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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) one of the deadliest malignant tumor. Despite considerable progress in 
pancreatic cancer treatment in the past 10 years, PDAC mortality has shown no appreciable change, and systemic 
therapies for PDAC generally lack efficacy. Thus, developing biomarkers for treatment guidance is urgently required. 
This review focuses on pancreatic tumor organoids (PTOs), which can mimic the characteristics of the original tumor 
in vitro. As a powerful tool with several applications, PTOs represent a new strategy for targeted therapy in pancreatic 
cancer and contribute to the advancement of the field of personalized medicine.

Keywords:  Pancreas cancer, Pancreatic ductal adenocarcinoma (PDAC), Pancreas tumor derived organoids (PTOs), 
Drug screen, Precision medicine

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Pancreatic ductal adenocarcinoma (PDAC), an exocrine 
pancreatic malignancy, is a rapidly developing and fatal 
disease that accounts for the majority of pancreatic can-
cers. It is the 8th and 9th deadliest malignancy in males 
and females globally, respectively [1]. Although PDAC 
treatments, particularly immunotherapy and adjuvant 
chemotherapy, have been optimized, 5-year survival in 
patients with PDAC remains low at 7–8% [2]. There are 
multiple factors responsible for such suboptimal results, 
e.g., late diagnosis, quick progression featuring metasta-
sis, and resistance to currently available chemotherapeu-
tics. Unfortunately, the majority of patients are diagnosed 
at later phases after metastasis is involved, and such indi-
viduals have already been affected for 6–12 months prior 
to diagnosis. Accordingly, gaining insights into the mech-
anisms of disease initiation and progression is of vital 
importance for early detection and risk stratification, and 

could aid in developing targeted therapeutic strategies 
[3, 4]. Despite the progress made with respect to insights 
into the mechanisms of PDAC pathogenesis, the actual 
impact in terms of benefits to patients remains unclear 
[5, 6]. Thus, novel model systems have been proposed 
and adopted to address the abovementioned issue with 
the hope that data could be translated into optimized 
diagnostics and therapeutics [7]. The present study high-
lights a patient-derived pancreatic tumor-derived orga-
noid (PTO), which could combine drug and genomic/
proteomic screening in  vitro, thus raising the hope of 
precision therapy for pancreatic cancer [8, 9].

Pancreatic tumor organoid culture system
3D cell culture model
The 3D cell culture model is a method avoiding cell 
attachment to the plate by growing suspension or matrix-
embedded cells. The first attempts to develop cancerous 
pancreatic cells spheroids have failed owing to limited 
cell viability and longevity [10]. Spheroids that are exces-
sively small result in the loss of cells due to the shear 
stress on cells in low adhesion cultures. Spheroids that 
are big will affect the diffusion of oxygen and metabolism 
of substances in cells within spheroids, resulting in the 
inconsistent differentiation of the whole spheroid [11]. 
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However, recently, 3D cultures of murine and human 
pancreatic cells have been successfully established in 
multiple laboratories using special matrices that help 
maintain interactions among cells and between cells and 
the matrix, promoting spheroid structures [12, 13].

Pancreatic spheres, which could be created from pan-
creatic ductal and acinar cells, are likely to simulate some 
PDAC features in  vivo, including microenvironmen-
tal parameters and drug response [14–16]. 3D spheres 
based on embryonic pancreatic cells partly reflect pan-
creas development, and express PDX1 and SOX9 [17, 18]. 
Ductal cell-derived spheres have been utilized for evalu-
ating pancreatic carcinogenesis, notably the function of 
KRAS mutation and in drug assessment [19–22].

The initial complete protocol for directly purifying 
ductal epithelial cells from the mouse pancreas as well 
as duct-like cells, which does not require further cul-
ture steps for 3D culture, was reported in 2013 [23]. This 
technique utilizes Dolichos biflorus agglutinin (DBA) in 
magnetic bead purification. Ductal cells could be grown 
on and inside a collagen matrix for 2D and 3D cultures, 
respectively [24]. Notably, the above method could be 
applied in several pathological states, such as inflam-
mation and cancer, and physiological processes, such as 
embryonic development [25].

Organoid culture model
3D-culture spheres have inspired a novel ex  vivo model 
called “tumor organoids”. This involves cells cultured in 
a 3D structure directly from primary tissue specimens 
or cancer cell lines capable of self-renewal and self-
organization, with appearance and functional properties 
comparable to those of the source tissue [26–28]. Tumor 
organoids could be indefinitely passaged with preserved 
genetic properties, like cell epigenetic markers, func-
tional characteristics, etc. They also share numerous fea-
tures with 3D spheres. However, 3D cultures are obtained 
from monolayer cells, while tumor organoids are gener-
ated from tissue specimens in 3D cultures using the same 
protocol described previously by our group [29].

Briefly, tumor organoids are formed by digesting (enzy-
matically or mechanically) original tumor tissues, which 
undergo embedding in a matrix (collagen or Matrigel) 
[30]. Additionally, particular growth factors and differ-
entiation regulators, including epidermal growth factor 
(EGF), fibroblast growth factor 10, Rspo1 (Wnt pathway 
inducer), Noggin (BMP pathway suppressor), Wnt3a, 
nicotinamide, N-acetylcysteine, gastrin, and A83-01 
(Alk suppressor), are needed to supply mesenchymal-
based signals [31]. Furthermore, normal (untransformed) 
human tumor organoids developed from ductal cells 
or tumor tissue samples require supplementation with 
prostaglandin E2. Flow cytometry and magnetic beads 

(with linked DBA) are optimal for isolating ductal cells, 
although non-ductal cells have been shown to be not fea-
sible and are thus eliminated after one passage [32, 33].

The tumor organoid culture system for pancreatic tis-
sues was first described in 2013 [34]. Subsequently, an 
organoid model derived from mouse and human adeno-
carcinoma of the pancreas has been successfully estab-
lished by embedding cells in Matrigel [26]. Researchers 
have used serum-free media supplemented with multiple 
growth factors for propagating mouse adult pancreatic 
duct cells. Such media activate Wnt signaling, expand-
ing ductal structures in serum-free conditions, further 
upregulating Lgr5 (stem cell biomarker and RSPO1 
receptor) and promoting self-renewal [34]. Additional 
vital constituents of these media include Glutamax, 
HEPES, Noggin, Gastrin I, nicotinamide, EGF, fibroblast 
growth factor 10, N-acetylcysteine, and B27 supplement, 
and in human specimens, Wnt3a and Primocin [35]. 
Remarkably, the tumor organoids generated are physi-
ologically similar to the original pancreatic tumor tissues. 
In addition, they have ductal epithelial cell biomarkers 
but no genes reflecting acinar and endocrine lineages. 
After tumor organoids were orthotopically transplanted 
into immunodeficient mouse models, pre-invasive 
tumors likening preneoplastic lesions (PanIN) that pro-
gressed to invasive adenocarcinoma and metastasize 
were detected. Therefore, this represents an attractive 
model for cancer progression.

Furthermore, murine PTOs have been subjected to 
gene expression analysis (RNAseq) and proteomics (mass 
spectrometry), revealing gene and proteomic profiles 
are related to pancreatic cancer progression. In another 
method, fibroblasts and tumor cells could be propa-
gated in Matrigel and complete medium (1:2). The latter 
medium contained 10% fetal bovine serum, 1% penicillin 
and streptomycin cocktail, and 10 ng/mL EGF receptor. 
Such conditions facilitate the generation of tumor cells 
with fibroblasts from human and mouse PDAC [25, 30].

A method exploiting an air–liquid interface that 
encompasses inner collagen gel-packed cells directly 
exposed to air (cells in contact with elevated oxygen 
amounts) has been developed [37]. This technique uti-
lizes a matrix containing collagen I in lieu of Matrigel 
[38] and allows 3D organoid culture from newborn or 
adult mouse tissue samples without exogenously supple-
menting growth factors.

Another strategy to develop PTOs from pancreatic 
cancer cell lines, included endothelial or mesenchymal 
cells, involves the self-assembly process [39–41]. Cancer-
associated fibroblasts participate in extracellular matrix 
(ECM) production and contribute to tumor growth 
and resistance to chemotherapeutics. Lately, a research 
group developed a co-culture model of pancreatic cancer 
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organoids and stellate cells [31, 36]. This model yielded 
increased proliferation degree ofpancreatic cancer cells 
[42]. Furthermore, the authors reported that cancer-
related fibroblasts were heterogeneous, expressing a 
range of levels of smooth muscle actin and interleukin 
(IL)-6 based on their proximity to the organoids. The 
above findings indicate that ECM played a important role 
in pancreatic cancer cells proliferation and differentiation 
[13, 43].

Despite the easy access to cell/tissue resources for 
PTOs establishment, the interactions among different 

cell types and between the cells and the stroma remain 
unclear. PTOs can be generated not only by excising 
tissues or biopsy, but also from endoscopy-mediated 
fine-needle aspiration or biopsy specimens. Moreover, 
they could be produced from small tissue quantities 
[44–46]. Lastly, PTOs retain the genetic phenotypes 
and biological features of the original tissue. In addi-
tion, researchers also found that PTOs could be gener-
ated from iPSCs with Kras/tps3 modification [22]. The 
primary culture model of PTOs is depicted in Fig.  1. 
Well-established PTO culture systems are summarized 
in Table 1.

Fig. 1  Induction of pancreas tumor organoid



Page 4 of 12Yao et al. Cancer Cell Int          (2021) 21:398 

Applications of PTOs
PTOs are an effective research tool that can be utilized 
in numerous major areas of pancreatic tissue pathology 
[47]. PTOs can be obtained quickly and do not require 
large tissue amounts, thus enabling for drug develop-
ment and the assessment of biomarkers for diagnosis. 
Various disease phases and clinical scenarios could also 
be mimicked by such a tool. Large genotranscriptomic 
trials of human pancreatic malignancies have assessed 
surgical samples. However, only 20% of pancreatic can-
cer cases are eligible for surgical resection, with the 
remaining 80% showing advanced disease and poor 
prognosis [48–51]. The aforementioned shortcomings 
can be potentially resolved using the PTO platform [52, 
53] (Fig. 2).

Neoplasia modeling
PTOs allow the modeling of human pancreatic cancer 
development in vitro [47] and thus represent an excel-
lent approach for studying pancreatic cancer progres-
sion. Because PTOs can routinely be obtained from 
normal human epithelia, mutational processes dur-
ing different phases of malignancy can be monitored 
in  vitro, and in  vitro culture of a range of premalig-
nant pancreas neoplasias is now feasible [27]. However, 
PTOs do not rely on the R-spondin protein to activate 
Wnt pathway mutations, and their dependence on other 
niche growth factors is specifically lost in the adenoma-
to-carcinoma transition [32, 45, 54]. Another relevant 
application of PTOs is their use in xenografts [55, 56]. 
Upon PTO transplantation into immunodeficient mice, 
PanINs capable of developing invasive adenocarcinoma 
and metastasis are generated, thereby representing an 
efficient and convenient option for studying tumor pro-
gression and identifying novel biomarkers in the initial 
phases of PDAC [57–59].

Biomarker identification
For identifying biomarkers and stratifying patients 
according to genetic profile and therapeutic response, 
biobanks of 3D organoids attract increasing attention. 
Organoid biobanks produced from tissues specimens 
collected perioperatively or by endoscopic ultrasound 
biopsy allow the sampling of a broad range of tumors of 
various stages [39, 48, 60–65]. Interestingly, PTOs gen-
erated from frozen tumor tissues exhibit comparable 
morphology, viability, and metabolism to those derived 
from fresh tissues [66]. These findings indicate that pan-
creatic cancer-specific and early-phase biomarkers can 
be feasibly identified [30, 67]. mRNA expression analysis 
of human pancreas organoid reveals that hPOs express 
increased levels of the adult stem cell marker  LGR5. 
Organoid developed from isolated ducts and islets all 
express similar levels of the pancreatic progenitor and 
beta-cell marker  PDX1 [68]. It was also reported that 
ducts-derived organoid express higher levels of ductal 
marker  SOX9  in comparison to islets. These findings 
suggest pancreas organoid maintain a pancreatic ductal 
identity during in vitro culture [57].

Genomic studies
PTOs constitute a new tool for analyzing gene expres-
sion in tumor cells, with high selectivity [69, 70]. They 
could be utilized for validating genetic alterations 
involved in cancer progression and identifying genes 
related to different phases of tumor progression, thera-
peutic response, and prognosis [54, 60, 62, 63, 71–73]. 
For instance, an organoid model system was used 
for evaluating NRF2’s role in PDAC progression and 
knocking down its transcription factor in human and 
mouse organoids [74]. The authors revealed low pro-
liferation in human tumor-like organoids not express-
ing NRF2. In addition, these authors demonstrated 

Table 1  Pancreas tumor organoids culture system established for drug and biomarker screen

PanIN pancreas intraepithelial neoplasia, PDAC pancreas ductal adenocarcinoma, iPSCs induced pluripotent stem cells

Tissue Species Matrix Trans-plantation Drug testing Biomarker 
screen

References

Nomal pancreas
PanIN
PDAC

Murine
Human

Embedded in Matrigel Generation of PDAC and
PanIN

Yes Yes [9]
[24]
[27, 28]
[30]

iPSCs
PDAC

Human Media and Matrigel Generation primary tumor Yes Yes [25]

PDAC Murine
Human

Media and Matrigel – Yes Yes [34]
[89]

Neonatal tissue
PDAC
iPSCs

Murine
Human

Air-liquid interface on Matrigel Generation of PDAC Yes Yes [32]
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an association between NRF2 and mRNA translation 
through REDOX regulation [36, 51, 67, 75–89].

PTOs is not retained well when assessing structural 
variation events, but there are striking cases of clus-
tering of SV events across particular chromosomes 
that are retained when tumors are implanted into their 
respective disease models [13]. Comparison of tumors, 
PDXs, and PTOs revealed that several genetic aberra-
tions are sample-specific, PDXs and PDOs may serve 
as tractable and transplantable systems for probing the 
molecular properties of PDAC [90].

Tumor organoid biobanks
Most specimens assessed by cancer consortia, including 
the International Cancer Genome Consortium and The 
Cancer Genome Atlas, are perioperatively obtained sam-
ples of primary tumors, while metastatic tumors usually 
reflect the lethal phase of cancer. In theory, PTOs enable 
the expansion of limited tumor specimens, thereby allow-
ing the assessment of malignant cells at all stages [61]. 
PTO biobanks broaden the patient sample types that can 
be studied in the laboratory. Biobank research has pri-
marily verified that PTOs have the features of respective 

Fig. 2  Potential applications of pancreas tumor organoid
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primary tumors, at least according to the data obtained 
from bulk DNA sequencing. Nevertheless, whether intra-
tumoral heterogeneity is observed in organoid cultures 
remains unclear [29]. An additional unstudied issue is the 
clonal drift of “bulk” organoids in cultures maintained for 
extended periods.

Several initiatives have been implemented to increase 
the availability of well-characterized PTO biobanks in the 
academia and industry. The nonprofit HUB (www.​hub4o​
rgano​ids.​eu) provides established organoid biobanks. 
The Human Cancer Models Initiative (https://​ocg.​cancer.​
gov/​progr​ams/​HCMI) represents a collaborative interna-
tional consortium building cancer-derived culture mod-
els matched to genomic findings and patient features 
[91]. The HCMI’s objective is to improve the availability 
of the built models and relevant information as a com-
munity resource [53, 61]. Compounded with the techni-
cal issues of banking living materials, ethical problems 
and informed consent challenges associated with such 
biobanks are complicated.

From drug screening to precision medicine
PTOs constitute a tool for rapid drug assessment of 
individual tumors before or in parallel to implementing 
treatment in patients with PDAC [92, 93]. Although a 
one-week time period between biopsy and drug selection 
has been reported, more recent studies have suggested 
that extensive drug screening should be performed 
within 3–4 weeks post-biopsy [45, 60, 94]. This technique 
can potentially reveal individual treatment vulnerabilities 
according to the genetic mutation profile and therapeutic 
response in organoids or determine the next lines of ther-
apy in case of ineffective first-line treatment [95, 96]. It is 
also noteworthy that tumors derived from KPC and KC 
mouse models are heavily used for organoid development 
and drug screening, which provided a proven platform 
for drug screen for pre-clinical research [31, 97].

Additionally, drug screening could be examined in 
combination with dynamic live imaging for obtain-
ing functional optical metabolic findings [45, 63, 94, 
98–102] (Fig.  3). The above multiphoton microscopy 
method could help in detecting cell metabolism altera-
tions by measuring auto-fluorescence intensity as well 
as the half-lives of reduced nicotinamide (NAD) and 
flavin (FAD) adenine dinucleotides. In addition, it 
can detect heterogeneity, identify nonresponsive sub-
clones, and differentiate between pre-malignant and 
invasive lesions [103, 104]. Optical metabolic imaging 
is highly sensitive in revealing metabolic alterations 
1–2  h following treatment with effective drugs, and 
such changes correlate with the expected response (i.e., 
HER2 expression in breast cancer) [105]. Further, opti-
cal metabolic imaging distinguishes cell types and drug 

response [18, 29, 41, 62, 63, 106, 107]. For instance, 
fibroblasts from PDAC organoids show drug response, 
despite no overt cell death enhancement [94]. Thus, this 
method could be adopted to evaluate the response of 
PDAC patients to stroma-targeting therapies in tumor 
organoids [23, 108–110].

Owing to the poor prognosis of individuals with meta-
static pancreatic cancer, precision therapy for pancreatic 
cancer remains challenging [82]. In several cases, PTO 
pharmacotyping was completed in less than 4  weeks, 
demonstrating the potential of PTOs to determine the 
best treatment in a clinically meaningful time period in 
early and late stages of pancreatic cancer [111]. Because 
complementary genomic and transcriptome analysis 
is feasible in patients with advanced pancreatic cancer, 
PTO drug typing and transcriptome characteristics can 
be prospectively validated, even when first-line therapy is 
applied [30, 52, 85].

However, this methodology is not uniformly success-
ful in all PDAC patients [53]. Chemosensitivity profiles 
might stratify and thus ameliorate the initial patient care 
in pancreatic cancer. Moreover, in combination with lon-
gitudinal PTOs’ molecular and pharmacologic assess-
ments, such techniques could be modified for optimizing 
individual patient care [63] (Fig. 4).

Challenge and future directions
Although PTO systems and their potential applications 
have attracted increasing attention, their high cost and 
time-consuming nature cannot be overlooked. In addi-
tion, PTOs lack numerous constituents, including fibro-
blasts, and endothelial, immune and neural cells [39], 
which result in PTOs developing is the loss of vascularity 
and immune cell proportion during PTOs subculture. To 
address these limitations, studies focused on co-culture 
of organoids with other cell types for generating a more 
“physiological” microenvironment and identifying puta-
tive cell–cell interactions are underway [48].

Although the application of PTOs in pancreatic can-
cer is at its early stage, many studies have demonstrated 
several advantages, including the ease of drug testing, the 
predictive value on PDAC’s early diagnosis, and the sta-
bility of features shared with the original tumor. Ongo-
ing clinical studies are evaluating the potential utilization 
of PTOs as a platform for pre- and post-therapy. Stand-
ardizing protocols for PTO production is also required 
for reproducibility. Ideally, optimization should encom-
pass the expansion of PTO development techniques 
to other pancreatic lesion types, including pancreatic 
cystic lesions (mucinous cystic and intra-papillary muci-
nous neoplasms) and neuroendocrine lesions. Moreover, 
cheaper culture materials must be identified.

http://www.hub4organoids.eu
http://www.hub4organoids.eu
https://ocg.cancer.gov/programs/HCMI
https://ocg.cancer.gov/programs/HCMI
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Fig. 3  Presicion medicine based on pancreas organoid technology
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Conclusion
Various animal models of PDAC have been established, 
with each approach contributing to the assessment 
of PDAC’s pathogenetic mechanisms. Overall, PTOs 

constitute a promising and effective tool for tumor tar-
geted therapy, and could contribute to the application of 
precision medicine in pancreatic cancer.

Fig. 4  Pancreas tumor organoid xenotransplant—from surgery to clinical trails
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