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Abstract 

MicroRNAs (miRNAs) are a class of small noncoding RNA molecules containing only 20–22 nucleotides. MiRNAs play 
a role in gene silencing and translation suppression by targeting and binding to mRNA. Proper control of miRNA 
expression is very important for maintaining a normal physiological environment because miRNAs can affect most 
cellular pathways, including cell cycle checkpoint, cell proliferation, and apoptosis pathways, and have a wide range 
of target genes. With these properties, miRNAs can modulate multiple signalling pathways involved in cancer devel-
opment, such as cell proliferation, apoptosis, and migration pathways. MiRNAs that activate or inhibit the molecular 
pathway related to tumour angiogenesis are common topics of research. Angiogenesis promotes tumorigenesis 
and metastasis by providing oxygen and diffusible nutrients and releasing proangiogenic factors and is one of the 
hallmarks of tumour progression. CRC is one of the most common tumours, and metastasis has always been a dif-
ficult issue in its treatment. Although comprehensive treatments, such as surgery, radiotherapy, chemotherapy, and 
targeted therapy, have prolonged the survival of CRC patients, the overall response is not optimistic. Therefore, there 
is an urgent need to find new therapeutic targets to improve CRC treatment. In a series of recent reports, miRNAs 
have been shown to bidirectionally regulate angiogenesis in colorectal cancer. Many miRNAs can directly act on 
VEGF or inhibit angiogenesis through other pathways (HIF-1a, PI3K/AKT, etc.), while some miRNAs, specifically many 
exosomal miRNAs, are capable of promoting CRC angiogenesis. Understanding the mechanism of action of miRNAs 
in angiogenesis is of great significance for finding new targets for the treatment of tumour angiogenesis. Deciphering 
the exact role of specific miRNAs in angiogenesis is a challenge due to the high complexity of their actions. Here, we 
describe the latest advances in the understanding of miRNAs and their corresponding targets that play a role in CRC 
angiogenesis and discuss possible miRNA-based therapeutic strategies.
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Introduction
Colorectal cancer (CRC) is the third most common 
cancer in the world, and is also the second most com-
mon cause of cancer-related deaths. Furthermore, in 
2018, there were more than 1.8 million new cases of and 
881,000 deaths due to CRC [1]. Although most primary 
colorectal tumours can be surgically removed, the 5-year 

survival rate of patients with advanced CRC remains low. 
Metastasis is the leading cause of cancer-related deaths 
in CRC patients, and it is estimated that more than 50% 
of patients die of metastasis [2]. Since the concept of 
angiogenesis was proposed by Maniotis et  al. in 1999 
[3], a growing number of studies have demonstrated 
the critical role of abnormal angiogenesis in the inva-
sion and metastasis of CRC. For example, elevated levels 
of vascular endothelial growth factor-A (VEGF-A) are 
closely correlated with adverse clinical outcomes in CRC 
patients [4, 5]. Hence, VEGF-A has been considered a 
prognostic marker for CRC. In summary, angiogenesis is 
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an important factor that contributes to metastasis in the 
majority of cancers, including CRC. Undoubtedly, under-
standing the mechanisms of angiogenesis is necessary to 
reduce the risk of recurrence and metastasis of CRC.

Angiogenesis mechanism in CRC​
The formation and progression of CRC are inseparable 
from angiogenesis, and angiogenesis plays an important 
role in CRC proliferation and metastasis [6]. In gen-
eral, when a tumour is more than 2 mm in diameter, its 
growth can no longer be maintained by tissue penetra-
tion, resulting in a hypoxic microenvironment of the 
tumour [7]; therefore, the tumour requires the formation 
of new blood vessels to provide oxygen and nutrients [8]. 
After vascular overgrowth, tumour growth and metasta-
sis are promoted by the release of proangiogenic factors, 
the intensity of which depends on the level of the acti-
vation pathway and proangiogenic signals [9]. This pro-
cess is regulated by a variety of angiogenic factors, such 
as vascular endothelial growth factor (VEGF), throm-
bospondin-1 (TSP-1), platelet-derived growth factor 
(PDGF), transforming growth factor (TGF), endothelial 
growth factor (EGF), and fibroblast growth factor (FGF) 
[10–15]. With the continuous research on antiangiogenic 
therapy that has occurred over the years, targeting angio-
genesis has become an important therapeutic strategy for 
a variety of tumours, including CRC.

As a member of the VEGF family, VEGF-A has been 
widely recognized as a major participant in tumour angi-
ogenesis [16]. Multiple pathways in a variety of cancers, 
including CRC, induce VEGF-A expression and pro-
mote tumour angiogenesis [17, 18]. Vascular endothelial 
growth factor receptor 2 (VEGFR2), as a receptor for 
VEGF, has been shown to be a target for blocking tumour 
angiogenesis in a number of studies [19]. Bevacizumab is 
an antagonist of VEGF that significantly inhibits tumour 
angiogenesis and tumour progression and has been rec-
ognized as a first-line treatment for liver metastases in 
CRC [20, 21].

However, similar traditional antiangiogenic therapies 
sometimes cause hypoxia and metastasis during treat-
ment, which in turn accelerate tumour growth [22, 23]. 
The miR-125 family consists of miR-125a, miR-125b-1 
and miR-125b-2 [24] and has been shown to be involved 
in a variety of cancer processes. Members of the miR-
125 family appear to have opposite effects in differ-
ent cancers. For example, miR-125b has been shown to 
have tumour-suppressing properties in various cancers, 
including liver cancer [25], oral squamous cell carci-
noma (OSCC) [26], and breast cancer [27]. In contrast, 
miR-125b also is an oncogene in several cancers, includ-
ing pancreatic cancer [28] and glioblastoma [29]. The dif-
ferent properties of miR-125 family members expressed 

in various cancers indicate that these miRNAs have 
highly diverse regulatory functions in cancer progres-
sion and that their underlying mechanisms in different 
cancer environments may differ. Therefore, the molecular 
mechanism of angiogenesis in CRC must be clarified in a 
more precise manner. CRC treatment features antiangio-
genic agents. Recent studies have found that microRNAs 
(miRNAs) also play an important regulatory role in the 
molecular mechanism of tumour angiogenesis, and the 
identification of key miRNAs has served an important 
role in the development of more precise CRC targeted 
therapy strategies.

Introduction to miRNAs
MiRNAs are small noncoding RNAs of ~ 20–24 nucleo-
tides in length that translationally inhibit or degrade tar-
gets by recognizing the 3′ untranslated region (3′-UTR) 
of mRNAs. As gene expression regulators, miRNAs con-
trol ~ 30% of human genes [30–33].

The first miRNA was discovered in nematodes in 1993, 
and since then, the development of molecular biology 
techniques has allowed the function of miRNAs to be 
increasingly and comprehensively studied; as such, the 
importance of miRNAs has been widely recognized. In 
recent years, some studies have indicated that miRNAs 
play a key role in the tumour growth, metastasis and 
immune response in CRC and that miRNAs can act as 
oncogenes or tumour suppressors. MiR-196a-5p is a 
proto-oncogene that regulates CRC epithelial–mesen-
chymal transition (EMT) by binding to IκBα and pro-
moting CRC proliferation, metastasis and invasion [34]. 
MiR-500a-5p was confirmed to be a tumour suppres-
sor that was significantly downregulated in CRC, inhib-
ited CRC tumour growth and metastasis by regulating 
HDAC2 and was negatively regulated by YY1 [35]. Based 
on recent advances in miRNA-based therapies [36, 37], 
miRNAs have become an effective treatment and prog-
nostic indicator for CRC. That is, serum miRNAs have 
been shown to be predictors of CRC tumour recurrence 
and treatment outcomes [38].

The biogenesis and function of miRNAs are constantly 
being researched, the understanding of these factors 
is constantly being improved, and the effect of miRNA 
regulation on tumour angiogenesis is becoming increas-
ingly clear. MiRNAs regulate angiogenesis during normal 
physiological processes, such as wound healing, and the 
aberrant expression of miRNAs can promote and inhibit 
angiogenesis during tumour progression [9, 39, 40]. 
Therefore, identifying key miRNAs involved in vascular 
angiogenesis will play an important role in the develop-
ment of better therapeutic strategies. In this review, we 
summarized the exact targets of miRNA that act on CRC 
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angiogenesis in recent years, and explored possible meth-
ods for targeted treatment of CRC angiogenesis.

MiRNAs that inhibit angiogenesis (Fig. 1)
The functions of miRNAs are diverse and affect tumo-
rigenesis, invasion, and metastasis. A series of recent 
studies have reported the mechanisms by which many 
miRNAs inhibit angiogenesis in CRC. These reports pro-
vide new targets for treatment strategies targeting angio-
genesis in CRC (Table 1). VEGFA has been shown to be a 
good therapeutic target in antiangiogenic strategies [41]. 
However, the long-term use of VEGF-related drugs often 
has various side effects. For example, the long-term use of 
the VEGFA monoclonal antibody bevacizumab induces 
osteonecrosis [42]. Hence, it is important to search for 
better targets for angiogenesis therapy and eliminate side 
effects.

MiRNAs targeting VEGF inhibit CRC angiogenesis
Among miRNAs, miR-622 is an miRNA involved in vari-
ous cancers, such as ovarian cancer, liver cancer, and gas-
tric cancer [43–45], and it has been recently reported to 
regulate the angiogenesis of CRC by inhibiting CXCR4-
VEGFA [46]. VEGF-A is an important receptor for VEGF, 
is involved in angiogenesis, and triggers the germination 
of prevascular endothelial cells to induce new vasculature 
formation. Similarly, miR-590-5p also inhibits the angi-
ogenesis of CRC by affecting VEGF-A [47]. It has been 
reported that miR-590-5p acts as an oncogene in cervical 

Fig. 1  MiRNAs that regulates angiogenesis in colorectal cancer

Table 1  miRNAs that inhibit angiogenesis in CRC​

MiRNA Target References

MiR-107 HIF-1β [74]

MiR-1249 VEGFA/HMGA2 [76]

MiR-125a-3p PI3K/AKT [57]

MiR-126 VEGF [53]

MIR-1299 STAT3 [81]

MiR-143 PI3K/AKT/HIF-1α/VEGF [61]

MiR-145 p70S6K1/HIF-1α/VEGF [69]

MiR-148a pERK/HIF-1α [72]

MiR-15-16 c-Myc/Max/HIF-2α/FGF2 [105]

MiR-181a-5p MMP-14 [109]

MiR-19a KRAS [97]

MiR-193a-3P PLAU [93]

MiR-206 Met/ERK/Elk-1/HIF-1α/VEGF-A [71]

MiR-216b HMGB1 [79]

MiR-27b VEGFC [54]

MiR-33a ST8SIA1 [64]

MiR-375 CTGF/EGFR [87]

MiR-520a VEGFA [51]

MiR-590-5p VEGFA [45]

MiR-622 CXCR4-VEGFA [42]

MiR-6868-5p FOXM1/IL-8 [101]

MiR-7 EGFR/ERK [84]

MiR-885-3p BMP/Smad/Id1 [104]
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cancer and a tumour suppressor in renal cancer [48, 49]; 
miR-590-5p is downregulated in normal tissues com-
pared with CRC tissues, particularly compared with non-
metastatic CRC tissues. MiR-590-5p has been shown to 
inhibit tumour angiogenesis mainly by inhibiting NF-90/
VEGF-A, thereby reducing the enhanced migration abil-
ity of CRC cells [47]. MiR-520 was first discovered to act 
as a tumour suppressor in breast cancer, in which it tar-
gets the NF-κB and TBF-β pathways [50], and its family 
members have also been found to be downregulated in 
CRC. Furthermore, miR-520a can inhibit the prolifera-
tion of oesophageal squamous cell carcinoma by down-
regulating cysteine-rich C-terminal 1 (CRCT1) [51], and 
miR-520a-3p can accelerate apoptosis and inhibit cell 
migration by targeting epidermal growth factor receptor 
(EGFR) [52]. In addition, miR-520a acts as a direct target 
of VEGFA, while ATAD2 can inhibit VEGFA secretion 
by increasing the expression of miR-520a, thereby reduc-
ing angiogenesis in CRC [53]. MiR-126 is dysregulated 
in a variety of cancers, is highly expressed in endothelial 
cells, and is an angiogenesis inhibitor [54]. Furthermore, 
miR-126 is usually epigenetically silenced in CRC, and 
the recovery of miR-126 directly inhibits VEGF expres-
sion and reduces angiogenesis, invasion and migration in 
CRC [55]. MiR-27b inhibits the angiogenesis of CRC by 
targeting VEGF-C and downregulating DNA hypermeth-
ylation, thereby inhibiting the growth of CRC tumours 
[56]. MiR-150-5p acts as a tumour suppressor in CRC, 
in which it inactivates Akt/mTOR signalling through 
direct inhibition of VEGF-A [57]. MiR-125 inhibits VEGF 
expression by targeting the 3′ untranslated region of 
VEGF mRNA, thereby promoting apoptosis in RKO CRC 
cells [58]. The central role of VEGF in the pathogenesis of 
angiogenesis has also become evident. Instructions of the 
molecular mechanisms of VEGF and the transformative 
development of multiple therapeutic pathways targeting 
VEGF directly or indirectly is a powerful case study of 
how fundamental research can guide clinical. There are 
many ways that miRNA targets VEGF to inhibit angio-
genesis, which also provides a new theoretical basis for us 
to search for new targeted drugs.

MiRNA inhibits CRC angiogenesis via PIK3/AKT
The fucosyltransferase (FUT) family is involved in a vari-
ety of cancers, including CRC. In recent reports, miR-
125a-3p was shown to be negatively correlated with the 
expression of FUT5 and FUT6. FUT5 and FUT6 can be 
used as direct targets of miR-125a-3p, and miR-125a-3p/
FUT5-FUT6 attenuates angiogenesis in CRC cells and 
inhibits tumour growth by affecting the PI3K/AKT sig-
nalling pathway [59]. PI3K/AKT signalling plays an 
important role in the development of tumours, which 
may cause tumour growth and angiogenesis, and these 

functions are abnormally activated in a variety of cancers 
[60, 61]. Several strong inhibitors of tumour angiogenesis 
targeting the PI3K/AKT pathway have been developed 
[62]. However, the PI3K/AKT pathway is involved in the 
biological functions of various normal cells, and thus, 
the cellular process that depend on the PI3K/AKT path-
way can be affected by such treatments. Hence, there is 
a need to reduce the side effects of related drugs. MiR-
143 is a tumour suppressor that is downregulated in CRC 
and inhibits tumour angiogenesis via the PI3K/AKT/
HIF-1α/VEGF pathway [63]. MiR-143 inactivates AKT 
and inhibits HIF-1α, and VEGF inhibits tumour angio-
genesis. Similarly, insulin-like growth factor-I receptor 
(IGF-IR) had been identified as a direct target of miR-
143. MiR-143 can reduce the resistance to oxaliplatin 
by binding to IGF-IR. Treatment of CRC with differ-
ent agents has provided new information [63]. MiRNA 
inhibits the angiogenesis of CRC through the PI3K/AKT 
pathway, and in recent reports, miR-182 and miR-135b 
were also shown to promote CRC invasion and angio-
genesis via the PI3K/AKT pathway [64]. The expression 
of miR-182 and miR-135b in tumour tissues and cells is 
higher than that in normal tissues, and the angiogenesis 
of CRC is promoted by direct targeting of ST6GALNAC2 
to activate the PI3K/AKT pathway. Both ST8SIA1 and 
ST6GALNAC2 belong to the sialyltransferase (ST) family 
of enzymes, which promote tumour growth and metas-
tasis [65]. In CRC, miR-33a inhibits tumour angiogenesis 
and metastasis by regulating ST8SIA1, and the overex-
pression of miR-33a can inhibit CRC cell resistance [66]. 
The PI3K/AKT pathway modulates the expression of 
many angiogenic factors such as VEGF nitric oxide and 
angiopoietins. Numerous inhibitors targeting the PI3K/
AKT pathway have been developed, and these drugs 
reduce VEGF secretion and angiogenesis. However, their 
effect on the tumor’s vascular system can be difficult to 
predict. The discovery of miRNA targeting PI3K/ Akt 
may provide new ideas for this purpose. Activation of the 
PI3K/ Akt pathway in tumor cells also increases VEGF 
secretion through hypoxia-inducible factor 1α (HIF-1α) 
dependent and independent mechanisms.

MiRNAs that inhibit angiogenesis via HIF‑1α
HIF-1α is one of the central molecules that mediate 
the development of cancer and is a key regulator of 
VEGF. HIF-1α is involved in tumour angiogenesis in a 
variety of pathways [17, 67, 68] and is one of the most 
promising targets for tumour angiogenesis. Various 
miRNAs are also involved in the regulation of HIF-1α 
[69]. HIF-1α can regulate miRNAs, and miRNAs can 
also act on HIF-1α. This bidirectional regulation plays 
a very important role in tumour progression. There-
fore, the mechanism by which miRNAs affect HIF-1α 
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is modulated and is necessary. MiR-145 is downregu-
lated in the early stage of intestinal cancer and is a 
tumour suppressor [70]. In CRC, miR-145 can inhibit 
HIF-1α and VEGF by targeting p70S6K1, thereby 
reducing the angiogenic ability of CRC [71]. MiR-206 
is a tumour suppressor, and the downregulation of 
miR-206 promotes angiogenesis in breast cancer [72]. 
In CRC, miR-206 acts on the Met/ERK/Elk-1/HIF-1α/
VEGF-A pathway to inhibit tumour angiogenesis, and 
CCL19 can drive this process by promoting miR-206 
expression [73]. MiR-148a downregulates VEGF via 
the pERK/HIF-1α pathway, inhibits tumour angiogen-
esis and reduces the risk of early recurrence in CRC 
patients [74]. MiR-195-5p is a multifunctional miRNA 
that acts as a tumour suppressor in CRC and has not 
only multiple targets that inhibit CRC cell migration 
by regulating EMT but also multiple targets that affect 
blood vessels, such as HIF-1α and VEGF. To downregu-
late production factors, miR-195-5p has an inhibitory 
effect on invasion and angiogenic mediators in invasive 
CRC cells [75].

MiR-107 is a tumour suppressor expressed in human 
colon cancer specimens and is regulated by P53, which 
reduces hypoxia signalling by inhibiting HIF-1β expres-
sion and reduces tumour angiogenic capacity [76]. 
P53 is a tumour suppressor. However, due to its sus-
ceptibility to mutation, P53 mutation or loss is con-
sidered to be a critical step in tumour progression and 
often suggests poor prognosis of tumours [77]. In a 
recent report, P53-induced miR-1249 expression was 
decreased in CRC tissues and cell lines and inhibited 
CRC metastasis and angiogenesis by affecting VEGFA 
and HMGA2 both in vivo and in vitro [78]. HMGA2 is 
a member of the HMGB family, is expressed in a vari-
ety of cancers, and is associated with immunopositiv-
ity and tumour aggressiveness. Hence, HMGA2 is used 
as a tumour marker [79]. HMGA1 is another member 
of the HMGA family and plays a key role in CRC, and 
HMGA1 overexpression is associated with a lower 
overall survival rate in patients with CRC [80]. MiR-
216b inhibits the proliferation, invasion and angiogene-
sis of CRC by directly targeting HMGB1. Furthermore, 
downregulation of miR-216b promotes the progression 
of CRC by affecting JAK2/STAT3 signalling [81]. As 
a very important member of the STAT family, STAT3 
has been shown to be involved in cancer cell prolifera-
tion, metastasis, and angiogenesis in multiple reports, 
and STAT3 regulates tumour angiogenesis by regulat-
ing VEGF and HIF-1α [82]. MiR-1299 promotes the 
apoptosis of CRC cells by inhibiting the STAT3 path-
way and inhibiting CRC. Furthermore, miR-1299 may 
be a related regulator of angiogenesis. However, further 
studies are needed [83].

MiRNAs targeting EGFR to regulate CRC angiogenesis
EGFR is overexpressed in a variety of tumours. Further-
more, it is a carcinogenic factor. EGFR regulates cell pro-
liferation by activating extracellular regulatory protein 
kinase (ERK) [84]. In addition, EGFR also plays an impor-
tant role in the vascular growth of CRC, and its targeted 
inhibitors also play an important role in the treatment of 
cancer [85]. The expression of EGFR can be regulated by 
microRNA: miR-7 inhibits the angiogenesis of CRC by 
downregulating ERK signalling through EGFR. The over-
expression of miR-7 downregulates EGFR, ERK1/2 and 
VEGF and upregulates TSP-1 [86]. EGFR is involved in 
a variety of cellular responses, such as cell proliferation, 
differentiation and migration [87, 88]. EGFR binds to 
CTGF to phosphorylate and activate downstream signal-
ling. MiR-375 inhibits CRC tumour growth, migration 
and angiogenesis by targeting the CTGF/EGFR-induced 
downregulation of the PIK3CA-AKT and BRAF-ERK1/2 
cascades, thereby acting as a tumour suppressor. In 
addition, miR-375 and cetuximab also work together to 
induce an anticancer effect [89]. The results of miR-375 
overexpression and cetuximab treatment experiments 
revealed synergistic enhancement of apoptosis and 
necrosis of colon cells.

Recent reports have revealed that miR-193a-3P has 
both cancer-promoting and tumour-suppressing effects, 
which may be correlated with its environment. However, 
most studies have reported that miR-193a-3P can inhibit 
tumour invasion [90–92], and only a few reports have 
indicated that miR-193a-3P can promote the progression 
of oesophageal squamous cell carcinoma as a cancer-
promoting gene [93]. However, miR-193a-3P is expressed 
at low levels in CRC tissues and is associated with the 
prognosis of patients with CRC [94]. In a recent report, 
miR-193a-3P inhibited the proliferation, migration and 
angiogenesis of CRC by targeting plasminogen activator 
urokinase (PLAU) [95]. PLAU is a highly expressed urok-
inase plasminogen activator (uPA), and its high expres-
sion often indicates a poor prognosis. PLAU accelerates 
tumour metastasis by affecting the ECM and basement 
membrane, accelerating cell migration and angiogenesis 
[96]. In ovarian cancer, uPA regulates the AKT/mTOR/
MMP-2/Laminin5γ2 signalling pathway to promote angi-
ogenesis [97]. However, in CRC, miR-193a-3P can inhibit 
tumour angiogenesis by downregulating PLAU [94]. 
Since the exact downstream pathway remains unclear, 
further research is still needed. Recent reports have indi-
cated that miR-193a-3P can inhibit tumour progression 
by targeting KRas in lung cancer.

KRAS and miRNAs affect angiogenesis
The KRAS (k-ras, p21) gene plays an important role in 
regulating tumour growth and angiogenesis. Activation 
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of KRAS mutations induces CRC cell growth, invasion, 
and metastasis; and thus is considered a critical step 
in the progression of CRC [98]. KRAS gene detection 
is the most direct and effective method to understand 
the status of oncogenes in patients with colorectal can-
cer. Through detection of KRAS, we can understand the 
status of oncogenes, so as to screen out targeted drugs 
against EGFR. Recently, highly expressed miR-19a was 
shown to downregulate KRAS to reduce angiogenesis, 
and specifically angiogenesis in CRC, and this effect 
was restored after the re-expression of KRAS, indicat-
ing that miR-19a can directly regulate KRAS and reduce 
the angiogenesis of CRC [99]. Other studies have shown 
that miR-19a is negatively correlated with TF expression 
in patients with early colon cancer, and can inhibit TF 
expression in  vitro and inhibit the migration and inva-
sion of CRC [100]. Interestingly, in other studies, miR-
19a showed a different effect. These studies have shown 
that miR-19a promotes the proliferation and migra-
tion of colorectal cancer [101–103], and that miR-19a is 
also associated with lymphatic metastasis and mediates 
TNF-α-induced epithelial mesenchymal transformation 
in colorectal cancer [104]. The differences in the above 
research results, may be related to the different cell lines 
selected, or may be caused by an undiscovered mecha-
nism, just like miRNAs play the opposite role in different 
cancers, such as miR-125b in breast cancer both promote 
cancer [105] and inhibiting cancer [106]. Therefore, it is 
particularly necessary to clarify the specific mechanism 
of miRNA’s regulation of angiogenesis, which is of great 
significance for the application of miRNA to target angio-
genesis in the treatment of tumors.

FOXM1 and miRNAs in angiogenesis
Forkhead box M1 (FOXM1) is a member of the FOX 
superfamily. It is overexpressed in a variety of cancers, 
including CRC [107], in which it promotes EMT, angio-
genesis, cell proliferation, stem cell self-renewal, etc. 
As an activator of tumour metastasis, it exhibits a wide 
variety of cancer-promoting properties. FOXM1 is a 
major regulator of CRC and can be used as an indicator 
of poor prognosis [108, 109]. Recent studies have shown 
that miR-6868-5p is able to inhibit tumour angiogen-
esis by inhibiting the FOXM1-IL-8 axis. In turn, FOXM1 
also downregulates miR-6868-5p by stimulating EZH2-
mediated transcription [110]. In general, the expression 
of miR-6868-5p is downregulated in CRC, and down-
regulation of miR-6868-5p inhibits tumour angiogenesis 
through inhibition of FOXM1; FOXM1 can also inhibit 
miR-6868-5p expression through promoter histone 
methylation. The pro-angiogenic factor IL-8 has been 
identified as a transcriptional target of FOXM1, and it 
was revealed that miR-6868-5p reduces angiogenesis 

and IL-8 expression by inhibiting FOXM1 expression. 
FOXM1 can promote the expression of EZH2 and inhibit 
the transcription of miR-6868-5p by enhancing the level 
of H3K27me3 at the miR-6868 promoter [110]. These 
findings provide a new perspective on the mechanism of 
CRC angiogenesis.

BMPs affect angiogenesis with miRNAs
Bone morphogenetic proteins (BMPs) are also involved 
in angiogenesis; they trigger signalling through BMP/
Smad to affect angiogenesis, and ID1 is their immediate 
downstream effector. The DNA-binding protein inhibi-
tor ID-1 (ld1) is overexpressed in tumours and inhibits 
tumour angiogenesis in mice. As one of the most potent 
angiogenic factors, ID1 can serve as a direct antiangio-
genic target [111, 112]. In a recent study, it was reported 
that miR-885-3p could inhibit the angiogenesis of CRC 
by regulating BMPR1A to disrupt the BMP/Smad/Id1 
signalling pathway, thereby inhibiting the growth of CRC 
cells [113].

Other miRNAs that regulate angiogenesis
MiR-15-16 is a tumour suppressor that has been shown 
to promote apoptosis and inhibit cell proliferation in 
various independent studies. In addition, recent research 
reported that c-Myc/Max, HIF-2α, miR-15-16 and FGF2 
signalling regulation can modulate CRC angiogenesis 
under hypoxic conditions. Under hypoxic conditions, 
HIF-2α-induced c-Myc/Max heterodimer stability is 
much stronger than HIF-1α-induced c-Myc degradation, 
resulting in the inhibition of miR-15-16 under hypoxic 
conditions. The enhanced expression of FGF2 promotes 
tumour angiogenesis and metastasis [114].

MiR-181a-5p belongs to the miR-181 family, which 
includes miR-181a, miR-181b, miR-181c and miR-181d. 
Recent reports have indicated that such miRNAs play 
an important role in tumour transformation. Further-
more, some studies have shown that miR-181 mem-
bers promote the formation of tumours [115]. However, 
miR-181a-5p is specific tumour marker, and it has been 
reported to promote the progression of cervical cancer 
[116]. On the other hand, miR-181a-5p has been shown 
to inhibit tumour growth in liver cancer [117]. In breast 
cancer and colon cancer, there is evidence that miR-
181a-5p can inhibit the invasion and migration of can-
cer cells and angiogenesis by inhibiting the expression of 
MMP-14 [118]. These controversial findings indicate the 
complexity of miRNA functions and that the functions of 
miRNAs in different types of tumours may significantly 
differ. However, various studies use tumour tissues, 
which include a variety of normal cells and tumour cells, 
and this practice may lead to incorrect conclusions about 
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the expression levels of specific miRNAs. As such, fur-
ther research is needed.

MiRNAs that promote angiogenesis (Table 2)
MiR-181a also plays a role in a variety of tumours. For 
example, in chondrosarcoma, miR-181a increases VEGF 
to promote tumour growth [119]. Unlike miR-181a-5p, 
which was shown to inhibit angiogenesis in CRC, miR-
181a was shown to inhibit angiogenesis in CRC in a 
recent study. MIR-181a activates SRC by inhibiting 
SRCIN1, which ultimately leads to increased secretion 
of VEGF and promotes angiogenesis in CRC. This study 
demonstrated that the miR-181a-SRCIN1-SRC-VEGF 
cascade plays an important role in the regulation of 
tumour angiogenesis and that blocking this pathway can 
significantly reduce tumour angiogenesis [120]. MiR-194 
reduces platelet-reactive protein-1 (TSP-1), reducing its 
damage to endothelial cells and effects on VEGF and pro-
moting angiogenesis in colon cancer [121].

Exosomes are extracellular small vesicles that con-
tain lipids, proteins and various nucleic acids, including 
RNA, DNA and miRNA. Most cells secrete exosomes 
under normal and pathological conditions, while tumour 
exosomes are derived from outside the tumour. The body 
includes many species of miRNA [122, 123]. Exosomes 
are one of the cancer-derived factors that cause dis-
tant organ metastasis and promote tumour angiogen-
esis and metastasis [124, 125]. However, determining 
how tumour-derived exosomes specifically regulate the 
tumour microenvironment before metastasis by inducing 
angiogenesis requires more research. In a recent study, it 
was shown that exomiR-1229 can promote CRC angio-
genesis by directly regulating HIPK2. HIPK2 can inhibit 
several angiogenic genes, including MMP10 and VEGF, 
to inhibit angiogenesis, while exomi-1229 promotes CRC 
tumour angiogenesis by inhibiting HIPK2 and inhibit-
ing P-AKT and VEGFA in CRC [126]. CRC-secreted 
miR-25-3p can inhibit the activity of the VEGFR2 pro-
moter and disrupt the integrity of the endothelial bar-
rier by regulating KLF2 and KLF4, resulting in increased 

vascular permeability and angiogenesis and thereby pro-
moting CRC metastasis. In addition, blocking its secre-
tion can reduce the angiogenesis and metastasis of CRC 
[127]. It has been well demonstrated that miR-25-3p can 
be used as a therapeutic target to disrupt CRC angiogen-
esis and metastasis. MiR-1246 secreted by colorectal can-
cer exosomes directly regulates promyelocytic leukaemia 
(PML) mRNA, which inactivates Smad2/3 signalling and 
activates Smad-1/5/8 signalling, leading to endothelial 
cell growth and tumour angiogenesis [128].

Clinical studies based on miRNAs affecting angiogenesis
In recent years, antiangiogenic strategies have become 
an important treatment for metastatic colorectal can-
cer (mCRC), and various antiangiogenic agents have 
emerged. However, there are still no validated mark-
ers for the treatment of angiogenesis. MiRNAs have 
been shown to regulate angiogenesis in a variety of 
cancers. Comprehensive miRNA-based therapies may 
have better efficacy and fewer adverse effects than con-
ventional chemotherapy. Bevacizumab, which inhibits 
VEGF-A, has been used in a variety of therapeutic regi-
mens [129]. Furthermore, recent studies have shown 
that miR-20b-5p, miR-29b-3p and miR-155-5p can be 
used to monitor the response to bevacizumab, and high 
expression levels of these miRNAs often suggest good 
prognosis in mCRC patients treated with bevacizumab. 
Measuring the expression of these miRNAs before treat-
ment helps to identify patients who will likely be resist-
ant to bevacizumab therapy, thereby enabling a better 
treatment regimen to be administered [130]. Hanen 
et  al. [131, 132] demonstrated that miR-126 has predic-
tive value for the first-line capecitabine and oxaliplatin 
treatment in mCRC. Highly expressed miR-126 is often 
associated with anti-VEGFA chemotherapy response in 
mCRC, in which high expression of miR-126 is related to 
good prognosis.

Conclusion
Angiogenesis plays an important role from the early stage 
of colon cancer to the late phase of metastasis. There 
is ample evidence that angiogenesis is a complex pro-
cess that involves multiple factors and processes. MiR-
NAs have a large impact on such factors and processes, 
and they are potential targets for chemoprevention and 
chemotherapy. Studies have shown that miRNAs, as a 
new therapeutic target for tumours, can be successfully 
regulated through a series of techniques. For example, 
miRNA antagonists and mimetics may be important 
new classes of drugs that regulate angiogenesis in colon 
cancer. A good understanding of the role of miRNAs in 
the regulation of angiogenesis can help to fully under-
stand the function of miRNAs and their targets and can 

Table 2  MiRNAs that promote angiogenesis in CRC​

MiRNA Target References

MiR-1229 HIPK2 [117]

MiR-1246 PML/Smad 1/5/8 [119]

MiR-135b PI3K/AKT [62]

MiR-181a SRCIN1 [111]

MiR-182 PI3K/AKT [62]

MiR-194 TSP-1 [112]

MiR-25-3p KLF2/KLF4/VEGF [118]
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provide more pathways to target with miRNA-based 
therapeutic applications. However, there are relatively 
few clinical studies on the role of miRNAs in CRC angio-
genesis. Despite some challenges, numerous discover-
ies have been made over the past few years, providing a 
broad perspective for the use of miRNAs in future tar-
geted therapies.
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