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Abstract 

Background:  Gliomas account for the majority of fatal primary brain tumors, and there is much room for research 
in the underlying pathogenesis, the multistep progression of glioma, and how to improve survival. In our study, we 
aimed to identify potential biomarkers or therapeutic targets of glioma and study the mechanism underlying the 
tumor progression.

Methods:    We downloaded the microarray datasets (GSE43378 and GSE7696) from the Gene Expression Omnibus 
(GEO) database. Then, we used weighted gene co-expression network analysis (WGCNA) to screen potential biomark-
ers or therapeutic targets related to the tumor progression. ESTIMATE (Estimation of STromal and Immune cells in 
MAlignant Tumors using Expression data) algorithm and TIMER (Tumor Immune Estimation Resource) database were 
used to analyze the correlation between the selected genes and the tumor microenvironment. Real-time reverse 
transcription polymerase chain reaction was used to measure the selected gene. Transwell and wound healing assays 
were used to measure the cell migration and invasion capacity. Western blotting was used to test the expression of 
epithelial-mesenchymal transition (EMT) related markers.

Results:  We identified specific module genes that were positively correlated with the WHO grade but negatively 
correlated with OS of glioma. Importantly, we identified that 6 collagen genes (COL1A1, COL1A2, COL3A1, COL4A1, 
COL4A2, and COL5A2) could regulate the immunosuppressive microenvironment of glioma. Moreover, we found 
that these collagen genes were significantly involved in the EMT process of glioma. Finally, taking COL3A1 as a further 
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Introduction
Gliomas are the most fatal primary brain tumors [1]. 
There were about 30 % central nervous system (CNS) 
tumors diagnosed as gliomas in the United States, and 
even worse, this data was as high as 81 % in malignant 
CNS tumors [2]. The World Health Organization (WHO) 
classified gliomas into grades I–IV based on histologi-
cal characteristics, which contained increased degrees 
of anaplasia, undifferentiation, and infiltration [3]. Dif-
fuse low-grade (WHO grade II) and III intermediate-
grade gliomas are called lower-grade gliomas (LGGs) 
[4]. Because of their rapid growth and highly remarkable 
aggressiveness, a subset of these LGGs will develop into 
glioblastoma (WHO grade IV) within several months [5]. 
Glioblastoma (GBM) is the most common and malignant 
glioma, which is characterized by poor clinical prognosis 
and the survival time rarely exceeds 14 months [6].

Unfortunately, despite some remarkable achieve-
ments, the median survival time of glioma patients has 
not been significantly prolonged in the past decades [5]. 
There is still much room for research in the underlying 
pathogenesis, the multistep progression of glioma, and 
how to improve survival. Malignant gliomas are dif-
fusely infiltrated into the surrounding normal brain tis-
sue. Brain extracellular matrix (ECM) plays a crucial 
role in modulating and driving glioma invasion [7]. The 
ECM comprises numerous proteins, including collagen, 
proteoglycans, laminin, and fibronectin [8]. Collagen is 
the most important component of the ECM acting as a 
scaffold to provide sites for tumor cell adhesion [8]. Few 
studies have focused on the relationship between colla-
gen genes and glioma; more studies are needed to eluci-
date the function of collagen genes in glioma progression.

Weighted gene co-expression network (WGCNA) is a 
powerful systems biology method to identify potential 
biomarkers or therapeutic targets and study the mecha-
nism underlying the tumor progression involved [9, 10]. 
In this study, we performed WGCNA to identify the 
clusters of highly interconnected genes that correlated 
with WHO grades and overall survival, and we found 
such module and intramodular hub genes by facilitat-
ing network-based gene screening methods. Then, six 
collagen genes (COL1A1, COL1A2, COL3A1, COL4A1, 

COL4A2, and COL5A2) were selected for further valida-
tion in Oncomine, TCGA (The Cancer Genome Atlas), 
and CGGA (Chinese Glioma Genome Atlas) database. 
Further analysis revealed that the expression of the col-
lagen genes is positively related to stromal and immune 
scores, immunosuppressive cell recruitment and immu-
nosuppressive factors, and the infiltration of various 
immune cells. Moreover, our study also demonstrated 
that the collagen genes were significantly involved in the 
epithelial-mesenchymal transition (EMT) process, which 
was closely related to glioma malignancies. Finally, taking 
COL3A1 as a further research object, the result showed 
that knockdown COL3A1 could significantly inhibit the 
migration, invasion, and EMT process of glioma cells in 
vitro. These results may provide a novel understanding of 
collagen genes in glioma progression. At the same time, 
we also found that collagen genes may become promising 
therapeutic targets for fighting against gliomas.

Materials and methods
Data collection
The gliomas mRNA expression microarrays were down-
loaded from the repository browser of the Gene Expres-
sion Omnibus (GEO) database (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/​summa​ry/). We selected such datasets of 
which the presented sample information contained 
WHO grades and survival time. Besides, datasets with 
a sample size of less than 30 were removed to mini-
mize bias resulted from small samples. Ultimately, data-
sets with the accession number of GSE43378 [11] and 
GSE7696 [12, 13] performed on the Affymetrix Human 
Genome U133 Plus 2.0 Array platform (GPL570) were 
downloaded. The raw data (CEL files and annotation 
files) of this platform and related sample information 
were also obtained. There were a total of 120 glioma 
samples and 4 non-tumor specimens after eliminating 
recurrent samples. Moreover, TCGA GBMLGG data-
set (dataset ID: TCGA.GBMLGG.sampleMap/HiSeqV2) 
downloaded from the UCSC Xena database (https://​
xena.​ucsc.​edu/​public) and CCGA glioma dataset (https://​
www.​cgga.​org.​cn/; dataset ID: mRNAseq_325) were used 
as validation datasets in this study.

research object, the results showed that knockdown of COL3A1 significantly inhibited the migration, invasion, and 
EMT process of SHG44 and A172 cells.

Conclusions:  In summary, our study demonstrated that collagen genes play an important role in regulating the 
immunosuppressive microenvironment and EMT process of glioma and could serve as potential therapeutic targets 
for glioma management.

Keywords:  Glioma, Collagen gene, Weighted gene co-expression network analysis (WGCNA), Prognostic markers, 
Epithelial-mesenchymal transition (EMT), Immune microenvironment
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Differentially expressed genes (DEGs) screening
We applied the R package “affy” [14] for preprocessing 
expression microarrays. Briefly, original files were nor-
malized using the Robust-Multi Array (RMA) method 
followed by logarithm transformed based on 2. Sub-
sequently, another R package “sva” [15] was used to 
adjust batch effects between different datasets and the 
“limma” [16] package to screen differentially expressed 
genes (DEGs) between gliomas and non-tumor con-
trols. The cut-off criteria of DEGs were defined as log2 
fold-change (log2FC) more than 1 or less than − 1 with 
false discovery rate (FDR) adjusted p-value less than 
0.05.

Gene co‑expression network construction
A weighted gene co-expression network of DEGs was 
constructed by using an R package “WGCNA” [9]. Out-
lier samples were eliminated by clustering analysis before 
WGCNA analysis to ensure network reliability. A suit-
able soft threshold power of 8 with a model fitting index 
R2 > 0.9 was selected to maximize scale-free topology and 
the adjacencies matrix of topology similarity were calcu-
lated applying a power function, following, transformed 
to a topological overlap matrix (TOM). Then, the cor-
responding dissimilarity (1-TOM) was also calculated as 
the distance to hierarchically cluster genes, with which 
the modules were identified by the dynamic tree cut 
method and resulted to dendrogram. The module eigen-
gene (ME) and module membership (MM) were calcu-
lated by function moduleEigengenes and signedKME 
respectively. ME was considered as the first principal 
component of a clustered module representing the gene 
expression profiles, and MM correlated ME with gene 
expression values, so it quantified the membership of a 
gene with respect to a given module.

Identifying significant modules associated with clinical 
traits
MEs were applied to evaluate the correlations between 
identified modules and clinical traits including WHO 
grade and survival time. It was considered statistically 
significantly correlated when the p-value of Pearson’s 
correlation tests was no more than 0.05. The module was 
identified as the candidate that of the most outstanding 
correlation coefficients and significant correlations with 
clinical traits. For further analysis, the gene significance 
(GS) was defined as the correlation between individual 
genes and clinical traits. Generally, GS and MM were 
highly associated, meaning that the genes were highly 
important elements and significantly correlated with 
clinical traits.

GO terms and KEGG pathways
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis of candi-
date module genes were performed to understand the 
biological functions [17]. GO terms which included cel-
lular components (CC), biological processes (BP), and 
molecular function (MF) were achieved in the Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID), and KEGG pathway enrichment analysis was 
accomplished in R software using KEGG package. The 
enrichment analysis was considered as significant only 
when the FDR < 0.05.

Screening and validation of the collagen genes
The co-expression network of the candidate module was 
imported to Cytoscape [18] software (v3.6.1), which is 
powerful for integrating and visualization biomolecular 
interaction networks. Hub genes that highly connected 
intramodule were determined by cytoHubba. Genes that 
positively correlated with glioma grade and with a sig-
nificant p < 0.05 in grade plots and survival analysis were 
defined as the “actual” hub genes. Six collagen genes were 
identified from the hub genes for further analysis.

Subsequently, to determine the expression level of col-
lagen genes in different cancer types and validate the 
relationship between candidate collagen genes and gli-
oma grades, online expression analysis was performed 
on the database Oncomine [19] (https://​www.​oncom​
ine.​org/). Simultaneously, the Chinese Glioma Genome 
Atlas (CGGA) dataset was used to not only validate the 
relationship between candidate gene expression and 
WHO grades, but also molecular subgroup based on the 
mutation status of IDH and codeletion status of 1p/19q. 
Moreover, GBMLGG RNA-seq datasets in The Cancer 
Genome Atlas (TCGA) database was download from 
UCSC Xena (https://​xena.​ucsc.​edu/) to validate the rela-
tionship between candidate gene expression and WHO 
grades, and overall survival (OS) analyses were also 
completed in the Gene Expression Profiling Interactive 
Analysis (GEPIA) [20] database to display the prognostic 
values of these genes. Finally, the protein-level validation 
of the collagen genes was carried out in the Human Pro-
tein Atlas database (https://​www.​prote​inatl​as.​org/).

Analysis of immune infiltration characteristics
ESTIMATE (Estimation of STromal and Immune cells in 
MAlignant Tumors using Expression data) is a method 
that uses gene expression profile to infer the fraction of 
stromal and immune cells in tumor samples [21]. Three 
scores are generated by the ESTIMATE algorithm: stro-
mal score (reflecting the infiltration of stromal cells in 
tumor samples), immune score (reflecting the infiltration 
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of immune cells in tumor samples) and estimate score 
(inferring tumor purity in tumor samples). According to 
a previous study, immunosuppressive cell recruitment 
factors and immunosuppressive factors were selected for 
further analysis [22]. Then the correlation between colla-
gen expressions and immunosuppressive cell recruitment 
factor and immunosuppressive factors were analyzed by 
R language.

Associations between the collagen genes and tumor 
immune infiltrating cells
Tumor Immune Estimation Resource (TIMER) data-
base (http://​cistr​ome.​dfci.​harva​rd.​edu/​TIMER/) is an 
online tool for assessing the association between the spe-
cific gene(s) and tumor immune infiltrating cells [23]. 8 
tumor immune infiltrating cells (B-cells, CD4 + T-cells, 
CD8 + T-cells, dendritic cells, macrophages, and neutro-
phils) were included in the TIMER database. By using the 
TIMER database, we explored the correlations between 
the collagen genes and tumor immune infiltrating cells in 
both LGGs and GBM.

The correlation between EMT markers and the collagen 
genes
10 EMT-related genes (TJP1, CDH1, CDH2, FN1, VIM, 
CTNNB1, TWIST1, SNAI2, SNAI1, and ACTA2) were 
selected from published literature [22]. Based on TCGA 
database, Pearson correlation coefficients between EMT 
markers and collagen genes were calculated. Pearson cor-
relation coefficient reflects the degree of linear correla-
tion between the two genes.

Protein‑protein interaction (PPI) network construction
The 6 collagen genes and 10 EMT-related genes were 
imported into the STRING database (https://​string-​db.​
org/), which is a web tool used to explore protein-protein 
interactions.

Cell culture and real‑time quantitative PCR (qRT‑PCR)
SHG44 and A172 glioma cells were provided by Xiangya 
Medical School of Central South University, Chang-
sha, China. The SHG44 and A172 cells were cultured in 
DMEM high glucose medium (Gibco/Thermo Fisher Sci-
entifc, Inc.) with 10 % fetal bovine serum. All cells were 
maintained at 37 °C with a humidified atmosphere of 5 % 
CO2. The siRNAs against the COL3A1 gene were synthe-
sized by RiboBio Corporation (Guangzhou, China). The 
siCOL3A1 target sequence utilized in this experiment 
was the following: CUA​UGC​GGA​UAG​AGA​UGU​CTT.

Total RNA was extracted from treated SHG44 and 
A172 cells by the Trizol lysis method. cDNA synthesis 
was performed by using the Thermo Scientific Rever-
tAid First Strand cDNA Synthesis Kit (Thermo Scientific, 

Waltham, MA). RNA levels of COL3A1 were detected by 
using qRT-PCR according to the manufacturer’s protocol. 
Expression of COL3A1 and GAPDH were analyzed by 
the 2−ΔΔCt method. The primers were produced by San-
gon (Shanghai, China) and the sequences were designed 
as follows: for COL3A1, the forward primer was 5’-GGA​
GCT​GGC​TAC​TTC​TCG​C-3’ and the reverse primer was 
5’-GGG​AAC​ATC​CTC​CTT​CAA​CAG-3’. For GAPDH, 
the forward primer was 5’-CAT​TGA​CCT​CAA​CTA​CAT​
GGTT-3’ and the reverse primer was 5’-CCA​TTG​ATG​
ACA​AGC​TTC​CC-3’.

Wound healing and transwell assays
Wound healing and transwell assay were determined as 
previously described [24].

Western blotting assay
Western blotting assay was conducted as our previous 
study described [24]. Antibodies against GPDH (10494-
1-AP, Proteintech), Vimentin (10366-1-AP, Proteintech), 
and N-cadherin (22018-1-AP, Proteintech) were used in 
the Western blotting.

Immunofluorescence staining
The experiment was approved by the Human Ethics 
Committee of Xiangya Hospital (Changsha, China), and 
informed consent was obtained from all patients. Glioma 
specimens were fixed with 4 % paraformaldehyde for 
72  h, and then sectioned and subjected to sodium cit-
rate antigen retrieval. Slides were incubated in PBS (con-
taining 5 % BSA and 0.1 % Triton X-100) for 1  h at RT. 
After being incubated with primary antibodies COL1A1 
(67288-1-Ig, Proteintech) and IL-6 (67288-1-Ig, Protein-
tech) at 4  °C overnight, the slides were washed 3 times 
and then incubated in secondary antibody (Abcam, 
United States) 1 h at RT. DAPI (Sigma, United States) was 
used to stain the Cell nuclei. Olympus BX51was used to 
capture the images.

Statistical analysis
Statistical analyses were performed using the R soft-
ware (version 4.0.0) and GraphPad Prism (version 7.0.0). 
The log-rank test was used in the Kaplan-Meier survival 
analysis. The coefficients of correlation were calculated 
by Pearson correlation analysis. Differences in quanti-
tative data between the two groups were compared by 
using Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001 or 
****p < 0.0001 was considered to be significant.

Results
WGCNA identified clinically significant modules
In total, 120 primary glioma samples and 4 non-tumor 
samples were obtained from the GSE43378 and GSE7696. 

http://cistrome.dfci.harvard.edu/TIMER/
https://string-db.org/
https://string-db.org/
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After data preprocessing and normalization, 4219 DEGs 
were selected for analysis, including 2340 down-regu-
lated and 1879 up-regulated in glioma samples. Expres-
sion profiling was presented in a volcano plot (Fig. 1A).

Identified DEGs were submitted to WGCNA, which 
were assigned to gene co-expression modules after 
removing outlier samples by cluster dendrogram trees 
(Fig.  1B). The co-expression network clustered to 7 
modules of at least 30 genes, corresponding to 7 differ-
ent colors. Module-containing genes were assigned by 
their intramodule connectivity and the non-clustering 

genes were divided into the gray module. TOM reflect-
ing adjacencies or topological overlaps was visualized 
by heatmap (Fig.  1C), the topological overlap depicted 
the similar commonality between notes interconnected. 
It can be known from the topological overlap heatmap 
that more obvious topological overlap appeared in genes 
within a module than across modules.

As displayed in the relationship between modules and 
clinical traits (Fig. 1D), the yellow module was the most 
highlighted. It was not only positively correlated with 
WHO grade (correlation coefficient = 0.4, p = 5e-06) 

Fig. 1  Identification of co-expression gene modules of glioma by WGCNA. A Volcano plots showing the DEGs between glioma samples and 
non-tumor samples. Red dots indicate up-regulated genes, while green dots down-regulated genes. B Cluster dendrogram of different gene 
modules. Genes were clustered into a module of high interconnection and marked by different colors in the horizontal bar (grey represented 
unassigned genes). C Network heatmap plot. Each column and row represent genes, low topological overlap showed light colors and higher 
topological overlap showed darker colors. D Relationships between modules and clinical traits. Each column corresponds to a clinical trait, and the 
row corresponds to a module eigengene. Each unit includes the corresponding correlation coefficient and p-value in the first and second lines 
respectively. E, F indicate that the yellow module significantly correlated with glioma WHO-grade and survival time. Each dot represents a unique 
gene within the module, which was plotted by MM on the x-axis and GS on the y-axis. Besides, the correlation value and p-value were displayed
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but also negative correlated with survival (correlation 
coefficient = − 0.36, p = 5e-05). It was suggested that 
the yellow module genes played a role in promoting the 
development of glioma and leading to a poor prognosis. 
Subsequently, for further investigating the correlations 
between the yellow module and clinical traits, the rela-
tionships between GS and MM in the module were plot-
ted to verify the significance of yellow module related to 
WHO grade (Fig. 1E) and survival (Fig. 1F).

Screening collagen genes
401 genes in the yellow module were submitted to 
DAVID website to enrich their potential functions. The 
results showed enriched BP (Additional file 1: Fig. S1A) 
was mainly focused on extracellular matrix (ECM) 
organization, cell adhesion, collagen fibril organization, 
angiogenesis, leukocyte migration, and single organis-
mal cell-cell adhesion. MF (Additional file  1: Fig. S1B) 
mainly concentrated on ECM structural constituent, 
the binding of biomolecules (including protein, platelet-
derived growth factor, integrin, and collagen), along with 
cadherin binding involved in cell-cell adhesion. With 
regards to CC (Additional file  1: Fig. S1C), a variety of 
enrichments were mainly involved in extracellular exo-
some, extracellular matrix, focal adhesion, and so on. The 
results of KEGG enrichment analysis (Additional file  1: 
Fig. S1D) indicated that the tumor-associated pathways 
in the yellow module were closely associated with ECM-
receptor interaction, focal adhesion, protein processing 
in the endoplasmic reticulum, and PI3K-Akt signaling 
pathway. Based on these results, we hypothesized that 
genes correlated with the ECM-receptor interaction 
signal pathway may play an important role in glioma 
progression.

We then imported the weighted co-expression net-
works of the yellow module to Cytoscape followed by 
screening the candidate hub genes, which are keynotes 
in the interactive network. A total of four calculation 
methods, including Degree, Edge percolated component 
(EPC), Closeness, and Radiality in cytoHubba applica-
tion were employed in selecting hub genes, which were 
the intersection of the top 20 genes determined by 
these algorithms (Table  1). Eventually, 6 collagen genes 
(COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, and 
COL5A2) in a family were identified as the candidate 
key genes for further verification. And the weighted co-
expression network of these genes interacting within the 
module was visualized (Additional file 1: Fig. S1E).

Higher expression of 6 collagen genes was negatively 
correlated with the prognosis of glioma patients
To test the collagen genes, differential expression analy-
ses among different cancers and glioma grades were 
executed on a cancer microarray data-mining data-
base: Oncomine [25]. The results showed that the colla-
gen genes were overexpressed in most types of tumors, 
including central nervous system cancer, breast cancer, 
head and neck cancer, colorectal cancer, and so on (Addi-
tional file 2: Fig. S2A). Further, we utilized the Sun Brain 
dataset [26], a maximal sample size mRNA microarray 
that could be grouped by glioma grade in histology analy-
sis. The grade plots of collagen genes (Additional file  2: 
Fig. S2B) were completed. The screened collagen genes 
were almost high-expression in glioma, and the expres-
sion level rises with glioma grade increases.

From the UCSC database, level 3 RNA-Seq datasets 
(TCGA-GBMLGG) and their clinical information were 
downloaded to investigate the relationship between gene 
expressions and WHO grades of patients. As showed in 
Fig.  2A, similar results were achieved. Besides, survival 
analyses were performed on the GEPIA database, which 
was based on The Cancer Genome Atlas (TCGA) data, 
to confirm the prognostic value of candidate genes. We 
found that high expression of collagen genes showed a 

Table 1  Hub genes ranked in cytoHubba

Top 20 genes are determined by six algorithms respectively in cytoHubba. The 
bold ones represent selected collagen genes; EPC Edge percolated component

Category Rank methods in cytoHubba

Degree EPC Closeness Radiality

Genes top 20 FN1 FN1 FN1 FN1

CD44 COL4A1 COL4A1 COL4A1
COL4A1 ANGPT2 ANXA2 ANXA2

ANXA2 COL5A2 CD44 ANGPT2

COL5A2 ANXA2 ANGPT2 LAMB1

ANGPT2 COL3A1 LAMB1 COL1A1
COL3A1 COL1A1 SERPINH1 SERPINH1

COL1A1 CALD1 COL5A2 CALD1

CLIC1 CD44 COL1A1 CD44

CALD1 SERPINH1 CALD1 NAMPT

LAMB1 COL1A2 COL1A2 LAMC1

SERPINH1 NAMPT LAMC1 COL5A2
COL1A2 LAMB1 NAMPT COL1A2
LAMC1 LAMC1 CLIC1 PDPN

NAMPT CLIC1 COL3A1 COL4A2
ADAM12 COL4A2 COL4A2 GALNT2

CAV1 ADAM12 PDPN P4HB

COL4A2 CAV1 P4HB CXCR4

CD93 NOX4 ADAM12 CLIC1

PDPN ENPEP GALNT2 COL3A1
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significantly poor prognosis (Fig.  2B). On the CGGA 
website (mRNAseq_325), collagen genes (COL1A1, 
COL1A2, COL3A1, COL4A1, COL4A2, and COL5A2) 
in WHO grades II, III, and IV glioma samples were ana-
lyzed to explore the expression levels of these genes. Sim-
ilarly, higher mRNA levels of these collagen genes were 
also found in higher grade glioma (Additional file 3: Fig. 
S3A–F).

As we all know, IDH wild-type glioma patients present 
a shorter progression-free survival (PFS) and overall sur-
vival than mutant-type patients [27]. Subsequently, we 
found that glioma patients with IDH mutant-type have 
lower expression levels of these collagen genes than IDH 
wild-type patients in TCGA dataset (Fig.  3A). Moreo-
ver, there were similar findings in the CGGA dataset 
(Fig. 3B). These results indicated that the expressions of 
the 6 collagen genes were negatively correlated with the 
prognosis of glioma patients, and may become an inde-
pendent prognostic marker.

Moreover, immunohistochemistry (IHC) data-
sets retrieved from the Human Protein Atlas database 
were utilized to reveal the protein level of the collagen 
gene. In total, four collagen genes (COL1A1, COL1A2, 
COL4A1, and COL4A2) were retrieved (No data found 
for COL5A2 and COL3A1 was not detected in most of 
the samples) (Additional file 4: Fig. S4A–D).

The collagen gene expressions were correlated 
with stromal and immune cell infiltration in glioma
The tumor microenvironment consists of various 
immune and stromal cells, which have been considered 
to closely correlate with patient prognosis. The correla-
tions between collagen gene expressions and ESTIMATE 
scores were examined. Results showed that collagen gene 
expressions were significantly positively correlated with 
stromal and immune scores in TCGA dataset (Fig. 4A–
F). Moreover, collagen genes also showed a significant 
correlation with stromal and immune scores in GEO and 
CGGA datasets (Additional file 5: Fig. 5A-B).

The collagen gene expressions were correlated 
with immunosuppressive properties in glioma
Stromal and immune cells can secrete many factors 
that cultivate a chronic inflammatory and immunosup-
pressive intratumoral atmosphere. We found that the 
collagen genes were significantly positively correlated 

with the majority of immunosuppressive and immu-
nosuppressive cell recruitment factors (Fig.  5A–D). 
Moreover, a PPI network of collagen genes and immu-
nosuppressive and immunosuppressive cell recruitment 
factors showed that they were closely correlated with 
each other (Fig. 5E). To validate the above findings, we 
selected the COL1A1 and IL-6 for further study and 
detected whether they were co-expression in glioma 
tissues. IL-6, as an important immunosuppressive and 
immunosuppressive cell recruitment factors, has a pro-
found effect on immune cell infiltration in the tumor 
immune microenvironment [28, 29]. The double-immu-
nofluorescence staining revealed that the co-expression 
of COL1A1 with IL-6 was found in WHO II-IV grade 
glioma tissues (Additional file 6: Fig. S6).

The collagen gene expressions were closely associated 
with immune cell infiltration in glioma
We comprehensively explored the correlation between 
the collagen genes and immune cell infiltration in 
both LGGs and GBM by using the TIMER database. 
The results revealed that there was a positive correla-
tion between the expression of COL1A1, COL1A2, 
COL3A1, COL4A1, and COL4A2, and the infiltration 
of B cells, CD8 + T cells, CD4 + T cells, macrophages, 
neutrophils, and dendritic cells in LGGs (p < 0.05) 
(Fig.  6A–E). Except for in CD4 + T cells, the COL5A2 
expression was positively correlated with the infil-
tration of the other five immune cell types (B cells, 
CD8 + T cells, macrophages, neutrophils, and dendritic 
cells; all p < 0.05) in LGGs (Fig. 6F). Besides, the expres-
sion levels of 6 collagen genes were all positively corre-
lated with the infiltration of dendritic cells (all p < 0.05) 
in GBM (Additional file 7:  Fig. S7A–F).

The collagen genes were significantly involved in the EMT 
process of glioma
FN1, VIM, SNAI2, ACTA2, CTNNB1, TWIST1, and 
SNAI1 are important EMT biomarkers [22, 30]. As 
shown in Fig.  7  A, they were strongly or moderately 
positively correlated with the collagen genes (COL1A1, 
COL1A2, COL3A1, COL4A1, COL4A2, and COL5A2) 
based on the TCGA dataset. Moreover, we con-
ducted a PPI network analysis of collagen genes and 

Fig. 2  Increased COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, and COL5A2 mRNA levels correlate with poor survival rates in glioma patients. 
A COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, and COL5A2 mRNA levels were positively correlated with WHO grades based on TCGA database. 
B Kaplan-Meier analysis of the relationships between collagen gene expression and OS time in glioma (performed in GEPIA database). The red line 
represents gene high expression in samples, and blue indicates low expression

(See figure on next page.)
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Fig. 3  The mRNA expression levels of collagen genes in IDH mutant and wildtype glioma of TCGA and CGGA datasets. The expression of COL1A1, 
COL1A2, COL3A1, COL4A1, COL4A2, and COL5A2 in IDH mutant and IDH wild-type subgroups of TCGA (A) and CGGA (B) datasets. **** p < 0.0001
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EMT-related genes to explore the potential interactions 
among them. As expected, these collagen genes were 
closely correlated with the EMT-related genes (Fig. 7B).

Knockdown of COL3A1 suppressed migration, invasion 
and EMT process in glioma cells
To further validate the collagen genes were involved in 
the EMT process, we took COL3A1 for the subsequent 
analysis. Based on the GEPIA database, the expres-
sion of COL3A1 in glioma (LGG and GBM) was higher 
than normal samples (Fig.  8A). To further confirm the 
biological function of COL3A1 on glioma progress, 
COL3A1 was knockdown by using small interfering RNA 
(siRNA) in SHG44 and A172 cells. After transfected with 
siCOL3A1, the expression of COL3A1 was significantly 
down-regulated in SHG44 and A172 cells (Fig.  8B). On 
account of the EMT program usually accompanied by 
the changes in cell migration and invasion, then, wound 

healing and transwell assays were conducted to detect the 
migratory and invasive ability of glioma cells. The result 
showed that knockdown of COL3A1 leads to delayed 
wound healing and decreased invasive ability (Fig.  8C–
D). Considering the E-cadherin was poorly expressed in 
glioma cells, we tested the expression of two common 
EMT markers (Vimentin and N-cadherin) to analyze the 
EMT process of glioma. As expected, the protein levels 
of Vimentin and N-cadherin were significantly down-
regulated after the reduction of COL3A1 in SHG44 and 
A172 cells (Fig.  8E–F). These findings indicated that 
COL3A1 promotes migration, invasion, and EMT pro-
cess in glioma.

Discussion
Whenever possible, the current standard therapy of 
malignant glioma is surgical resection [3], which could 
achieve cytoreduction, relieve mass effect and provide 

Fig. 4  The collagen gene expressions were positively correlated with immunosuppressive properties. A Correlation between the collagen genes 
and immunosuppressive cell recruitment factors in TCGA dataset. B Correlation between the collagen genes and immunosuppressive factors in 
TCGA dataset. C Correlation between the collagen genes and immunosuppressive cell recruitment factors in the CGGA dataset. D Correlation 
between the collagen genes and immunosuppressive factors in the CGGA dataset. E Protein-protein interaction network of the collagen genes and 
immunosuppressive cell recruitment factors and immunosuppressive factors
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Fig. 5  The collagen genes were positively correlated with significantly involved in the EMT process of Glioma. A-C Correlation between the 
collagen genes and biomarkers of epithelial-mesenchymal transition (EMT). D Protein-protein interaction network of the collagen genes and 
EMT-related genes
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adequate tissue for tumor histologic characterization and 
establishing molecular genotype [31]. Combined radio-
therapy, chemotherapy, and chemoradiation therapy is 
also needed, but it is far from combating the tumor pro-
gression [32]. A more comprehensively prognostic clas-
sification integrating genetic and epigenetic signatures is 
even more important than clinical factors. This integrated 
pattern may be more accurate in clinical diagnosis and 

management decisions. Despite a deeper understanding 
of molecular and genetic diversity and improvements in 
therapeutic strategies, the current treatment effect for 
the majority of patients, including concomitant chemo-
therapy and biologically targeted agents, remain disap-
pointing [33]. Thus, molecular characterization based on 
glioma progression is urgently needed for further eluci-
dating novel and essential information, understanding 

Fig. 6  The correlation between the collagen genes and immune cell infiltration (TIMER) in LGGs. A COL1A1, B COL1A2, C COL3A1, D COL4A1, 
E COL4A2, and F COL5A2. p-value < 0.05 represented statistically significant
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underlying aggression mechanisms, and providing pro-
spective prognostic and therapeutic biomarkers.

WGCNA is a robust method of constructing gene co-
expression networks to illustrate gene expression pro-
files, detect modules based on similarities of expression 
features and recognize candidate module and hub genes 
related to clinical information. It has been successfully 
applied in a variety of tumors to explore potential crucial 

genes of clinical significance [34, 35]. In the present study, 
we identified 4219 DEGs by using bioinformatics analy-
sis in the public microarray datasets (GSE43378 and 
GSE7696) between glioma samples and non-tumor sam-
ples. These DEGs were divided into 7 modules according 
to intramodule connectivity and the yellow module was 
selected for further exploring because of its most promi-
nent correlation with clinical features. Functional and 

Fig. 7  The collagen genes were significantly involved in the EMT process of Glioma. A–C Correlation between the collagen genes and biomarkers 
of epithelial-mesenchymal transition (EMT). D Protein-protein interaction network of the collagen genes and EMT-related genes

Fig. 8  Knockdown of COL3A1 inhibiting migration, invasion, and EMT process. A Relative expression of COL3A1 in glioma (LGG and GBM) and 
normal brain tissue. After COL3A1 siRNA transfected, SHG44 and A172 (B) cells showed reduced COL3A1 levels measured by qRT-PCR. C Wound 
healing assays indicated that the migratory ability of glioma cells was reduced after transfection. D Transwell assays revealed that the invasiveness 
ability of glioma cells was inhibited after transfection. E-F The protein levels of Vimentin and N-cadherin were detected by Western blotting analysis 
in SHG44 and A172 cells after COL3A1 knockdown with siRNA. Data represented as mean value ± SD. * p < 0.05, ** p < 0.01

(See figure on next page.)
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enrichment analyses of the yellow module may provide a 
novel viewpoint to illuminate the mechanism of glioma 
progression. GO annotation analysis revealed that genes 
in the yellow module were mainly focused on ECM, indi-
cating that ECM was likely to play crucial roles in the 
progression of glioma. Moreover, biological pathways 
demonstrated that KEGG was significantly focused on 
ECM-receptor interaction. These findings may help to 
explain the mechanism of how it influenced the progres-
sion and survival of glioma. were consistent with previ-
ous studies.

Collagens are the most significant protein component 
of the ECM [8]. Increased deposition of collagen alone or 
in combination facilitates cancer cell proliferation, migra-
tion, and metastasis by interfering with cell polarity, cell-
cell adhesion and ultimately resulting in amplification of 
the growth factor signaling [36]. COL1A1, collagen type I 
alpha 1 chain, has been identified as an invasion‑related 
gene in malignant astrocytomas [37]. COL1A2 was found 
to significantly promote gastric cancer cell prolifera-
tion, migration, apoptosis, and invasion [38]. In a recent 
study, the collagen molecules COL4A1 [39] and COL3A1 
[40] were proved to be essential for the development of 
glioma. COL4A2 was significantly higher expressed in 
GBM than astrocytoma, which was confirmed by RT-
qPCR [41]. COL5A2 has not reported the roles in glioma 
progression, but they were reported to participate in 
various malignancies. COL5A2 was involved in osteo-
sarcoma cell proliferation and invasion, provided new 
insights into cytostatic drug resistance of ovarian cancer, 
and represented early potential diagnostic biomarkers 
and therapeutic targets for bladder cancer [42–44].

Although a previous study has been found collagen 
genes were related to the progression and prognosis of 
LGGs [45], no study has been focused on the correlation 
between collagen genes and the tumor microenviron-
ment of glioma. The tumor microenvironment consists 
of inflammatory cells, stromal cells, fibroblasts, vascular 
endothelial cells, and ECM [46]. Collagens are impor-
tant components of the ECM and play a critical role in 
the tumor microenvironment. In our study, the immune 
and stromal scores of each sample were calculated based 
on the ESTIMATE algorithm, and then the correlation 
between collagen genes and immune and stromal scores 
was analyzed. The result showed that collagen genes were 
significantly associated with immune and stromal scores. 
These findings confirmed that the collagen genes were 
significantly correlated with the immune microenviron-
ment of glioma. Subsequent analysis showed that col-
lagen genes were significantly positively correlated with 
immunosuppressive and immunosuppressive cell recruit-
ment factors. Thus, collagen genes might be involved in 
regulating the immunosuppressive microenvironment 

of glioma. Immune cell infiltration could affect the 
progression and recurrence of glioma, and act as a sig-
nificant determinant of prognosis and immunotherapy 
[47]. Based TIMER database, it was easily found that 
the infiltration levels of B cells, CD8 + T cells, CD4 + T 
cells, macrophages, neutrophils, and dendritic cells were 
significantly negatively correlated with the OS of LGGs, 
and the infiltration level of dendritic cells was signifi-
cantly negatively correlated with the OS of GBM. In this 
study, we revealed that a significant positive correlation 
between the expression of the collagen genes and the 
infiltration of the six immune cell types (B cells, CD8 + T 
cells, CD4 + T cells, macrophages, neutrophils, and den-
dritic cells) in LGGs, and a positive correlation between 
the expression of the collagen genes and the infiltration 
of dendritic cells in GBM. That indicated that the colla-
gen genes could not only serve as prognostic biomarkers 
but also reflect the immune status of glioma.

Collagen is a major ECM component in the stroma of 
many solid tumors. Cancers with excessive ECM lead 
to immunity resistance because it is a physical barrier 
between tumor cells and immune effectors [48]. This is 
supported by the fact that thickened ECM surrounding 
cancer cells and excessive ECM deposition resistance 
against immune checkpoint inhibitors [49, 50]. Addition-
ally, collagen can regulate immune cell motility, metabo-
lism, and survival. Loose, well-aligned collagen fibers can 
provide the optimal conditions for T-cell migration [48]. 
On the contrary, excessive collagen can promote immune 
cell infiltration but inhibit their anti-tumor activity in the 
tumor microenvironment [51, 52], which was consistent 
with our findings. A previous study also showed that high 
expression of COL1A1, COL3A1, COL5A1, and COL5A2 
in ovarian cancer promotes tumor immune tolerance 
and results in poor prognosis [53]. Besides, overexpres-
sion of immunosuppressive molecules and overrepre-
sentation of immunosuppressive cells (e.g. regulatory 
T cells, myeloid-derived suppressor cells, and tumor-
associated macrophages) are the important immunosup-
pressive mechanisms in the tumor microenvironment 
[54]. In this study, PPI network analysis showed that 
collagen and immunosuppressive and immunosuppres-
sive cell recruitment factors may have close interaction. 
More importantly, double-immunofluorescence staining 
demonstrated the co-expression of collagen and immu-
nosuppressive and immunosuppressive cell recruitment 
factors in glioma samples. So, we supposed that immu-
nosuppressive molecules, immunosuppressive cells, and 
collagen interact with each other in the tumor microenvi-
ronment of glioma, where they may maintain the immu-
nosuppressive microenvironment together.

EMT, as a key factor of malignant glioma invasion 
enhancement, can be characterized by an increase in 
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the expression of biomarkers, such as CDH2, VIM, FN1, 
SNAI1, SNAI2, ACTA2, and so on [55]. We found that 
collagen genes were positively correlated with EMT bio-
markers, thus possibly involved in the EMT process of 
glioma. Furthermore, PPI analysis showed that EMT-
related genes closely interact with the collagen genes. To 
further explore the function of collagen genes in promot-
ing glioma progression, we used rarely studied COL3A1 
as a further research object. The results showed that the 
knockdown of COL3A1 decreased the migration, inva-
sion, and EMT process of glioma cells. Thus, we believe 
that the collagen genes are important EMT mediators in 
glioma (Additional file 8).

Conclusions
In conclusion, the collagen genes (COL1A1, COL1A2, 
COL3A1, COL4A1, COL4A2, and COL5A2) could regu-
late the immunosuppressive microenvironment and be 
involved in the EMT process of glioma. Thus, collagen 
genes participate in the malignant progression of glioma 
and could serve as potential therapeutic targets for gli-
oma management.
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