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Immune signature‑based hepatocellular 
carcinoma subtypes may provide novel insights 
into therapy and prognosis predictions
Qiuxian Zheng1†, Qin Yang1†, Jiaming Zhou1, Xinyu Gu1, Haibo Zhou1, Xuejun Dong2, Haihong Zhu1* and 
Zhi Chen1*   

Abstract 

Background:  Hepatocellular carcinoma (HCC) has a poor prognosis and has become the sixth most common malig-
nancy worldwide due to its high incidence. Advanced approaches to therapy, including immunotherapeutic strate-
gies, have played crucial roles in decreasing recurrence rates and improving clinical outcomes. The HCC microenviron-
ment is important for both tumour carcinogenesis and immunogenicity, but a classification system based on immune 
signatures has not yet been comprehensively described.

Methods:  HCC datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the Inter-
national Cancer Genome Consortium (ICGC) were used in this study. Gene set enrichment analysis (GSEA) and the 
ConsensusClusterPlus algorithm were used for clustering assessments. We scored immune cell infiltration and used 
linear discriminant analysis (LDA) to improve HCC classification accuracy. Pearson’s correlation analyses were per-
formed to assess relationships between immune signature indices and immunotherapies. In addition, weighted gene 
co-expression network analysis (WGCNA) was applied to identify candidate modules closely associated with immune 
signature indices.

Results:  Based on 152 immune signatures from HCC samples, we identified four distinct immune subtypes (IS1, IS2, 
IS3, and IS4). Subtypes IS1 and IS4 had more favourable prognoses than subtypes IS2 and IS3. These four subtypes 
also had different immune system characteristics. The IS1 subtype had the highest scores for IFNγ, cytolysis, angiogen-
esis, and immune cell infiltration among all subtypes. We also identified 11 potential genes, namely, TSPAN15, TSPO, 
METTL9, CD276, TP53I11, SPINT1, TSPO, TRABD2B, WARS2, C9ORF116, and LBH, that may represent potential immu-
nological biomarkers for HCC. Furthermore, real-time PCR revealed that SPINT1, CD276, TSPO, TSPAN15, METTL9, and 
WARS2 expression was increased in HCC cells.

Conclusions:  The present gene-based immune signature classification and indexing may provide novel perspectives 
for both HCC immunotherapy management and prognosis prediction.
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Background
Hepatocellular carcinoma (HCC) was the sixth most 
common type of malignancy and the fourth leading cause 
of cancer-related deaths in 2018 [1, 2]. Approximately 
841,000 new cancer cases now occur per year, with more 
than 782,000 deaths [3]. The risk factors for HCC include 
viral infections (e.g., hepatitis B and C), alcohol consump-
tion, obesity with non-alcohol fatty liver disease, and the 
high intake of aflatoxins [4]. Despite recent advances 
in HCC management, liver resection, transplantation, 
chemotherapy, radiotherapy, and molecular-targeting 
therapies that have improved HCC clinical outcomes 
to a certain degree [5], most patients are still diagnosed 
at advanced HCC stages and have limited therapeutic 
options [6–8]. Current curative rates are still poor for 
HCC because of its heterogeneity, high morbidity, high 
recurrence rate, metastases, and poor responsiveness to 
chemotherapy [9].

Immune checkpoint inhibitors (ICIs) have had prom-
ising, albeit limited, results as a type of HCC therapy 
[10]. Advances in single-cell RNA sequencing (RNA-seq) 
have provided novel landscape descriptions of the HCC 
immune system microenvironment [11]. Immune-related 
genes and tumour-infiltrating lymphocytes are known to 
play key roles in both carcinogenesis and tumour pro-
gression [12], and the cross-talk dynamics between infil-
trating immune cells, immune cell cytokines, and tumour 
cells of the microenvironment govern hepatocarcinogen-
esis [13, 14]. A better understanding of the specific pat-
terning of these dynamics may benefit immunotherapies, 
so a comprehensive approach to examining the diversity 
of the tumour-immune microenvironment is crucial 
for improving both responses to immunotherapy and 
prognosis predictions [15, 16]. In addition, immune cell 
infiltration has downstream functions in oncogenic path-
ways, and the microenvironment has a close relationship 
with responses to immunotherapies [17]. CD8+ T cells 
are known to be effective regulators of adaptive immu-
nity for eliminating both pathogen-infected cells and 
tumour cells [18] and play an important role in tumour 
immunity [19]. M2-type macrophages are known to 
be crucial regulators in the tumour microenvironment 
through their inhibitory activity [20, 21]. Immune cells 
evolve with tumour progression, providing novel strate-
gies to enhance the immunotherapy response.

Here, we evaluated immune cell signatures based 
on immune cell infiltration in HCC and identified 
four immune cell signature subtypes and their clinical 

outcomes. Among these subtypes, we found differences 
in the expression and distribution of classic chemo-
therapy-induced immune response markers and used 
immune cell scores to distinguish between them. Finally, 
we assessed immune gene expression profiles to compre-
hensively evaluate individual immune cell scores.

Methods
Databases
RNA-seq data from The Cancer Genome Atlas (TCGA, 
http://​cance​rgeno​me.​nih.​gov), Gene Expression Omni-
bus (GEO, https://​www.​earth​obser​vatio​ns.​org), and 
International Cancer Genome Consortium (ICGC, 
https://​www.​icgc-​argo.​org) data portals were used for 
these analyses. Associated clinical information from 
these sites, including clinical outcomes, immune cell 
infiltrates, and responsiveness to immunotherapy, was 
also used.

Data processing
Data from the GEO, TCGA, and ICGC were subjected 
to standardized data pre-processing and normaliza-
tion. Only primary liver cancer samples were selected, 
and the first step was to remove samples with missing 
data. After filtering, we obtained 115 tumour tissue sam-
ples and 23,395 gene expression profiles from the GEO 
(GSE76427) and 369 primary liver cancer tissue samples 
and 25,342 gene expression profiles from the TCGA. We 
also pre-processed RNA-seq data from the ICGC LIRI-
JP dataset (a total of 19,592 gene expression profiles), and 
the reads per kilobase of transcript per million mapped 
reads (RPKM) were converted into transcripts per 
million.

Gene set enrichment analysis (GSEA)
To determine differentially expressed RNAs, we per-
formed GSEA using the limma package in R software 
(R-3.6.1.) and performed gene set variation analysis 
(GSVA) [22]. R software (version 1.24.0) was used to esti-
mate the normalized enrichment scores (NESs) of the 
152 immune signatures in the tumour microenviron-
ment, as shown in Fig. 1a. These 152 immune signatures 
were collected from current and validated reports [23]. 
For a more in-depth analysis, we selected prognosis-
related immune signatures from at least two cohorts. 
In total, 369 samples were assessed using the Consen-
susClusterPlus tool in R software. The optimal cluster 
value was determined using the cumulative distribution 
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function (CDF), and we identified four groups (Figs.  1a 
and Additional file  1: S1b) based on relative CDF delta 
area plot stability. These methods have been described 
previously [23, 24].

Identification of immune‑related subtypes and immune 
gene modules
Immune-related subtypes were identified using the Con-
sensusClusterPlus algorithm. A consensus matrix was 
first determined through consensus clustering to classify 
the samples [25]. For this process, the number of clusters 
was set between 2 and 10, and then consensus clustering 
was applied to classify the immune-related genes. The 
152 NESs with their associated immune signatures were 
then used to classify the samples into different subtypes. 
The gene modules associated with drug resistance were 
also classified into different subgroups using this method. 
In-group proportions and Pearson’s correlation analyses 
were then applied to validate the consistencies of these 
immune-related gene subtypes and modules. The specific 
methods have been described previously [24].

Enrichment analysis
To further explore the biological functions of these gene 
modules, we conducted a single-sample GSEA to calcu-
late the immune cell signature scores in 152 genes repre-
senting the HCC tumour microenvironment.

Evaluation of immune subtypes and signatures
The log-rank test and both univariate and multivari-
ate Cox regression methods were used to evaluate the 
prognostic values of the immune subtypes in both the 
training and sample sets, and analysis of variance was 
applied to assess both the immune subtypes and immune 
signatures.

Immune landscape analysis
To comprehensively explore the immune landscape of 
the HCC samples, we applied a novel modelling tech-
nique with the ability to learn a set of embedding points 
in a low-dimensional space by retaining the inherent 
structure of high-dimensional data [26].

Linear discriminant analysis (LDA)
To better quantify the distributions of immune charac-
teristics for each subtype, we applied LDA to construct 
a categoricity index model. We used 23 prognosis-
related resistance features and first performed a 
z-transformation on each segment. Fisher’s LDA opti-
mization standard stipulates that each group’s centroid 
should be as dispersed as possible. We then determined 
a linear combination A and maximized the between-
class variance in A relative to the within-class variance. 
The first two features of this model could clearly distin-
guish between different subtypes.

Weighted gene co‑expression network analysis (WGCNA) 
and cluster analysis
WGCNA was used to explore gene transcription infor-
mation and to identify immune genes related to the 
co-expression modules [27]. Specifically, gene expres-
sion profiles were obtained from the TCGA database, 
the median absolute deviation was selected as > 50%, 
the cluster threshold was set at 9, and the β value was 
set at 9. Then, the expression matrix was transformed 
into a topology matrix. Average linkages were used in 
this analysis, with height = 0.25, deep split = 4, and min 
module size = 30 to obtain the modules.

Fig. 1  Identification of immunotypes in HCC patients. a A Venn diagram of the immune signatures showing the significant prognostic associations 
between the three cohorts les. b CDF curves of the TCGA cohort. c Heat map showing sample clustering results, with consensus k identified as 4
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Cell culture
Human liver cancer HepG2 cells and normal human 
liver LO2 cells were cultured in complete (containing 
4500  mg/L glucose, l-glutamine, sodium bicarbonate, 
no sodium pyruvate; liquid; suitable for cell culture) 
sterile-filtered Dulbecco’s modified Eagle’s medium 
supplemented with penicillin and 10% foetal bovine 
serum (Gibco, NY, USA). The cells were grown in a 
humidified incubator with 5% CO2 at 37 °C.

RNA extraction and reverse transcription quantitative PCR 
(RT‑qPCR)
Total RNA was extracted from the cells using the RNe-
asy Plus Universal Mini Kit (50) (Qiagen, Hilden, Ger-
many). To examine the mRNA expression levels of the 
11 hub genes, RT-qPCR analysis was conducted with 
the PrimeScript™ RT Reagent Kit with gDNA Eraser 
(Perfect Real Time) according to the instructions pro-
vided in the kits. The primers are shown in Table 1. The 
following cycling conditions were applied: 95  °C for 
5 min, followed by 40 cycles at 95 °C for 20 s and 60 °C 
for 30 s. GAPDH served as the internal control for nor-
malization. The 2-ΔΔCT method was applied to calcu-
late the mRNA expression levels of the 11 hub genes.

Statistical analysis
The PCR results were analysed with GraphPad Prism 
7.0 software (GraphPad Software, Inc.). An unpaired 
Student’s t-test was utilized to compare the differences 
between two groups. P < 0.05 was considered statistically 
significant.

Results
Identification of HCC sample subtypes based on immune 
signatures
To determine any co-relationships between HCC prog-
nosis and enrichment scores based on immune sig-
natures, we applied univariate survival analysis and 
identified closely associated immune signatures, 55 of 
which from the TCGA dataset (http://​cance​rgeno​me.​nih.​
gov), 35 of which from the GEO dataset (https://​www.​
earth​obser​vatio​ns.​org), and 15 of which from the ICGC 
dataset (https://​www.​icgc-​argo.​org) were correlated with 
prognosis. There was only a small overlap between the 
three clusters, as illustrated in Fig.  1a, indicating con-
siderable variability between individual immune signa-
tures in the different datasets. The CDF was applied to 
categorize the optimal number of clusters. The cluster 
number identified as four showed relatively stable results 
(Fig. 1b). Immunotyping is of great importance for pre-
dicting the prognosis of and guiding immunotherapy for 
tumour patients. In this study, we used the Consensus-
ClusterPlus package in R software [25] to segregate the 
immune signatures of 369 samples from the TCGA into 
four subtypes: IS1, IS2, IS3, and IS4 (Fig. 1c). This kind of 
classification has been described by Huang et al. [2, 28] in 
studies of cholangiocarcinoma and pancreatic adenocar-
cinoma. These four subgroups have typical differences in 
immune characteristics.

Prognostic analyses and evaluations of immune‑associated 
genes in the four subtypes
Survival analyses of the four subgroups in the TCGA 
dataset revealed significant differences. Subgroups IS2 
and IS3 had remarkably poorer prognoses than sub-
groups IS1 and IS4 (P < 0.001) (Fig. 2a). Consistent with 
these results, both the IS1 and IS4 subtypes of the ICGC 
cohort had much better prognoses than the IS2 and 
IS3 subtypes (P = 0.007) (Fig.  2b). Consistent with the 
results obtained from the ICGC and TCGA cohorts, the 
immune subtype in the GEO dataset showed that both 
the IS1 and IS4 subgroups had relatively better progno-
ses than the IS2 and IS3 subgroups (P = 0.064) (Fig. 2c). 
Interferon-gamma (IFNγ) is an important pro-inflamma-
tory cytokine that functions in immune and inflamma-
tory responses and in tumour immunosurveillance and 
homeostasis [29, 30]. Differences in the IFNγ scores also 

Table 1  The primers of 11 genes for RT-qPCR

Target Sequence (5’–3’)

TSPAN15 (F) AAA​GTT​CAA​GTG​CTG​TGG​CG

TSPAN15 (R) GCA​CAC​TGA​AAC​GCT​CCT​TG

TSPO (F) CTT​TGG​TGC​CCG​ACA​AAT​GG

TSPO (R) CCG​CCA​TAC​GCA​GTA​GTT​GA

METTL9 (F) TTG​AGA​AAT​CGG​GCT​GGC​TAT​

METTL9 (R) AGT​CTG​TGG​GTT​TTC​CAG​TCT​

CD276 (F) GGG​AGA​AGG​CTC​CAA​GAC​AG

CD276 (R) GCC​AGA​GGG​TAG​GAG​CTG​TA

TP53I11 (F) TGA​CCA​GCT​CTA​TGA​TGC​GG

TP53I11 (R) GTG​AGC​AGG​GTC​CAT​CGA​AT

SPINT1 (F) CTG​GGC​AGG​CAT​AGA​CTT​GA

SPINT1 (R) TCT​GGG​TGG​TCT​GAG​CTA​GT

TRABD2B (F) TCA​AGC​ACT​ACA​ACT​GCG​GAGAC​

TRABD2B (R) TCC​CCA​GAA​AGT​GAC​CTG​CTC​

DYNC2LI1 (F) GAC​GAT​GCC​CAG​TGA​AAC​TC

DYNC2LI1 (R) TCT​TTT​GGT​GTG​TTG​TGC​CC

WARS2 (F) TGG​GGA​GTT​CTT​TCC​AGT​GC

WARS2 (R) TCT​GTT​ATT​CGG​ACG​GTG​GC

C9ORF116 (F) GAG​AGG​ACC​AGC​GAC​TAC​TAC​

C9ORF116 (R) ACA​CGG​AGA​CAG​CCT​TCT​G

LBH (F) TTG​TGT​CCA​CCT​TGC​CGA​C

LBH (R) CCT​CAG​TCA​TCT​TGG​CCG​AT

http://cancergenome.nih.gov
http://cancergenome.nih.gov
https://www.earthobservations.org
https://www.earthobservations.org
https://www.icgc-argo.org
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indicated considerable differences in immunotherapy 
tolerance [31]. We therefore calculated the IFNγ-related 
signature score for each sample. The results indicated 
remarkable differences between subtypes. The IS1 sub-
type had the highest IFNγ score, followed by the IS3, 
IS4, and IS2 subtypes (Fig. 2d). Cytolytic (CYT) activity 
within the local immune infiltrate has long been recog-
nized as an anti-tumour immune response and has been 
recognized as a novel strategy USED to assess antican-
cer immunity [32, 33]. Specifically, the mRNA expres-
sion levels of both granzyme A (GZMA) and perforin 
(PRF1) have been reported to be novel indicators of 
CYT cancer immunity [34, 35]. The CYT scores for the 
four subgroups indicated significant differences between 
them, with subgroup IS1 having the highest CYT score, 

followed by subgroups IS3, IS4, and IS2 (Fig. 2e). In addi-
tion, genes related to angiogenesis have been reported 
to play essential roles in modulating the tumour micro-
environment and the immune environment [36]. We 
calculated each sample’s angiogenesis score and found 
that scores for the four groups were significantly differ-
ent. The angiogenesis scores of the IS2 and IS3 subgroups 
were much lower than those of the IS1 and IS4 subgroups 
(Fig.  2f ). Immune cell infiltration also plays an impor-
tant role in the tumour microenvironment [34]. In the 
immune infiltration analysis, subgroup IS1 had the high-
est immune infiltration scores among all the subgroups, 
with score rankings of IS1 > IS3 > IS4 > IS2, and there were 
significant differences between subgroups (Fig. 2g). These 
results indicated that subgroups IS1 and IS4 had a better 

Fig. 2  Overall survival analysis and immune-related score evaluations for the four subtypes. a Kaplan–Meier (KM) analysis of the four subtypes 
using the TCGA cohort. b KM curves for the four subtypes using the ICGC cohort. c KM curves for the four subtypes using the GEO cohort. d IFN 
scores of the four immunotypes. e CYT scores of the four immunotypes. f Angiogenesis scores of the four immunotypes. g Immune scores of the 
four immunotypes
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probability of survival than subgroups IS2 and IS3 in 
the TCGA, ICGC and GEO cohorts. Subgroup IS1 had 
relatively higher IFNγ, CYT, angiogenesis, and immune 
infiltration scores than the other subgroups. In addition, 
higher IFNγ, CYT, angiogenesis, and immune infiltration 
scores suggest a better prognosis. These results suggest 
that the immunotypes of HCC patients are reproducible 
and stable. Overall, the immunotype has the potential to 
become a valuable prognostic biomarker of and effective 
immunotherapy evaluation indicator in HCC.

Subtype differences in the expression of genes 
related to immune responses, immune cell infiltration, 
and immune checkpoints
We selected 26 immune response marker genes because 
of their relatively high expression levels and examined 
their differential expression. Fourteen of these (53.8%) 
showed significant differential expression in the four 
immune-related subtypes: CALR, LRP1, EIF2A, HMGB1, 
TLR4, ANXA1, FPR1, PANX1, CXCL10, IFNAR2, 
HGF, MET, and EIF2AK1 (P < 0.001). A statistically 

significant difference in LRP1 and P2RY2 expression 
was noted between subgroups. In addition, the expres-
sion of the immune response markers TLR4, ANXA1, 
FPR1, CXCL10, and HGF was significantly higher in 
the IS1 subgroup than in the IS2, IS3 and IS4 subgroups 
(Fig.  3a). Next, we determined the immune scores for 
the four subgroups using the 22 immune cell values and 
determined that the infiltration scores among the sub-
groups were remarkably different, especially concern-
ing naïve B cells, plasma cells, CD8+ T cells, follicular 
helper T cells, Tregs, resting NK cells, monocytes, M0 
macrophages, M1 macrophages, M2 macrophages, rest-
ing dendritic cells, activated dendritic cells, and resting 
mast cells. The IS1 subgroup had the highest scores for 
CD8+ T cells, follicular T cells, and M1 macrophages; 
the IS1 subgroup also had the lowest scores for M0 mac-
rophages, M2 macrophages, and resting mast cells. Con-
sistent with the previous results, the IS2 subgroup had 
the lowest score of CD8+ T cells. The IS4 subgroup had 
a high ratio of infiltrating M2 macrophages. Among the 
many differences observed between the four subtypes, 

Fig. 3  Immune infiltration gene scores in the four subtypes. a Differences in the expression and distribution of classic chemotherapy-induced 
immune response genes in the TCGA dataset. b Differences in the expression and distribution of immune cell-associated genes in the TCGA dataset. 
c Differences in the expression and distribution of immune checkpoint genes in the TCGA dataset
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the IS2 subgroup had high ratios of infiltrating plasma 
cells, B cells, and naïve B cells (Fig. 3b). Immunotherapies 
have shown promising therapeutic efficacies for a variety 
of tumours, and ICI therapies have significantly trans-
formed treatments for solid tumours [37–39]. We deter-
mined the expression levels of immune checkpoint genes 
in the four subgroups and found that 41 of 47 genes 
(87%) were significantly differentially expressed. With the 
exceptions of BTNL2, HHLA2, ICOSLG, IDO2, NRP1, 
and TNFRSF14, all the other immune checkpoint genes, 
namely, ADORA2A, BTLA, CD160, CD200, CD200R1, 
CD244, CD27, CD274, CD276, CD28, CD40, CD40LG, 
CD44, CD48, CD70, CD80, CD86, CTLA4, HAVCR2, 
ICOS, IDO1, KIR3DL1, LAG3, LAIR1, LGALS9, PDCD1, 
PDCD1LG2, TIGIT, TMIGD2, TNFRSF14, TNFRSF18, 
TNFRSF25, TNFRSF4, TNFRSF8, TNFRSF9, TNFSF15, 
TNFSF18, TNFSF4, TNFSF9, VISIR, and VTCN1, were 
remarkably differentially expressed among the four sub-
types (Fig. 3c). In summary, the immunotype has a close 
relationship with immune-associated cells and modula-
tors. These results have demonstrated that the differen-
tial expression of genes related to immune responses, 

immune cell infiltration, and immune checkpoints is 
associated with HCC prognosis, and this analysis may 
provide novel therapeutic targets and prognostic predic-
tors for HCC.

Subgroup analyses of immune cell infiltration ratios, 
oncogenesis pathways, and interactions with other 
pan‑cancer immune subtypes
To further investigate immune cell infiltration ratios 
among the four immunotypes, we investigated whether 
the immune cell infiltration composition ratios were 
significantly different. For example, in the IS1 sub-
type, the results indicated that T cells and monocytes 
accounted for the majority of the infiltrating immune 
cells, whereas the IS2 and IS3 subgroups had a rela-
tively low ratio of T cells (Fig. 4a). Furthermore, we per-
formed functional enrichment analysis, and the results 
showed that the cell cycle signalling pathway, MYC sig-
nalling pathway, and PI3K signalling pathway, followed 
by the NOTCH pathway, HIPPO pathway, and NRF1 
pathway, were significantly different between the four 
immunotypes. The IS1 subgroup had comparatively low 

Fig. 4  Distributions of infiltrating immune cells and pathway enrichment analysis. a Proportions of 22 immune cell types in the different subgroups. 
b Differences in the enrichment scores of 10 tumour pathways in the different subgroups. c Intersections between the four immune molecular 
subtypes described herein and six previously reported pan-cancer immune molecular subtypes
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enrichment scores in the cell cycle pathway, MYC path-
way, and PI3K pathway. The subgroup associated with 
the poorest outcome, IS2, had high enrichment scores 
in the cell cycle, HIPPO, MYC, NRF1, and PI3K signal-
ling pathways (Fig.  4b). Therefore, we validated that 
lower oncogenic enrichment scores might indicate a 
better prognosis. To better understand the relationship 
between the intersection of HCC immunotypes and six 
pan-cancer immunotypes, we extracted molecular sub-
type data from a previous study [38] and determined 
that the IS1 subtype was composed mainly of the C2 
and C3 subtypes, the IS2 subtype was composed mainly 
of the C4 subtype, and the IS3 and IS4 subtypes were 
composed mainly of the C3 and C4 subtypes (Fig. 4c). 
The results from our study are similar to those from 
previous studies to some extent. In addition, these 
results suggest that the four immunotypes described 
herein could be used to supplement HCC-associated 
immune classification.

Immune feature quantification in the four subtypes
We applied the LDA model to validate data centrally. Dif-
ferent colours represent different immunotypes, and the 
results showed that their distribution was concentrated, 
and the distance between the categories was obvious 
(Fig.  5a). Furthermore, the calculated LDA scores for 
each of the four TCGA subgroups showed marked dif-
ferences: the IS2 subgroup had the highest LDA score, 
and the IS1 subgroup had the lowest LDA score (Fig. 5b). 
Consistent with these results, the subgroup LDA scores 
for the ICGC and GEO databases were also significantly 
different; the IS2 LDA scores were much higher, and the 
IS1 scores were lower (Fig.  5c and d). The LDA scores 
from 3 different databases indicated a high degree of 
consistency. These results suggest that our immuno-
type has good stability in different databases. We also 
applied receiver operating characteristic (ROC) curves 
to assess the classification performance of feature indices 
in the TCGA dataset. The area-under-the-curve (AUC) 

Fig. 5  Evaluations of immune characteristic indices. a Relationships between the first two immune characteristic subtype indices (LD1 and LD2) 
and the four immune subtypes. b Differences in immune characteristic indices among the different subtypes in the TCGA dataset. c Differences 
in immune characteristic indices among the different subtypes in the ICGC dataset. d Differences in immune characteristic indices among the 
different subtypes in the GEO dataset. e ROC curves for the immune characteristic indices in the TCGA dataset. f ROC curves for the immune 
characteristic indices in the ICGC dataset. g ROC curves for the immune characteristic indices in the GEO dataset
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value was 0.92 (Fig.  5e) in the TCGA dataset. Likewise, 
the multiclass AUC value was 0.83 for the ICGC dataset 
(Fig.  5f ) and 0.85 for the GEO dataset (Fig.  5g). These 
multiclass AUCs verified that the immunotyping model 
has good classification efficiency.

Assessments of LDA scores and immunotherapy responses
We calculated the correlations (Pearson’s coefficients) 
between the immune characteristic indices and the 
expression of 47 immune checkpoint genes. These cor-
relations between LDA scores and immune checkpoint 
gene expression are illustrated in Fig.  6a. The expres-
sion of most immune checkpoint genes, especially CD27, 
CD86, CTLA4, ICOS, TIGIT, and TNFRF8, was nega-
tively correlated with the immune signatures (Fig.  6a). 
We further investigated the most thoroughly studied 
immune checkpoint molecules. The results indicated 
that PDCD1 was significantly negatively associated with 
the LDA score (P < 0.001, R =  − 0.053) (Fig.  6b), CD274 
expression was markedly negatively associated with the 
LDA score (P < 0.001, R =  − 0.37) (Fig.  6c), and CTLA4 
expression was remarkably negatively correlated with 
the LDA score (P < 0.001, R =  − 0.69) (Fig.  6d). These 
results showed that the immune characteristic indices 
and LDA score were significantly negatively correlated 
with most immune checkpoint molecules. In addition, 
we obtained a dataset of gene expression profiles from 
a previous study of patients with metastatic urothelial 
cancer who were treated with PD-L1 and calculated both 
their immune characteristic indices and their responses 

to different immunotherapies. There were significant dif-
ferences between the four patient subgroups (static dis-
ease, SD; progressive disease, PD; partial response, PR; 
and complete response, CR) in immune characteristic 
index values (Fig.  6e). These differences were observed 
to be related to CR/PR and to CR/PD. We also calcu-
lated the immune indices of our samples and obtained 
three datasets (GSE18728, GSE5462, and GSE20181) 
related to tumour chemical therapies to explore any cor-
relations between the immune signatures and chemo-
therapies. The results indicated no significant differences 
in chemotherapy responses among the four subgroups 
(Additional file 2: Fig. S2a–c). Notably, in the GSE20181 
dataset, there were no significant differences between 
the immune signature indices when the chemotherapy 
response group was compared to the non-response 
group (Additional file 2: Fig. S2d). However, compared to 
the non-treatment group, the immune signature indices 
were markedly decreased in the chemotherapy treatment 
group. Furthermore, with extended treatment time, the 
immune signature indices gradually decreased (Addi-
tional file 2: Fig. S2e).

Co‑expressed genes related to immune signatures
The HCC samples were clustered based on their gene 
expression profiles using distributed-cluster analysis. To 
ensure that the network was scale-free, we chose a soft 
threshold of β = 9. Next, we converted the representation 
matrix into an adjacency and then transferred the matrix 
into a topological matrix. The average-linkage hierarchy 

Fig. 6  Assessments of immune signature indices. a Relationship between immune characteristic indices and expression of immune checkpoint 
genes. b Correlations between immune characteristic indices and PDCD1 gene expression. c Correlations between immune characteristic indices 
and CD274 gene expression. d Correlations between immune characteristic indices and CTLA4 gene expression. e Differences between immune 
characteristic indices and treatment response states
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clustering method was applied to cluster genes. We also 
set the minimum number of genes in each gene network 
module as 30 in accordance with the standard of the 
hybrid dynamic shear tree. The dynamic shearing method 
was used to determine the gene modules, and then the 
eigengene value of each module was calculated. Then, 
cluster analysis was performed on the modules, and the 
modules close to each other were merged into new mod-
ules with the following parameters: height = 0.25, deep 
split = 4, and min module size = 30. A total of 26 mod-
ules were obtained (Fig.  7a), and the transcripts within 
these modules were distributed, as shown in Fig.  7b. In 
addition, we investigated any co-relationships between 
these module features and immune signatures (Fig.  7c). 
Of the 26 modules, 12 had significant overlaps with dif-
ferentially expressed genes. We also investigated any 
co-relationships between immune signature indices and 
module-based prognoses and observed that sky blue 3, 
grey 60, and medium purple 3 all indicated significant 

differences in prognosis (Fig.  7d). We also identified 11 
prognosis-associated genes that were co-expressed, 10 
of which originated from the grey 60 module (Fig.  7e). 
These 11 genes were TSPAN15, TSPO, METTL9, CD276, 
TP53I11, SPINT1, TRABD2B, WARS2, C9ORF116, and 
LBH. We performed RT-qPCR to validate their expres-
sion levels in Hep-G2 and LO2 cells. The results showed 
that most of these immune signature-based genes, such 
as SPINT1, CD276, TSPO, TSPAN15, METTL9, and 
WARS2, were significantly upregulated in HCC cell 
lines (Fig.  8). Collectively, these findings demonstrate 
that these hub genes have the potential to become novel 
immunological biomarkers of HCC.

Discussion
HCC is a leading cause of cancer-related mortality, with 
most patients in advanced stages of the disease when 
they are initially diagnosed [40]. These advanced-stage 
patients, with high rates of recurrence and metastases, 

Fig. 7  Identification of immune gene co-expression modules. a Cluster dendrogram of all differentially expressed genes/lncRNAs based on a 
dissimilarity measure (1-TOM). b The number of genes found in each module. c The correlations between modules and immune characteristic 
indices. d.Prognostic correlations between the modules and immune characteristic indices. e Network analysis of potential gene markers related to 
immune characteristic indices
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are no longer good candidates for surgical resection [40, 
41]. HCC carcinogenesis and progression are complex, 
with interactions between a variety of genetic back-
grounds and tumour microenvironments. Immuno-
therapies, especially ICIs, have become promising 
immunotherapeutic strategies for HCC [42]. Due to sur-
gical resection limitations, other combinatorial options 
with chemotherapeutics and immunotherapies have 
gained increasing attention for advanced HCC treat-
ments [43]. However, immunotherapy response rates 
remain both low and heterogeneous [41]. The identifica-
tion of novel biomarkers and construction of an immune-
based classification scheme for HCC may provide new 
approaches to improve responses to immunotherapies 
and overcome drug resistance.

Immunogenomics has provided evidence to geneti-
cally characterize immune cell and cancer cell interac-
tions. Tumour-node-metastasis stage, tumour grade, and 
microvascular invasion are the most common parameters 
used for HCC assessments, especially for a differential 
diagnosis, treatment selection, and prognosis predic-
tion [44]. However, these assessments cannot be used to 
evaluate a patient’s immune status and therefore cannot 
guide the selection of HCC immunotherapies.

The HCC immune microenvironment is character-
ized by both intratumoural and intertumoural heteroge-
neity [45]. The recognition of HCC immune signatures 
based on immunotherapy-related genes has provided 
a great shift in the effects of immunotherapy, and fur-
ther refinement of these signature-based classifications 
may facilitate more sensitive immunotherapies for the 
different subtypes identified. Here, we identified four 
HCC immune subtypes based on 152 immune signature 
genes, and these subtypes exhibited distinct differences 

in patient prognoses. Several studies have classified HCC 
patients into different subgroups based on genomic pro-
files in tumour tissues and adjacent normal tissues. Li 
et al. [46] identified five gene expression subtypes based 
on immune profiles of HCC patients. Julien Calderaro 
et  al. [47] estimated six molecular phenotypes based 
on genomic mutations of HCC. Bidkhori et al. [48] also 
developed three different metabolic and signalling path-
ways associated with cancer types based on HCC tumour 
tissues. In our previous study, we also identified four 
subtypes based on glycolytic and cholesterogenic genes 
in HCC [49]. Gong et  al. [50] applied paired tumour 
and adjacent nontumour tissues from GEO and discov-
ered three clinically relevant subtypes based on immune 
features and hallmark genes and nontumour samples in 
HCC. Our work is mainly focused on the immune signa-
tures of HCC tumour tissues, and our analysis adopted 
three classical HCC datasets from TCGA, GEO and 
ICGC and identified four distinct immune subtypes. 
Each of these studies have its’ own unique advantages 
and have potential supplement with each other. Thus, 
discussing HCC immune subtypes from different per-
spectives might achieve better immune signature classi-
fications and provide a comprehensive understanding of 
HCC immunotherapies.

In addition, we validated these results using other 
independent datasets, and the subtypes also exhib-
ited remarkably different immune characteristics and 
responses to immunotherapy and chemotherapy. This 
classification based on immune signature genes pro-
vides a more comprehensive understanding of both the 
immune microenvironment and the management of 
HCC. Previous studies have also suggested classifications 
based on immune-related genes. Zhang et  al. [51] clas-
sified three HCC subtypes (immunocompetent, immu-
nodeficient, and immunosuppressive), and Sia et al. [34] 
identified two immune gene-based subclasses based on 
adaptive or exhausted immune responses. In addition, 
Kurebayashi et al. [52] assessed the HCC immune micro-
environment and determined three distinct immune sub-
types (immune-high, immune-mid, and immune-low) 
based on intratumoural heterogeneity. However, these 
studies did not reflect the comprehensive immune status 
of HCC. Our classification scheme provides novel per-
spectives for immunotherapies, oncolytic viruses, anti-
angiogenic agents, and radiotherapy. It may therefore 
improve the current HCC classification for better disease 
management.

HCC is a complex disease that is combined with an 
immune-tolerant microenvironment [34]. We proposed 
four immunotypes, IS1, IS2, IS3, and IS4, of which HCC 
patients had significantly different immune-associated 
characteristics. Patients in the IS1 and IS4 subgroups 

Fig. 8  The mRNA expression levels of 11 hub genes in Hep-G2 and 
LO2 cells
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had better prognoses than those in the IS2 and IS3 sub-
groups. We constructed an immune signature-based 
classification for HCC prognosis prediction that can 
also provide more efficient strategies for immunothera-
pies. The present immunophenotypic classification of 
the four subtypes also involved investigations into com-
mon mutations, chemotherapeutically induced immune 
responses, immune features, and pathway characteristics. 
In addition, our analysis was carried out based on tran-
scriptome information from different databases, which 
makes it more clinically feasible for the clinical evalua-
tion of HCC and decision making. In addition, we iden-
tified eleven immune signatures, namely, TSPAN15, 
TSPO, METTL9, CD276, TP53I11, SPINT1, TRABD2B, 
WARS2, C9ORF116, DYNC2LI1 and LBH, which may 
serve as potential HCC biomarkers, and the use of such 
signature-based indices may shed light on novel targets 
for both personalized treatments and immunotherapies 
for HCC patients. Furthermore, we applied PCR analy-
sis and validated that most of these immune signature-
based genes, such as SPINT1, CD276, TSPO, TSPAN15, 
METTL9, and WARS2, were significantly upregulated in 
HCC cell lines. These studies indicate that these immune 
signature-based genes have a close relationship with 
cancer progression and immune infiltration, but fur-
ther explorations are still needed. However, validation 
of such experiments will require additional comprehen-
sive and comparative research to confirm the efficiency 
of this classification for clinical evaluations and decision 
making. The immunotypes and immune characteristics 
of HCC might also be suitable for other cancers. How-
ever, there are limitations to our analysis. First, the eleven 
immune signature genes need further validation in the 
clinic, in vivo and in vitro. Second, transcriptome infor-
mation was obtained from liver tissues after surgery and 
could not be accurately predicted prior to starting HCC; 
therefore, a better circulatory biomarker released from 
tumour cells and tumour-associated immune cells into 
the blood is urgently needed. Third, further functional 
and underlying mechanistic investigations and validation 
of the eleven immune-associated hub genes in HCC are 
needed.

Conclusions
In conclusion, we first identified four immunotypes 
in HCC. These subgroups also showed differential 
responses to immunotherapy and chemotherapy. 
We investigated 11 genes, namely, TSPAN15, TSPO, 
METTL9, CD276, TP53I11, SPINT1, TRABD2B, 
SPINT, WARS2, C9ORF116, and LBH, which might 
act as immunotherapy targets for HCC. We also vali-
dated that most of these genes were significantly 

upregulated in cancer cells. We propose a practi-
cal HCC immune-associated classification and iden-
tify immune signature-associated hub genes that may 
improve HCC immunotherapy management and prog-
nosis predictions.
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