

Background:  CDC27 is one of the core components of Anaphase Promoting complex/cyclosome. The main role of 
this protein is defined at cellular division to control cell cycle transitions. Here we review the molecular aspects that 
may affect CDC27 regulation from cell cycle and mitosis to cancer pathogenesis and prognosis.

Main text:  It has been suggested that CDC27 may play either like a tumor suppressor gene or oncogene in differ‑
ent neoplasms. Divergent variations in CDC27 DNA sequence and alterations in transcription of CDC27 have been 
detected in different solid tumors and hematological malignancies. Elevated CDC27 expression level may increase cell 
proliferation, invasiveness and metastasis in some malignancies. It has been proposed that CDC27 upregulation may 
increase stemness in cancer stem cells. On the other hand, downregulation of CDC27 may increase the cancer cell 
survival, decrease radiosensitivity and increase chemoresistancy. In addition, CDC27 downregulation may stimulate 
efferocytosis and improve tumor microenvironment.

Conclusion:  CDC27 dysregulation, either increased or decreased activity, may aggravate neoplasms. CDC27 may be 
suggested as a prognostic biomarker in different malignancies.

Keywords:  Anaphase-Promoting complex–cyclosome, CDC27 protein, Cell cycle, Neoplasms, Upregulation, 
Downregulation, Tumorigenesis
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Background
Neoplastic cells usually form by cellular transformation. 
This is a stepwise process which disturbs the harmonies 
between factors that regulate the cell cycle. The cell cycle 
transition, error-free chromosome duplication, segre-
gation and finally exit of mitosis are ensured by the well 
timed activation of ubiquitination enzymes [1]. One of 
the most important ubiquitination enzymes is Anaphase-
Promoting complex or cyclosome (APC/C). CDC27 is 
one of the core components of Anaphase Promoting 
complex/cyclosome.

Human studies about the role of CDC27 in cancer 
pathogenesis and its clinical importance are relatively 
few. Therefore, collecting the current knowledge and 
recent insights about this molecule in human may help 
better understanding its role in cancer and depicting the 
road map for future investigations.

CDC27 in Anaphase Promoting complex (APC/C)
APC/C is composed of two specific sub-complexes: cata-
lytic sub-complex and tetratricopeptide repeat (TPR) 
suprahelix sub-complex which the latter has scaffolding 
role [2, 3]. TPR suprahelix sub-complex orchestrates the 
position of substrate recognition sites in APC/C to per-
form ubiquitination [2, 4]. Human conserved canoni-
cal TPR subunits of APC/C including CDC27 (APC3), 
CDC16 (APC6) and CDC23 (APC8) consist of TPR 
motifs and have a quasi-symmetrical structure [4].
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CDC27 gene has 33 specific exons and undergoes alter-
native splicing that leads to multiple transcripts including 
22 different mRNAs. Thirteen spliced mRNAs are sup-
posed to translate to functional proteins. CDC27 main 
functional isoforms are coded by 19 exons and consist 
of 830 and 824 amino acids respectively with two TPR 
domains. The N-terminal domain has 5 TPR motifs and 
C-terminal domain has 9 motifs [5] (Fig.  1, Additional 
file 1: Table S1).

More than 16,494 CDC27 variants have been recorded 
in human genome ensemble database, from which 1994 
variants are on exons. Analyzing the distribution of vari-
ants on CDC27 gene by calculating the variant density 
(frequency of variants per 100  bp sequence length) has 
shown that the 6th exon has the most variant density 
(Additional file  2: Figure S1, Additional file  1: Table  S1, 
Fig. 1).

Eleven CDC27 pseudogenes have been discovered on 
chromosomes 2, 14, 20, 21, 22 and Y [6]. The processed 
pseudogenes contain the complete cDNA sequence of 
CDC27 from exon 3 to 14.

Regulation of cell cycle by CDC27
The ubiquitin-mediated proteolysis is one of the main 
mechanisms of cell cycle regulation. The APC/C and the 

SCF (SKP1–CUL1–F-boxprotein) complexes are two 
ubiquitin ligases responsible for the specific ubiquityla-
tion of many of cell cycle regulators [7]. Substrates from 
mid-M phase to the end of G1 phase are targeted by 
APC/C, whereas degradation of substrates from late G1 
to early M phase is mediated by SCF ligases [8].

CDC27 can regulate mitosis and chromosome segrega-
tion by controlling APC/C activity in cyclins degradation. 
During mitosis, CDC27 accumulates in spindle microtu-
bules, spindle poles and centrosomes [9] as well as chro-
mosome arms and kinetochores [10].

In normal mitosis, interactions between some proteins 
and CDC27 may inhibit substrate binding to APC/C 
which regulates the timing of mitosis [10–12]. As an 
example, Early mitotic inhibitor 1 (Emi1) can inhibit APC 
activation. It has been revealed that CDC27 links Emi1 
to APC/C core [13–15]. These negative regulations of 
APC/C prevent chromosome missegregation [16].

CDC27 at the G2/M transition interacts with CDC20 
(Fig.  2) and regulates ubiquitination and finally, pro-
teolysis of proteins such as Securin and cyclin B to 
allow chromosome segregation [17, 18]. Securin is a 
regulator of cell cycle progression from metaphase to 
anaphase and in dephosphorylated form is one of the 
APC/C targets. When securin is triggered by APC/C, 

Fig. 1  CDC27 from DNA to protein. CDC27 longest isoform (Isoform 2) has 19 exons with 14 TPR motifs which are located in two TPR domains. 
Six aminoacids (KTFRL at the junction of exon 8 and exon 9) are the difference between the main CDC27 isoform with 824 aminoacids (Isoform 1) 
and the longest functional CDC27 isoform with 830 aminoacids (Isoform 2). Most pathologic germline (small circles) and somatic variants (small 
triangles) affect CDC27 amnioacids which are located between two TPR domains (exons 6–11). In addition, common phosphorylation sites in the 
CDC27 protein are serine and threonine amnioacids between two TPR domains (small arrows)
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separase (that until then was inactivated by securin) 
degrades sister chromatid cohesions to synchronize 
faithful chromosomal segregation and ploidy stability 
[19].

CDC27 at the M/G1 transition [17] interacts with 
CDH1 (Fig.  2) and prepares all changes required for 
mitotic exit and transition into G1. Residual securin 
and cyclin B are targeted for degradation, as are 
CDC20 and CDC5, which put an end to the pattern of 
proteins required for mitosis [20].

It has been demonstrated that CDC27 expression 
modulates CDKN1A (p21: a cyclin-dependent kinase 
inhibitor in cell cycle) quantity and by this mechanism 
can control ID1 (as a regulator of G1/S transition dur-
ing cell cycle) expression and G1 to S phase arrest/
transition status [21–23].

CDC27 and CDC16 at S phase by degradation of 
the putative initiator proteins of DNA synthesis cause 
exclusively one time DNA replication per cell cycle 
in the yeast. Conversely, CDC27 or CDC16 mutants 
cause DNA to be over replicated [24]. This finding in 
human cell line models has not been investigated.

Mechanisms suggested for the CDC27 regulation
Wide range of mechanisms could regulate activity of 
gene products at different levels [25]. Transcriptional 
and post-transcriptional regulations by several mecha-
nisms are important pieces of caner genetics puzzle. 
Furthermore, gene product’s activity can be changed 
independently of RNA level due to translational and 
posttranslational modifications [26].

Here we mention the known evidence about CDC27 
regulatory factors in different levels from transcription to 
post translational modifications that may reveal the big 
gap of knowledge in this field.

One of the most recognized transcription factors in the 
regulation of CDC27 expression is C/EBPdelta [27]. C/
EBPdelta (CCAAT/enhancer binding protein delta) is a 
transcription factor that may play role in many biological 
processes such as proliferation, differentiation, growth 
arrest, metabolism, motility, inflammation and other 
immune responses [28].

In post transcriptional stage, the most important 
microRNAs which may have regulatory role in CDC27 
are miR-218-2 and miR-27a. CDC27 expression is a 

Fig. 2  Cell cycle regulation by CDC27. At the G2/M transition CDC27 interacts with CDC20 and regulates proteolysis of proteins such as Securin and 
cyclin B. At the M/G1 transition, CDC27 interacts with CDH1. Therefore, CDC20, CDC5 and residual securin and cyclin B are targeted for degradation. 
At S phase, CDC27 and CDC16 by degradation of initiator proteins of DNA synthesis cause only one time DNA replication
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downstream target of miR-218-2 and miR-27a. Over-
expression of miR-218-2 and miR-27a lead to CDC27 
downregulation [29, 30]. In the case of cancer, expres-
sion of various microRNAs is out of regulation and this 
directly affects the expression of key proteins during 
tumorigenesis [31].

In the translational step, heterogeneous nuclear ribo-
nucleoprotein E1 (hnRNP E1) can regulate the trans-
lation of CDC27 [32]. hnRNP E1 which is encoded by 
PCBP1 (poly (rC)-binding protein gene) is an RNA 
binding protein that preferably binds to mRNA of genes 
which have tandem polycytosine motifs such as 3′-UTR 
of CDC27 mRNA [32, 33].

The most important post translational modification in 
CDC27 is phosphrylation. CDC27 during mitosis in a 
phosphorylation-dependent manner can regulate APC/C 
activity. Various kinases such as casein kinase II (CKII), 
cyclin dependent kinase (CDK1) and Polo-like-kinase 
(PLK1) phosphorylate CDC27 especially at Threonine/
Serine-Proline motifs [32, 34–37]. It has been suggested 
that TGF-β/Smad3 also can phosphorylate CDC27. 
Cis/trans isomerization of the phosphorylated CDC27 
induces conformational changes that regulates CDC27 
activity [38, 39].

Up regulation of CDC27 phosphorylation may increase 
its activity and sensitivity to mitotic checkpoints inhibi-
tion [20]. On the other hand, CDC27 dephosphorylation 
leads to increasing chromosomal instability and produc-
tion of multinucleated cells.

It has been shown that different enzymes such as 
PP1 (Protein phosphatase1) dephosphorylate CDC27 
[10]. Also, dissociation of CDC20 from CDC27 causes 
inhibition of CDC27 phosphorylation [40]. CDC27 
dephosphorylation has an important role in TGF beta 
superfamily signaling [36, 41]. In addition, CDC27 
dephosphorylation during mitosis leads to raised level 
of cyclin B and sister chromatid segregation prohibition 
[24].

CDC27 in cancer
Generally, the malignancy related genes are classified 
as oncogenes (OG) or tumor suppressor (TSG) genes. 
Loss of function in TSGs and gain of function in OGs 
are the main suggested origins of tumorigenesis.

It has been suggested that CDC27 may play role 
either like a tumor suppressor gene or oncogene in 
different neoplasms [27, 42]. Divergent variations in 
CDC27 DNA sequence and alterations in transcription 
of CDC27 have been detected in different solid tumors 
and hematological malignancies.

Investigations about CDC27 level or sequence altera-
tions in cancer, its involvement in processes such as 

apoptosis, epithelial to mesenchymal transition (EMT), 
stemness and efferocytosis and its association to can-
cer prognosis and treatment response may help to bet-
ter understand cancer mechanisms and more efficiently 
manage malignancies in future.

CDC27 expression alterations and consequences in cancer
Alterations in CDC27 level and its suggestive effects have 
been described in different malignancies (Table  1). The 
vast majority of cancers indicated moderate to strong 
expression of CDC27 protein including colorectal, testis, 
thyroid, gastric cancers and lung adenocarcinoma [42–
45]. It has been suggested that CDC27 may contribute 
in the activation of oncogenic pathways [42]. Therefore, 
upregulation of CDC27 may enhance tumorigenesis.

CDC27 protein level in Non-hodgkin’s lymphomas, 
prostate, glioma, breast cancer and renal cell carcinomas 
was very low or absent in some samples [45]. It has been 
proposed that CDC27 may also act as a tumor suppressor 
gene [27]. Therefore, downregulation of CDC27 or loss of 
function mutations in this gene may suppress its inhibi-
tory effects on tumorigenesis.

Generally, CDC27 overexpression leads to prolif-
eration, tumor formation, migration and invasion, and 
knock down of CDC27 gene inhibits these functions [43].
CDC27 overexpression is in harmony with the tumor 

size, TNM (tumor (T), nodes (N), and metastases (M)) 
stage and distant metastasis in colorectal cancer (CRC). 
These findings reveal evidence for the relation of CDC27 
expression to tumor progression and poor patient’s sur-
vival [23].

Enhanced expression of CDC27 protein was in agree-
ment with the relative expression of EMT biomarkers in 
gastric cancer tissues and was correlated with clinico-
pathological properties such as TNM stage and lymph 
node metastasis [43].
CDC27 downregulation may play a crucial role in car-

cinogesis and drug resistance in glioma. Increased chem-
oresistancy of glioma cells to beta-lapachone (β-lap, as 
an antineoplastic agent) has been attributed to CDC27 
downregulation [29]. Downregulation of CDC27 in 
glioma, as a core component of APC/C, leads to inade-
quate ubiquitination of securin and various cyclins such 
as cyclinA1/2, cyclinB1, and cyclinD1 and their elevated 
expression at protein level. Consequently, delay in the 
G0/G1 phase transition occurs [29].

In breast cancer patients, immunohistochemial evalu-
ations of CDC27 along with securin are the valuable 
prognostic biomarkers after lymph node examination. 
Downregulation of CDC27 combined with overexpres-
sion of securin have potential to predict 5-year over-
all survival of the patients [46]. In triple negative breast 
cancer cell lines, CDC27 downregulation due to miR-27a 
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overexpression is associated with poor response to radio-
therapy [30].

In squamous cell cervix carcinoma, CDC27 downregu-
lation was correlated with a poor radio-responsiveness 
status and treatment failure. It has been shown that 
reduced expression of CDC27 in irradiated SiHa cell line 
(cervical cancer cell line) promotes cell survival. Con-
versely, higher expression of CDC27 in irradiated C33A 
(cervical cancer cell line) compared to SiHa cell line 
causes more cell death [47]. Irradiated CNE-1 cells (naso-
pharyngeal carcinoma cells) showed decreased level of 
CDC27, which suggested CDC27 is a part of mechanism 
of radiosensitivity [48].

It is important to consider that the vast majority of 
CDC27 mRNA isoforms are not protein coding. There-
fore, gene expression profile may suggest false positive 
in the upregulation results, and measurement of protein 
would be required to confirm CDC27 induction.

CDC27 as a potential prognostic biomarker in cancer
CDC27 has been suggested as a prognostic biomarker 
in some cancers. Discovering potential biomarkers for 
assessing treatment response is a valuable indicator to 
differentiate between responder patients and those who 
are at risk of treatment failure. This information helps 
clinicians to change their strategies to other modalities 
in order to decrease the rate of toxicity and other side 
effects in clinical settings. Biomarkers are also useful for 
predicting the prognosis and survival [49].

Considering CDC27 as a potential prognostic bio-
marker, there are a number of obstacles that this poten-
tial biomarker must surpass before it can be applied in 
the clinic. CDC27 at mRNA level has heterogeneous 
behavior in some malignancies such as breast cancer. 
As it was mentioned, CDC27 also has several isoforms 
at RNA and protein level. Therefore, additional studies 
may be necessary to determine which CDC27 isoform in 
which tumor subtype has the strongest association with 
prognosis. Subsequent evaluations may involve valida-
tion of the original findings, including analytic validity, 
clinical validity, and clinical utility [50].

CDC27 germline and somatic variants
It has been proposed that some germline variants 
in CDC27 may increase the susceptibility to cancers 
(Table  2). In breast cancer, homozygous or heterozy-
gous rs11570443 (CT or CC) along with homozygous 
rs12601027 (TT) in CDC27 have an association with the 
risk of cancer [51]. The rs11570443 is a Variant of Uncer-
tain Significance (VUS) and is located upstream to the 
CDC27 promoter which may have a regulatory function. 
However, the basic mechanism of this relationship is not 
clarified.

In another study which was about the role of 1084 
functional germline variants in breast cancer, rs764792 in 
CDC27 was correlated with the risk of high-grade breast 
cancer. However, this association was not significant after 
Bonferroni correction for multiple testing [52].

Table 1  CDC27 RNA expression changes in different neoplasms

IHC Immunohistochemistry, SCC squamous cell carcinoma

Neoplasm CDC27 expression changes Effect References

Gastrointestinal cancers

 Tumoral rectum or colon tissue Upregulation CRC progression, patient’s survival [23]

Breast cancer

 Human breast cancer tissues Downregulation Prognostic biomarker [46]

 Human breast cancer tissues Upregulation Potential to explain disease recurrence [32]

 Negative breast cancer cell lines (TNBC) (MDA-
MB-435 and MDA-MB-231)

Downregulation Radio-responsiveness [30]

SCC of cervix

 Irradiated SiHa Downregulation Radio-responsiveness status and treatment failure [47]

Glioma

 Human glia cell lines and glioma tissue Downregulation Chemoresistancy to β-lap [29]

Lung cancer

 Lung adenocarcinoma Upregulation Cell cycle progression and tumor progression [82]

 Non-small cell lung carcinoma cell line (EGR1-overex‑
pressing H1299 cells)

Downregulation Tumor progression [44]

Bladder cancer (BC)

 Cisplatin sensitive human BC cell line (T24) and 
cisplatin resistant BC cell line (T24R2)

Upregulation Metastasis and recurrence of progressive BC [83]
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In addition to germline variants, several important 
functional somatic variants, including gene fusions, in 
CDC27 have been reported in different malignancies. 
Most of them are between TPR5 and TPR6 motifs and 
some are classified as Tier 1 (Table 3).

In sporadic vestibular schwannoma, the mutations in 
CDC27 were clustered in cDNA position 754–796, cor-
responding to amino acids 252–266, between TPR5 
and TPR6. This region is important for protein–protein 
interactions. In this tumor, CDC27 variants (including 
p.G265D/rs7350889) were suggested as possible drivers 
of tumorigenesis [53].

The CDC27 tumor-specific and coding somatic 
variants in calcifying fibrous tumor of the pleura 
were suggested to have a role in the tumorigen-
esis and molecular pathogenesis of this cancer [54]. 
The rs79201963, rs199899451, rs775321736 and 
rs796538886 variants are classified as Tier 1 using CGI 
prediction software tool (Cancer Genome Interpreter) 
[55]. In Osteosarcoma, (OS) pathogenic p.E6G CDC27 

Tier 1 somatic mutation was suggested to have an 
important role in regulating OS tumor cell division and 
suggested as potential biomarker for OS [56]. CDC27-
OAT intrachromosomal fusion between CDC27 as a 
cell cycle regulator and OAT (ornithine aminotrans-
ferase, an enzyme which produces ornithine) in aggres-
sive prostate tumors was identified in some patients 
[57].

The importance of somatic variants of CDC27 in the 
pathogenesis of cancer also have been suggested in other 
malignancies including the Follicular thyroid cancer [58], 
colon cancer [59], EGFR/KRAS/ALK-negative lung ade-
nocarcinoma [60], Testicular germ cell tumors (TGCT) 
[61] and FLT3-ITD Sorafenib-Resistant Acute Myeloid 
Leukaemia. [62]. Several CDC27 variants have been 
detected in Prostate cancer [63], Relapsed B-Cell Pre-
cursor Acute Lymphoblastic Leukemia [64], Duodenal 
adenocarcinoma [65] and Adrenocortical carcinoma [66], 
but their role in tumorigenesis is unknown. In a recent 
study in gastric cancer, it was shown that CDC27 somatic 

Table 2  The germline variants in CDC27 associated to cancer susceptibility

NA not available, VUS Variant of Uncertain Significance

Variant Coordinates (hg19) dbSNP rs number cDNA/Protein 
(NM_001114091)

Exon/intron position Neoplasm CGI classification References

17-45267537-T-C rs11570443 c.-999A>G 2 KB Upstream Breast cancer NA [51]

17-45203468-C-T rs12601027 c.2179−2142G>A Intron 16 Breast cancer Not protein-affecting [51]

17-45257617-T-C rs764792 c.103+1311A>G Intron 2 Breast cancer Not protein-affecting [52]

Table 3  The somatic variants in CDC27 associated to cancer progression

NA not available, VUS Variant of Uncertain Significance

dbSNP rs number cDNA/protein 
(NM_001114091)

Exon/intron 
position; TPR 
domain

Effect/Neoplasm CGI classification References

rs79201963 c.1549G>A;p.E517K Exon12;TPR6 Tumorigenic roles in calcifying fibrous tumor of the 
pleura

Tier 1 [54]

rs77095606 c.644T>G;p.L215W Exon6 Passenger

rs199899451 c.505A>T;p.K169* Exon6 Tier 1

rs796969472 c.1801C>G;p.Q601E Exon14;TPR8 NA

rs775321736 c.1795G>A;p.A599T Exon14;TPR8 Tier 1

rs796538886 c.1459T>G;p.C487G Exon12;TPR5 Tier 1

rs7350889 c.794G>A;p.G265D Exon7 Possible driver in a subset of sporadic vestibular 
schwannoma

Passenger [53]

rs62077279 c.17A>G;p.E6G Exon1;TPR1 Potential biomarker for Osteosarcoma Tier 1 [56]

rs74628496 c.705T>C;p.I235I Exon7 Tumorigenesis/molecular pathogenesis of colon 
cancer

NA [59]

rs747953129 501A>G;p.T167T Exon6 Polymorphism

rs77467652 c.449C>A; p.S150Y Exon4 Passenger

rs193061947 c.704T>C; p.I235T Exon7 Tumorigenesis/potential therapeutic targets in lung 
adenocarcinoma

NA [60]

rs200611688 c.818C>G;p.A273G Exon7 Polymorphism

– c.1034G>T;p.S345I Exon9 Unknown roles in Adrenocortical carcinoma Passenger [66]

rs200940073 c.1541C>T;p.A514V Exon12;TPR6 Tier 1

rs202052665 c.1504T>C;p.Y502H Exon12 Passenger
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mutations may be independently associated with perito-
neal metastasis [67].

Usually, mutations in CDC27 are loss of function muta-
tions. Therefore, it is expected that the germline or the 
somatic mutations, including point mutations or dele-
tions, in CDC27 may decrease the activity or the level of 
this protein in the cell.

It is important to consider that the variants on CDC27 
pseudogenes may produce false positive findings, spe-
cifically in sequencing by next generation sequencing 
(NGS) technologies [68]. Therefore, all detected variants 
by whole exome sequencing (WES) or whole genome 
sequencing (WGS), specifically between exons 3 to 14, 
must be confirmed by sanger sequencing to exclude 
false positive variants. Generally, the variant density of 
reported variants on exons 3 to 14 is more than other 
CDC27 exons which some may be due to the variants on 
the pseudogenes.

CDC27 variations and cancer mutational signatures
Mutagenesis due to cellular DNA damage and impaired 
repair mechanisms leave mutational signature or distinc-
tive imprint on the cancer genome.

The somatic and germline variations in CDC27 in 
esophageal squamous cell carcinomas (ESCC) were key 
regulators that have been suggested to affect mutational 
processes. In this malignancy, association between can-
cer signatures and germline polymorphisms of CDC27 
was significant. Somatic amplification of CDC27 was 
correlated with lower rate of C > A substitution, the 
higher activity of Signature 1, and decreased activity of 
Signature 2. Patients with Signature 1 showed low bur-
den of overall somatic single nucleotide variants (SNVs). 
Inversely, higher burden of SNVs was significantly associ-
ated with CDC27 deletions [69].

CDC27 may play role in apoptosis, stemness, efferocytosis 
and EMT
The involvement of the cell cycle proteins in apoptosis 
shed light on the potentially common pathways between 
apoptosis and mitosis. The role of CDC27 in apoptosis 
has been evaluated in the Jurkat cells (T cell leukemia cell 
line). The cleavage of CDC27 by caspase-3-like enzyme in 
the Fas signaling cascade subsequently avoids the ubiq-
uitin ligase function of APC. Therefore, cyclins A and B 
stay intact and prevent cell cycle progression [70].

Apoptosis or programmed cell death is attenuated in 
cancers. Accordingly, cells become immortal and this is 
one of the most important underlying mechanisms of 
tumorigenesis, metastasis and drug resistance in can-
cer [71]. Therefore, suppression of apoptosis by aberrant 
signaling pathways in most cancers may lead to increased 
CDC27 activity and cell cycle progression.

Cancer stem cells (CSCs) are subpopulations of cells 
inside a tumor that possess characteristics related to 
normal stem cells such as self-renewal and differentia-
tion, but they have some deviations from normal stem 
cells. For instance, CSCs have altered gene expression 
profiles and are resistant to conventional radiotherapy 
and chemotherapy. Therefore, CSCs are the origin of 
the cancer resistance and the reason of cancer recur-
rence. Targeting CSCs is one of the most important 
areas of cancer treatment, but due to lack of specific 
and sensitive biomarkers for these cells, usage of this 
strategy is challenging [72]. ID1 and p21 are two pro-
teins that are correlated with self-renewal capacity of 
cancer stem cells. The possibility of relation between 
CDC27 expression in CSCs and stemness features in 
colorectal cancer has been evaluated. Results demon-
strated that modulation of ID1 by CDC27 is one of the 
proposed mechanisms of p21 expression regulation. 
For that reason, CDC27 can be a potential therapeutic 
target of CSCs, but more investigations are needed to 
confirm this possibility [23].

Apart from CDC27 role in the cell cycle, footprint of 
this molecule in Efferocytosis has been traced. Efferocy-
tosis is a term for phagocytosis of apoptotic cells [73]. 
Cancers use this mechanism to make the tumor microen-
vironment immunotolerant. Elmo1-Dock1-Rac pathway 
has a major role in efferocytosis. Elmo1 is a non-intrinsic 
catalytic protein which works as a coordinator between 
multiple proteins to make the appropriate interactions 
among them in different cellular processes. One of the 
proposed binding partners of Elmo1 is CDC27. The exact 
function of CDC27-Elmo1 is not well defined. It is pos-
sible that this interaction makes the Elmo1 ready to be 
ubiqunitated and degraded by APC via Proteasome [74].

Epithelial to mesenchymal transition (EMT) has a 
major role in cancer metastasis. EMT explains how cells 
dedifferentiate and achieve increased invasive and migra-
tory properties [75]. CDC27 by modulating ID1 can 
downregulate the expression of epithelial markers (ZO-1 
and Ecadherin), and adversely upregulate mesenchymal 
markers (ZEB1 and Snail) to promote metastasis in colo-
rectal cancer cell lines (HCT116 and DLD1). This claim 
has been confirmed in xenograft mouse model [42]. Fur-
thermore, in gastric cancer tissues, enhanced expres-
sion of CDC27 protein was in harmony with the relative 
expression of EMT biomarkers (E-cadherin, Vimentin 
and Twist) [43].

Hence, diminished CDC27 activity may improve 
efferocytosis. Increment in efferocytosis may lead to 
increased cancer cell survival, decreased radiosensitiv-
ity and increased chemoresistancy. On the other hand, 
raised CDC27 activity may promote stemness and EMT 
which may increase tumorigenesis and metastasis.
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Therapeutic interventions related to CDC27
The natural and chemical molecules have been vastly 
studied for finding resources for prevention/treatment 
of malignancies by different proposed mechanism of 
actions. For instance, Resveratrol, a natural phytoestro-
gen, in A549 cells (lung cancer cells) inhibits cells pro-
liferation. Resveratrol downregulates gene and protein 
expression of CDC27, and these alterations of expression 
along with some other mechanisms trap cells in G1/S or 
G2/M phases of cell cycle [76].

Also, in two distinct studies the interaction between 
Curcumin and CDC27 in various cancer cell types such 
as medulloblastoma and oral cancer cells has been inves-
tigated. Curcumin attachment preferentially to phospho-
rylated form of CDC27 as a core component of APC/C 

cross links the dimerized CDC27 molecules, interferes 
with its function, and eventually leads to cell cycle arrest 
at G2/M phase. CDC27, especially in phosphorylated 
form, has been suggested as a biomarker for the evalua-
tion of anti-cancer effects of curcumin [77, 78].

Treating breast cancer cells (MCF10-F) with Etodolac 
(a member of NSAIDs) alters the expression profile of 
many genes including CDC27. It has been suggested that 
NSAIDs arrest the cell cycle at G1 and avoid cell cycle 
advancement as well as DNA synthesis. This may be one 
of the explanations for Etodolac inducing cancer cell 
death [79].

Finally, after treatment of ovarian cancer cells with 
Eribulin and Paclitaxel (two anti-cancer drugs), expres-
sion of CDC27 was decreased at both mRNA and protein 

Fig. 3  Probable mechanisms related to the CDC27 dysregulation in cancer and their effects on tumorigenesis and prognosis. The mechanisms 
which alter CDC27 gene function in cancer are classified as genetic and epigenetic events at different levels of DNA, RNA and protein. In genetic 
events, missense mutations usually change the amnioacid sequence of protein which subsequently leads to an abnormal protein function. Large 
deletions and promoter mutation decrease the level of transcription. In mutations with Premature Termination Codon (PTC), usually the level of 
mRNA decreases by Nonsense Mediated Decay (NMD). Epigenetic events including CpG island methylation changes, Histone modifications, gene 
specific miRNAs and alterations in transcription factor levels can change the level of gene expression. Collectively increased CDC27 is associated to 
cell cycle progression, EMT and stemness which may increase tumorigenesis. On the other hand, decreased activity of CDC27 is associated to cell 
cycle arrest, increased efferocytosis and cancer cell survival which may lead to increased chemoresistancy and decreased radiosensitivity. Therefore, 
dysregulation of CDC27 activity (both increased and decreased) is related to tumorigenesis and poor prognosis and may decrease patient’s survival
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level. Therefore, CDC27 as an oncogene, is one of the 
related genes proposed for growth inhibiting action of 
Eribulin and Paclitaxel on ovarian cancer cells [80]. More 
investigations are needed to discover the precise underly-
ing molecular mechanisms.

Conclusion
Cell division, genome stability, differentiation, carcino-
genesis, autophagy, cell death, as well as energy metab-
olism can be regulated by APC/C [81]. Most of these 
functions which are important in cancer pathogenesis 
may be regulated by CDC27 subunit in APC/C. Altera-
tions in CDC27 at the DNA, RNA and protein levels and 
post translational modifications may affect cell division. 
Accordingly, have divergent effects on tumorigenesis, 
response to treatment and eventually, prognosis and sur-
vival of patients (Fig. 3).

At DNA level, both germline and somatic variants may 
affect CDC27 function and have a role in tumorigenesis. 
CDC27 dysregulation at RNA level, either upregulation 
or downregulation, may affect the patient’s survival and 
prognosis. More investigations are needed to discover 
the exact role of CDC27 in cancer. The advancement of 
new technologies has made it possible to evaluate the 
altered function of the product of this gene at single cell 
level and even at the serial time points of diverse phases 
of cell cycle.
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Additional file 1: Table S1. Protein sequence in exons and TPR motifs of 
CDC27. CDC27 has 19 exons with 14 TPR motifs which are located in two 
TPR domains. Aminoacid numbers are according to the longest isoform 
with 830 aminoacids. Six yellow highlighted aminoacids in brackets (at 
the junction of exon 8 and exon 9) are the difference between the main 
CDC27 isoform with 824 aminoacids and the second important func‑
tional CDC27 isoform with 830 aminoacids. Different exons are colored 
alternately blue and black. Red colored aminoacids at exon junctions 
are coded by a codon which has nucleotides on both exons. Purple 
highlighted aminoacids are common phosphorylation sites in the CDC27 
protein which all of them are located between two TPR domains. The 
structure of the APC3 is consisted of 14 units of the TPR motif, which are 
organised as follows: dimerization domain (TPR 1 to TPR 7), IR tail binding 
domain (TPR 8 to TPR 11), and C-terminal domain (TPR 12 to TPR 14).

Additional file 2: Figure S1. The frequency of potentially somatic and 
germline variants at exons and introns in CDC27 gene. The frequency is 
calculated as the number of variants per 100 bases in each exon or intron 
(Number of variants is divided to the exon or intron length and then 
multiplied by 100). About 588 CDC27 variants were listed in COSMIC (554 
variants on exons). This means that potentially somatic cancer variants 
may compose more than 25% of detected variants on CDC27 exons.
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