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Multi‑omics analysis reveals prognostic value 
of tumor mutation burden in hepatocellular 
carcinoma
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Abstract 

Background:  Hepatocellular carcinoma (HCC) was the sixth common malignancies characteristic with highly 
aggressive in the world. It was well established that tumor mutation burden (TMB) act as indicator of immunothera-
peutic responsiveness in various tumors. However, the role of TMB in tumor immune microenvironment (TIME) is still 
obscure.

Method:  The mutation data was analyzed by employing “maftools” package. Weighted gene co-expression network 
analysis (WGCNA) was implemented to determine candidate module and significant genes correlated with TMB 
value. Differential analysis was performed between different level of TMB subgroups employing R package “limma”. 
Gene ontology (GO) enrichment analysis was implemented with “clusterProfiler”, “enrichplot” and “ggplot2” packages. 
Then risk score signature was developed by systematical bioinformatics analyses. K-M survival curves and receiver 
operating characteristic (ROC) plot were further analyzed for prognostic validity. To depict comprehensive context of 
TIME, XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC, CIBERSORT, and CIBERSORT-ABS algorithm were employed. Addi-
tionally, the potential role of risk score on immune checkpoint blockade (ICB) immunotherapy was further explored. 
The quantitative real-time polymerase chain reaction was performed to detect expression of HTRA3.

Results:  TMB value was positively correlated with older age, male gender and early T status. A total of 75 intersection 
genes between TMB-related genes and differentially expressed genes (DEGs) were screened and enriched in extracel-
lular matrix-relevant pathways. Risk score based on three hub genes significantly affected overall survival (OS) time, 
infiltration of immune cells, and ICB-related hub targets. The prognostic performance of risks score was validated in 
the external testing group. Risk-clinical nomogram was constructed for clinical application. HTRA3 was demonstrated 
to be a prognostic factor in HCC in further exploration. Finally, mutation of TP53 was correlated with risk score and do 
not interfere with risk score-based prognostic prediction.

Conclusion:  Collectively, a comprehensive analysis of TMB might provide novel insights into mutation-driven 
mechanism of tumorigenesis further contribute to tailored immunotherapy and prognosis prediction of HCC.
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Introduction
Primary liver cancer is one of the most prevalent and 
aggressive malignancies whose incidence has raised rap-
idly in the world [1–3]. According to histopathological 
classification, approximately 80% of liver cancer cases 
were hepatocellular carcinoma (HCC) [2]. Such underly-
ing risk factors for HCC as infections of hepatitis virus, 
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aflatoxin exposure, type 2 diabetes, heavy alcohol intake 
and obesity played key role in leading to hepatocarcino-
genesis [3]. Since sophisticated molecular-level diver-
sity including genomics and genetic variation, HCC 
was considered as malignant disease with high hetero-
geneity from not only intertumoral but also intratumor 
standpoint [4–7]. Given that its high heterogeneity and 
etiologies differs well among different patients, tumor‐
node‐metastasis (TNM) staging as widely used clinical 
classification achieved little in predicting overall survival 
and clinical outcome [8–10]. It is imperative, therefore, to 
generate robust tools for prognosis prediction and thera-
peutic response assessment, further facilitate precision 
and individualized treatment.

Recently, advances in such immunotherapy as anti-
CTLA-4 and PD-1/L1 (immune checkpoint blockade, 
ICB) have exerted encouraging therapeutic efficacy sub-
sequently elevated overall survival (OS) probability in 
multiple human malignancies [11–14]. Clinical trial 
data reported that 31% patients were obtained objective 
response to ICB treatment, which ignite people interest 
in immunological treatment against HCC [15, 16]. Tra-
ditionally, the tumor progression has been considered 
as a multistep process that only involves the genetic and 
epigenetic variation in tumor cells. With the deepening 
of research, it’s well established that signaling and secre-
tions mediated by multiple cell subpopulations from 
tumor immune microenvironment (TIME) serves a key 
player in driving tumor progression, tolerance and eva-
sion [17, 18].

Tumor mutation burden (TMB), representing the 
somatic coding errors such as base substitutions, dele-
tions across, or insertions per million bases, has been 
termed as a promising indicator for predicting respon-
siveness to ICB based on numerous researches [19–21]. 
High TMB was found to promote antigens formation and 
subsequent infiltration of immune cells then strengthen 
immune response, which can lead to improved immu-
notherapeutic efficacy [22]. To date, there have been 
multiple studies focusing the correlation of TMB and 
immunotherapy in diverse cancers, including HCC [19, 
20, 23, 24]. However, it is little to know the underlying 
functions of TMB related molecules in prognosis and 
immunotherapeutic efficacy of HCC. Thus, the most 
efficient method for accurate predictions of how a given 
tumor will respond to treatment or progress may be 
one based on molecular risk classification, recognizing 
HCC samples on line with specific molecular signatures, 
enhancing prognostic predictive precision and facilitate 
clinical-decision making accordingly.

Herein, this research was designed to elucidate the 
potential significance of TMB related molecules in HCC. 
Expression profiling matrix, clinical information and 

corresponding copy number variation data were obtained 
from TCGA portal. Firstly, landscape of somatic muta-
tion was delineated using R package “maftools”. Then, 
differentially expressed genes (DEGs) were applied into 
identification TMB candidate genes based on WGCNA 
analysis of TMB-related genes. Next, candidate genes 
were further screened using LASSO regression analysis 
and final 3 hub genes were determined. Besides, multi-
genes prognostic signature and risk-clinical nomogram 
was constructed then validated. Additionally, the poten-
tial role of risk signature in TIME and immunotherapy 
was explored. Moreover, the potential role of HTRA3 
was explored in HCC. Finally, the synergistic effect of risk 
score with gene mutation was demonstrated. These find-
ings may contribute novel insight into potential targets 
and advance precision immunotherapy for HCC.

Materials and methods
Collection of muti‑omics information
Four categories of somatic mutation data of HCC sam-
ples were obtained from The Cancer Genome Atlas 
(TCGA) portal. The mutation files obtained through the 
“varscan variant aggregation and masking” platform was 
singled out for subsequent analysis. The Mutation Anno-
tation Format (MAF) of somatic variants was prepared 
within the “maftools” [25] R package. Furthermore, gene 
expression profiling for HCC sample compared with nor-
mal tissues were obtained from TCGA-LIHC project. 
The corresponding clinical data were also obtained from 
the TCGA portal as descripted previously. The corre-
sponding expression profiling information and the clini-
cal data were downloaded from the ICGC (https://​dcc.​
icgc.​org). The detailed clinical data of HCC patients from 
TCGA-LIHC and ICGC-LIRI-JP were recorded in Addi-
tional file  1: Table  S1. There was no necessity to obtain 
Ethics Committee approval since all information were 
publicly available and open-access. The analysis process 
flow chart was presented in Additional file 2: Figure S1.

Detection of TMB and prognostic analysis
In this study, a Perl script was employed to fetch the 
somatic mutation data then the TMB scores for each 
sample was calculated through dividing the number of 
somatic mutations by the total length of exons (38 mil-
lion). Additional file  1: Table  S2 recorded the details of 
estimated TMB value of HCC patients. Subsequently, the 
median value was employed as the cutoff value to cate-
gory HCC samples into high- and low-TMB subgroups.

Next, the calculated TMB information was integrated 
with corresponding follow-up information. The log-
rank test was analyzed to determine prognostic differ-
ence between low- and high-TMB subgroups. Besides, 
the correlation of TMB values with clinicopathological 
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variables was explored, Wilcoxon rank-sum test was 
analyzed between two groups of clinical characteristics, 
whereas Kruskal–Wallis (K-W) test was utilized among 
three or more groups.

Weighted gene co‑expression network analysis
The gene-expression profiles of total 56,753 genes were 
applied to explore the TMB-related modules using R 
package “WGCNA”. The correlations between sample 
traits and candidate modules are computed to determine 
the models highly correlated with traits, in which the 
genes are further analyzed to screen hub genes [26]. TMB 
value was employed as sample phenotype and a suited 
value of β was applied to build a scale‐free network. 
Then, a weighted adjacency matrix was converted to a 
topological overlap matrix (TOM) that measures the net-
work connectivity of a gene. Genes with similar expres-
sion profiles were classified into different modules using 
hierarchical agglomerative clustering analysis, and the 
cutHeight value was set to 0.8. Module eigengenes (MEs) 
identifies expression patterns of all genes as a single 
characteristic expression profile within a given module. 
Besides, correlation analysis between module character-
istic genes and sample traits was implemented by Pear-
son’s correlation test (*p < 0.05). Lastly, modules with the 
highest correlation were selected for further analyses.

Identification of DEGs
Taking advantage of the “Limma” package 
with|log2FC|> 1 and False Discovery Rate (FDR) < 0.05, 
the differentially expressed genes (DEGs) between low- 
and high- TMB groups were screened. With the help of 
package “pheatmap”, heatmap was plotted to present the 
expression difference.

Functional annotation
The intersection of genes in highest significant module 
with DEGs were introduced into further study. By using 
R package “org.Hs.eg.db”, the Entrez ID for each gene was 
obtained and the Gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways anal-
ysis was performed with “clusterProfiler”, “enrichplot” 
and “ggplot2” packages and visualized the results.

Construction of multi‑genes prognostic signature
HCC patients with missing OS values or OS = 0 day were 
excluded in order to reduce statistical bias in our analy-
sis. Finally, a TCGA cohort involving 365 patients was 
employed as training group. By using package “glment”, 
LASSO regression algorithm with package “glment” was 
analyzed. Then, three hub genes were determined and 
introduced into a prognostic risk signature. The risk score 
of each sample was obtained as the following equation: 

risk score = sum of risk coefficients * expression level of 
gene.

Validation of the multi‑genes prognostic signature
First, K–M survival analyses were performed with “sur-
vival” R package. Furthermore, univariate and multivari-
ate Cox regression were employed for prognostic validity 
of risk score as an independent indicator. Subsequently, 
the receiver operating characteristic (ROC) curves were 
plotted to estimate the prognostic value. The ICGC-LIRI-
JP dataset from the ICGC database was used as an inde-
pendent validation cohort (n = 231). The prognostic 
predictive precision was further validated in the external 
validation group.

Risk score with clinical features
To elucidate the clinical significance of risk score, the 
correlation analysis between risk score with such main 
clinicopathological variables as gender, age, pathologi-
cal staging, and TNM categories was performed. To 
further validate whether Multi-genes prognostic sig-
nature remained great prognostic validity when HCC 
samples assigned into distinct subgroups according to 
clinical characteristics, stratification survival analysis 
were conducted.

Risk score with TIME characterization
To uncover the correlation between the risk score and 
tumor infiltrating immune cells, the seven methods 
including XCELL, TIMER, QUANTISEQ, MCPcounter, 
EPIC, CIBERSORT, and CIBERSORT-ABS were used to 
evaluate the immune infiltrating situation. Spearman cor-
relation was analyzed to explore the relevance between 
risk score and the immune infiltration statues. The differ-
ences in immune infiltrating cell fraction were compared 
between low and high-risk subgroups.

Role of risk score in immune checkpoint blockade 
treatment
According to previous research, expression patterns of 
immune checkpoint blockade-related hub targets might 
contribute into efficacy of immunotherapy administra-
tion [27]. An increasing number of recognized immune 
checkpoints act to coordinately influence the local 
tumor-immune environment. In this study, six hub genes 
of immunotherapy: programmed death ligand 1 (PD‐L1, 
also known as CD274), programmed death 1 (PD‐1, also 
known as PDCD1), programmed death ligand 2 (PD‐L2, 
also known as PDCD1LG2), cytotoxic T‐lymphocyte 
antigen 4 (CTLA‐4), T‐cell immunoglobulin domain 
and mucin domain‐containing molecule‐3 (TIM‐3, also 
known as HAVCR2), and indoleamine 2,3‐dioxygenase 1 
(IDO1) were fetched in HCC [28–31]. To further explore 
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the potential role of risk signature in immunotherapy, 
correlation of prognostic signature with expression value 
of six ICB hub genes was analyzed. To reveal the poten-
tial role of risk score in response to immunotherapy, 
the expression values of 47 ICB-related hub targets (i.e., 
PDCD1, etc.,) were detected for further analysis.

Development of prognostic nomogram
To comprehensively estimate prognostic ability of risk 
score, clinical stage, gender, age and tumor grade for 1‐, 
2-, 3‐, 4‐, 5‐and 6‐year overall survival, time-depend-
ent receiver operating characteristic (ROC) curves was 
performed to compute the area under the curve (AUC) 
values [32]. To construct a quantitative risk model to pre-
dicting overall survival rate, a nomogram including risk 
score and other clinical variables to predict 1/2/3-OS 
probability. Subsequently, the calibration curve which 
shown the prognostic value of as-constructed nomogram 
was developed.

Cell culture
The human normal hepatocyte cell line SQG-7701 and 
four HCC cell lines MHCC-97H, Hep-3B, HCC-LM3, 
HepG2 purchased from the Cell Bank of the Type Cul-
ture Collection of the Chinese Academy of Sciences, 
Shanghai Institute of Biochemistry and Cell Biology. The 
cells were all cultured in Dulbecco’s Modified Eagle’s 
Medium (DMEM, Gibco BRL, Grand Island, NY, USA) 
supplemented with 10% fetal bovine serum (FBS; Invit-
rogen, Carlsbad, CA, USA) and antibiotics (100  μg/mL 
streptomycin and 100 U/mL penicillin, Sigma, St-Louis, 
MO, USA) in a humidified incubator containing 5% CO2 
at 37 °C.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)
Total RNA was extracted from cells using TRIzol (Invitro-
gen, Carlsbad, CA, USA) according to provided instruc-
tions. RNA concentration and purity were measured in 
triplicates utilizing the NanoDrop 2000 spectrophotom-
eter (Thermo Scientific Inc., Waltham, MA, 93 USA). 
Then, total RNA was reverse transcribed to cDNA using 
the cDNA Reverse Transcription Kit (Vazyme, Nanjing, 
China). qRT-PCR analyses were performed using SYBR® 
Premix Ex Taq™ II (Takara, Dalian, China) and Taqman 
UniversalMaster Mix II (Life Technologies Corporation, 
Carlsbad, CA, United States) on Applied Biosystems 
7500/7500 Fast Real-Time PCR System (Thermo Fisher 
Scientific). The 2-ΔΔCt method was used to calculate the 
relative mRNA expression normalized by GAPDH and 
HTRA3. The sequences of primers used for PCR were as 
follows: HTRA3, 5′- AAG​AAG​TCG​GAC​ATT​GCC​ACC​
ATC​ -3′ (forward) and 5′- CCG​TTG​TCA​CTG​TGT​TCT​

GTA​GGG​ -3′ (reverse); and GAPDH, 5′-GGA​GCG​AGA​
TCC​CTC​CAA​AAT-3′ (forward) and 5′- GGC​TGT​TGT​
CAT​ACT​TCT​CATGG-3′ (reverse).

Statistical analysis
Wilcoxon rank-sum test was a non-parametric statisti-
cal hypothesis test mainly used for comparisons between 
two groups and Kruskal–Wallis test was suitable for two 
or more categories. Overall survival (OS) refers to the 
interval from the date of diagnosis to the date of death. 
Survival curves were plotted via the Kaplan–Meier log 
rank test. CIBERSORT algorithm results with p ≥ 0.05 
were rejected for further analysis. Univariate and mul-
tivariate analyses were performed via Cox regression 
models to validate the independent prognosis predictive 
performance of risk signature. The prognostic value for 
1-, 2- and 3-year OS was assessed with the ROC curves. 
p < 0.05 deemed statistical significance. R software (ver-
sion 4.0.2) was utilized for all statistical analyses.

Results
Landscape of somatic mutations in HCC
As summarized in the waterfall map, 327 out of 364 HCC 
patients had the somatic mutation altered, accounting 
for 89.84%. And the results showed that TP53, CTNNB1 
and TTN mutations are the highest three mutated genes 
in HCC samples, frequency was 30%, 25% and 24%, 
respectively (Fig.  1A). Missense mutations occupied an 
absolute position among the total mutation classifica-
tion (Fig.  1Ba), single nucleotide polymorphism (SNP) 
accounted for more proportion than deletion (DEL) or 
insertion (INS, Fig. 1Bb and e). Meanwhile, C > T had the 
highest frequency, 13,933 times, in variant types of SNV 
(Fig. 1Bc, 1D). Figure 1Bd presented that the number of 
variants per sample and the median value of mutations 
variants was 71. Besides, the top 10 genetical variated 
genes were TP53, TTN, CTNNB1, MUC16, ALB, PCLO, 
MUC4, APOB, RYR2 and ABCA13 (Fig.  1Bf). Cancer 
genomes are characterized by genomic loci with localized 
hyper-mutations. Such hyper mutated genomic regions 
can be visualized by plotting inter variant distance on a 
linear genomic scale. These plots generally called rainfall 
plots. The rainfall plot of sample TCGA − UB − A7MB − 
01A − 11D − A33Q − 10 was presented in Fig.  1C. Each 
dot represented SNV mutation type with correspond-
ing color. To further elucidate the intrinsic connection 
between these genetic altered genes, the exclusive and 
co-occurrence correlation were presented in Fig.  1E. 
CACNA1E and LRP1B experienced highest co-occur-
rence frequency, while AXIN1 and CTNNB1 showed 
obvious mutuality of mutually exclusive.
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Clinical role of TMB in prognosis
When setting the cutoff value as median TMB value, 
HCC samples were assigned into two groups, namely, 
TMB low group with 180 patients and TMB high group 
with 182 patients (Additional file 1: Table S2). Besides, 
K-M survival analysis was plotted to identify the prog-
nostic difference of TMB. Likewise, previous research 
pointed out that higher level of TMB facilitate tumor 
elimination further leads to longer survival [19, 21, 
33]. There was no statistical difference of log-rank test 
(Additional file  2: Figure S2A, P = 0.108), however, 
patients with high-TMB had longer median survival 
time compared low-TMB ones. Besides, higher TMB 
value was positively correlated with older age (Fig.  1F, 
P = 0.00099), male gender (Fig.  1G, P = 0.0035) and 
early M categories (Fig.  1H, P = 0.0078). Whereas, no 
significant correlation of TMB value was discovered 
with pathological grade, TNM staging, T status and M 
status (Additional file 2: Figures S2B-E).

WGCNA co‑expression network construction
To identify TMB hub genes, WGCNA analysis was 
performed to construct the co-expression network for 
mRNA expression data of 17,932 genes together with 
TMB information. Sample dendrogram and TMB-traits 
heatmap were plotted (Fig.  2A). In order to construct 
the scaleless network, the optimal soft threshold power 
(β) was set as 6 since it was the first power value when 
the index of scale-free topologies achieve 0.90 (Fig. 2B). 
Genes with similar expression patterns were intro-
duced into the same module by dynamic tree-cutting 
algorithm (module size = 60), making a hierarchical 
clustering tree with modules (Fig.  2C). The parameter 
was set as 0.25 to merge closely associated modules. 
Finally, a total of 52 modules were identified (Fig. 2D). 
Then, the Module eigengenes (MEs) indicated that the 
blue module clearly showed the highest association 
with TMB stratification (r = 0.36, p = 0.001; Fig.  2D). 

Fig. 1  Landscape of somatic mutation profiles in HCC samples. A Mutation information of each gene in each sample was shown in the waterfall 
plot, where different colors with specific annotations at the bottom meant the various mutation types. The barplot above the legend exhibited 
the number of mutation burden. B Cohort summary plot displaying distribution of variants according to variant classification, type and SNV class. 
Bottom part (from left to right) indicates mutation load for each sample, variant classification type. A stacked barplot shows top ten mutated genes. 
C Rainfall plot of TCGA HCC sample TCGA − UB − A7MB − 01A − 11D − A33Q − 10. Each point is a mutation color coded according to SNV class. 
D Transition and transversion plot displaying distribution of SNVs in HCC classified into six transition and transversion events. Stacked bar plot 
(bottom) shows distribution of mutation spectra for every sample in the MAF file. E The coincident and exclusive associations across mutated genes. 
The correlation of TMB with age (F), gender (G) and T status (H)
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Therefore, the blue module with 939 genes (Additional 
file 1: Table S3) was employed for further analysis.

Identification of DEGs
To further reveal the difference between low-/high-TMB 
groups from mRNA level, DEGs were analyzed. In total, 
374 DEGs (300 down-regulated and 74 up-regulated) 
were determined as described previously (Fig. 3A, Addi-
tional file  1: Table  S4). The heatmap presented the dis-
tribution of top 40 DEGs (Fig.  3B). A Venn diagram of 
TMB hub genes was plotted (Fig. 3C), uncovering 75 sig-
nificant targets that overlapped between the blue module 
and DEGs.

GO and KEGG functional annotation
To reveal the potential role of TMB hub genes in bio-
logical process, we conducted GO and KEGG annota-
tion. The results of GO enrichment pathway analysis 
suggested that hub genes were mainly enriched in extra-
cellular matrix organization, extracellular structure 
organization, ossification in biological processes (BP); 
collagen − containing extracellular matrix, Golgi lumen 
and endoplasmic reticulum lumen in cellular compo-
nents (CC); extracellular matrix structural constituent, 

glycosaminoglycan binding, sulfur compound binding 
in molecular function (MF; Fig.  3D). For KEGG analy-
sis, the top enriched terms were cGMP − PKG signaling 
pathway, Focal adhesion and ECM − receptor interaction 
(Fig. 3E). A detailed description is provided in Additional 
file 1: Table S5.

Identification of TMB‑based prognostic signature
To identify 75 hub genes with the most excellent prog-
nostic performance, LASSO algorithm was employed 
(Additional file  2: Figure S3A, S3B). And three hub 
genes, including HTRA3, OLFM1 and PLN, were iden-
tified to yield prognostic signature to obtain risk score 
for HCC samples. The risk score was calculated: risk 
score = (0.0053 ∗ HTRA3 expression) + (0.0201 ∗ OLFM1 
expression)—(0.0471 ∗ PLN expression). Then, HCC sam-
ples were assigned into low-/high-risk subgroups when 
setting the median value as cut-off point.

Identification of TMB‑based prognostic signature
The distributions of hub genes expression value with 
corresponding subgroups and patients were deline-
ated in Fig.  4A. The allocations of risk score and dot 
pot of survival status indicated that HCC samples with 

Fig. 2  Construction of weighted gene co-expression network of HCC samples. A Sample dendrogram and clinical-traits heatmap was plotted. B 
Selection of the soft threshold made the index of scale-free topologies reach 0.90 and analysis of the average connectivity of 1–20 soft threshold 
power. C TMB-related genes with similar expression patterns were merged into the same module using a dynamic tree-cutting algorithm, creating 
a hierarchical clustering tree. D Heatmap of the correlations between the modules and TMB value (traits). Within every square, the number on the 
top refers to the coefficient between the TMB level and corresponding module, and the bottom is the P value
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high-risk exhibited poorer prognosis (Figs.  4B and C). 
Additionally, K–M survival analysis supported that low-
risk patients had significant higher overall survival rate 
(P = 2.407e−02; Fig.  4D). The distributions of samples 
with corresponding risk score and somatic mutation 
count were presented in Fig.  4E.Furthermore, univari-
ate Cox regression analysis presented the hazard ratio 
(HR) of risk score was 20.638 (95% CI: 3.579 − 119.007; 
Fig.  4F). And multivariate Cox regression showed cor-
responding results (HR = 8.386, 95% CI: 1.185 − 59.369; 
Fig. 4G), supporting risk score was an independent prog-
nostic factor.

Validation of TMB‑based prognostic signature
To explore prognostic validity of risk score, above find-
ings were confirmed in the external validation cohort. 
The according results displayed the distributions of hub 
genes, risk score, and survival status in the external vali-
dation cohort (Additional file  2: Figure S4A, S4B and 
S4C). Consistent with the results in discovery set, K–M 
curves presented that high-risk HCC patients had shorter 
overall survival time, though there was no statistical 

difference (Additional file  2: Figure S4D). Additionally, 
ROC curves were plotted and AUC value for the 3-year 
OS reached 0.62, suggesting great predictive accuracy 
(Additional file 2: Figure S4E).

Clinical significance of risk score
Firstly, the distribution of clinicopathological features 
subtypes in different risk groups was explored and visu-
alized (Fig.  5A). Figure  5B–H showed that fraction of 
subtypes according to age, gender, pathological grade, 
clinical stage, T category, N status and M status in high-/
low-risk group, respectively. Furthermore, to confirm 
whether prognostic signature remained robust progno-
sis prediction validity in patients subdivided into differ-
ent subtypes according to clinicopathological variables, 
stratification analysis was performed. Compared with 
low-risk samples, HCC patients with high-risk had lower 
overall survival rate in both the young (< = 65) and old 
(> 65) groups (Additional file  2: Figures  S5A and S5B). 
Likewise, risk score suggested prognostic difference well 
for samples in female gender or male gender (Additional 
file 2: Figures S5C and S5D), grade 1–2 or G3-4 category 

Fig. 3  Differential analysis of gene expression data in high- and low-TMB groups and enrichment pathway annotation. A Volcano plot was 
delineated to visualize the DEGs. Red represented upregulated and green represented downregulated. B Heatmap of top 40 DEGs was drawn to 
reveal different distribution of expression state, where the colors of red to blue represented alterations from high expression to low expression. 
C Venn diagram of the hub genes from WGCNA blue module and DEGs. Pathway enrichment analyses of TMB hub genes. D Gene Ontology 
(GO) enrichment analysis of naïve B cells-related genes: biological processes (BP), cellular components (CC) and molecular function (MF). E KEGG 
enrichment analysis of naïve B cells-related genes



Page 8 of 15Xu et al. Cancer Cell Int          (2021) 21:342 

Fig. 4  Validation of the prognostic risk signature in discovery group. A Heatmap presents the expression pattern of three hub genes in each 
patient. B Distribution of multi-genes signature risk score. C The survival status and interval of HCC patients. D Kaplan–Meier curve analysis 
presenting difference of overall survival between the high-risk and low-risk groups. E Distribution of somatic mutation count. F Univariate Cox 
regression analyses of overall survival. G Multivariate Cox regression analyses of overall survival

Fig. 5  Clinical significance of the prognostic risk signature. A Heatmap presents the distribution of clinical feature and corresponding risk score 
in each sample. Rate of clinical variables subtypes in high or low risk score groups. B Age, C Gender, D WHO grade, E clinical stage, F T status, G N 
status and H M status
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(Additional file  2: Figures  S5E and S5F), samples with 
early- or late-stage (Additional file  2: Figures  S5G and 
S5H), samples in T1-2 or T3-4 category (Additional file 2: 
Figures  S5I and S5J), samples in N0 status (Additional 
file  2: Figures  S5K) and samples in M0 category (Addi-
tional file  2: Figures  S5L). These results demonstrated 
that risk score was an outstanding prognostic predictor.

Development of prognostic nomogram
To demonstrate risk score was the best prognostic pre-
dictor, age, gender, clinical stage and tumor grade were 
listed as the candidate indicators. These clinical variables 
were introduced into the AUC analysis for 1-, 2-, 3-, 4-, 
5-, and 6-year OS and risk signature were found to obtain 
the most AUC value (Additional file 2: Figures S6A, S6B, 
S6C, Fig.  6A–C). Then a prognostic nomogram includ-
ing risk score and clinical stage was delineated to predict 
overall survival rate quantitatively (Fig. 6D). Age, gender 
and tumor grade were excluded out of the nomogram 
given their AUCs did not reach 0.6. Calibrate curves 
was plotted to support great prognostic predictive valid-
ity of overall survival rate in as-constructed nomogram 
(Figs. 6E–G).

Role of risk score in TIME context
Existing studies have contributed strong evidence 
to demonstrate that high tumor burden mutation 
(TMB) was correlated with increasement of infiltrating 

CD8 + T cells, which recognized tumor neoantigens 
then resulted in intense tumor-killing effects to anni-
hilate tumor cells [19, 21, 33].Thus, the potential con-
tribution of TMB-based signature in diversity and 
complexity of TIME was further explored. The results 
showed that high risk score was significantly and nega-
tively correlated with abundance of Neutrophil, naïve 
B cells and Endothelial cell, whereas positively related 
with infiltration of Memory B cells, M0 Macrophages 
and Monocytes (Additional file 2: Figures S7, S8). Fur-
thermore, Spearman correlation analysis was further 
performed (Fig. 7A) and the detailed results were pro-
vided in Additional file 1: Table S6. These findings sug-
gested that low-risk group characteristic with immune 
response activated condition, which may contribute to 
anti-tumor effect.

Additionally, 17 of 47 (i.e., CTLA‐4, etc.,) ICB-asso-
ciated targets correlated significantly with risk score 
(Fig. 7B). These findings suggested that risk score may 
act as nonnegligible player in regulation of immune 
response further immunotherapeutic efficacy. Besides, 
the potential function of risk score in immunotherapy 
was further explored. First, the correlation of immu-
notherapy key targets (PDCD1, CD274, PDCD1LG2, 
CTLA‐4, HAVCR2, and IDO1) [28–30] with risk score 
was performed (Fig. 7C). And risk score was positively 
and significantly correlated with PDCD1 (r = 0.12; 
P = 0.027; Figs. 7D), indicating risk score might serve as 

Fig. 6  Validation of prognostic efficiency of risk score in HCC. (A-C) Areas under curves (AUCs) of the risk scores for predicting 4-, 5-, and 6-year 
overall survival time with other clinical characteristics. D Nomogram was assembled by age and risk signature for predicting survival of HCC 
patients. E One‐year nomogram calibration curves. F Two‐year nomogram calibration curves. G Three‐year nomogram calibration curves
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a pivotal player in the prediction of clinical outcome of 
immunotherapy in HCC.

HTRA3 significantly affected overall survival and correlates 
with immune infiltration ICB vital targets
HTRA3, considered as beneficial indicator in this risk 
signature, had not been explored in HCC. Thus, the 
underlying role of HTRA3 in HCC was validated in fur-
ther experiments. Firstly, the expression level of HTRA3 
between normal hepatic samples and tumor tissues was 
analyzed according to TCGA database. GEPIA website 
was employed to validate the expression levels of HTRA3 
[34]. The GEPIA results showed that there was no signifi-
cant difference of HTRA3 expression between two dif-
ferent samples (Fig. 8A). Taking advantage of qRT-PCR, 
expression level of HTRA3 was detected in four differ-
ent HCC cell lines (MHCC-97H, Hep-3B, HCC-LM3, 
HepG2) and normal liver cell line (SQG-7701). HTRA3 
was downregulated in tumor cells compared with nor-
mal counterpart (Fig.  8B). To further assess prognostic 
performance of HTRA3, K-M survival curve was plotted 
based on samples assigned into HTRA3 low-and high-
expressed subgroups. The result presented that samples 

with lower HTRA3 expression exhibited significant over-
all survival rate advantage (Fig. 8C, P = 0.0041).

To reveal the potential role of HTRA3 in immunother-
apy, the correlation between expression level of HTRA3 
with expression level of immunotherapy hub targets 
adjusted by tumor purity was analyzed using TIMER 
database. TIMER results shown that HTRA3 presented 
significant positive correlation with CTLA4 (r = 0.19; 
P = 4.00e−04), HAVCR2 (r = 0.379; P = 3.07e−13), and 
PDCD1(r = 0.235; P = 1.07e−05; Figs. 8D–F). According 
to correlation analysis, 36 of 47 ICB-related genes (i.e., 
PDCD1, CTLA4, etc.,) expression levels were remark-
ably higher in subjects with high-HTRA3 relative to low-
HTRA3 ones (Fig. 8G), suggesting vital role of HTRA3 in 
immunotherapy.

Genes mutation in risk score
According to results of somatic mutation data, TP53, 
TTN and CTNNB1 were the top 3 genes with high-
est mutation frequency (Fig.  1A). Thus, the potential 
role of genes mutation was uncovered in risk score and 
the proportion of mutation gene was analyzed in both 
high- and low-risk groups. Besides, mutation of TP53 
was significantly and positively correlated with risk score 

Fig. 7  Estimation of Tumor-Infiltrating Cells and Immunotherapy significance. A Patients in the high-risk group were more positively associated 
with tumor-infiltrating immune cells, as shown by Spearman correlation analysis. Correlation between prognostic risk signature with hub immune 
checkpoint genes. B Correlation analysis between immune checkpoint inhibitors (CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1) with 
prognostic risk signature. C Correlation between prognostic risk signature and HAVCR2
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(Fig. 9A),whereas mutation of CTNNB1 exhibited oppos-
ing trend and mutation of TTN without significantly cor-
relation with risk score (Figs.  9D and Additional file  2: 
Figure S9A). Next, the synergistic effect of risk score and 
gene mutation was estimated in prognostic stratification. 
Stratified survival analysis suggested that the mutation of 
TP53 did not interfere with risk scores-based predictions. 
Risk score subgroups presented significant prognosis 
differences in both TP53 mutation and TP53 wild sub-
groups (Fig. 9B). However, risk score was not prognostic 
indicator independent of TTN and CTNNB1 mutation 
(Fig.  9E and Additional file  2: Figure S9B). To elucidate 
the cumulative effect of mutated gene-relevant pathway 
in somatic mutation, the mutation status of genes down-
stream targets was analyzed (Figs.  9C and F, TP53 and 
CTTNB1, respectively). The result showed that mutation 
of genes (TP53 and CTTNB1) was predominant among 
relevant pathways targets.

Discussion
HCC is the one of most aggressive and lethal malignan-
cies, well characterized with high morbidity globally 
[1–3]. It’s well established that such genetic alternation 
as TP53 mutation, alternative splicing, DNA methyla-
tion and regulation of non-coding RNA acted as a pivotal 

player in HCC development [4, 35–38]. By now, more 
and more studies have been performed to reveal the 
potential role of infiltrating immune cells in cancer pro-
gression, including HCC [39, 40]. Immunotherapy, which 
facilitated the immune cells to eliminate tumor cells, has 
exhibited promising therapeutic efficiency and encour-
aging clinical outcome in anti-tumor treatment [41, 
42]. Clinical studies pointed out that administration of 
immune checkpoint inhibitors in advanced HCC have 
shown benefits, however, just approximately one fifth 
patients responded to immunotherapy [17]. Thus, it is of 
great importance predicting therapeutic outcome to opti-
mize treatment benefit and personalized tailored therapy.

Recently, TMB has been identified as an effective and 
novel indicator to predict response to immunotherapy 
in a variety of malignancies [43–45]. However, the cor-
relation of TMB status hub genes with prognostic predic-
tion, immune infiltration and immunotherapeutic result 
in HCC is still unclear. Hence, this study was designed to 
determine TMB status hub genes and pivotal biological 
processes, further yield a prognostic signature and poten-
tial target for immune microenvironment landscape 
depiction and precision immunotherapy prediction.

Herein, this research was designed to elucidate the 
potential significance of TMB related molecules in 

Fig. 8  The role of HTRA3 in prognosis and immunotherapy of HCC. HTRA3 are upregulated in HCC samples based on TCGA dataset (A) and 
experimental validation (B), and lower HTRA3 expression level was significantly correlated with longer overall survival time (C). The association 
between the expression levels of HTRA3 with CTLA4 (D), HAVCR2 (E), and PDCD1 (F) using TIMER database. G Comparison of immune checkpoint 
blockade-related genes expression levels between low-HTRA3 group and high-HTRA3 groups
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HCC. Firstly, landscape of somatic mutation was ana-
lyzed and delineated. TMB level was demonstrated to 
be correlated with clinical variables (age, gender and 
T status). Then, differentially expressed genes (DEGs) 
between low and high TMB level subgroups were ana-
lyzed to further identification TMB candidate genes 
coordinated with WGCNA co-express network. The 
results of subsequent enrichment pathway analy-
sis presented that hub genes were mainly enriched in 
extracellular matrix structural related pathways and 
cGMP − PKG signaling pathway.

With the help of LASSO regression analysis, candi-
date genes were further determined and final prognos-
tic signature including HTRA3, OLFM1 and PLN was 
established.

To validate great prognostic accuracy, survival analy-
sis and ROC curve were performed in both discovery 
group and external validation cohort. Furthermore, risk 
score was demonstrated to be an independent prognostic 
factor using both univariable and multivariable regres-
sion analysis. Additionally, prognostic nomogram was 
constructed to facilitate extension and popularization. 
Furthermore, the correlation of risk score with clinical 
variables was analyzed and risk score was demonstrated 
to retain excellent prognostic performance when HCC 

cases divided into groups based on clinicopathological 
factors.

Given risk signature derived from TMB, which was 
significantly correlated with immune surveillance, the 
potential role of risk score in complexity of TIME and 
immunotherapeutic effect was further investigated. The 
results pointed out that risk score was negatively related 
with activated immune cell (i.e., Neutrophil, etc.,), imply-
ing low risk score patients was immune activated phe-
notype, in line with higher risk score suggested shorter 
overall survival. Furthermore, risk score was significantly 
and positively correlated with the immunotherapeu-
tic hub targets (i.e., HAVCR2, etc.,), suggesting samples 
with high-risk score might be more affected by immune 
checkpoint blockade pathways, then inhibited anti-tumor 
immune activation and deteriorate prognosis accord-
ingly. Since no immunotherapy data in HCC cohort, it 
was unable to further explore the correlation of risk score 
with response of immunotherapy.

High temperature requirement A3 (HTRA3), a member 
of the HtrA family, has been reported as a cancer antago-
nist in cancer progression of multiple tumor types [46–
48]. Currently, yet its molecular functions of HTRA3 in 
HCC are not well understood. Thus, this study attempted 
to explore the prognostic predictive significance of 

Fig. 9  Correlation of mutation of genes with risk score. A The proportion of mutation of TP53 between two risk score subgroups. B Kaplan–Meier 
curves for patients stratified by both mutation of TP53 and risk score. C Mutation data of TP53-relevant pathway. E The proportion of mutation of 
CTNNB1 between two risk score subgroups. F Kaplan–Meier curves for patients stratified by both mutation of CTNNB1 and risk score. G Mutation 
data of CTNNB1-relevant pathway
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HTRA3 in immunotherapy of HCC. The result of qRT-
PCR showed that HTRA3 expression level is significantly 
downregulated in HCC cells. However, low expression of 
HTRA3 suggested better prognosis according to TCGA 
database. Additionally, HTRA3 expression level was posi-
tively correlated with most immune checkpoint block-
ade pathway targets. Collectively, high-HTRA3 samples 
presented immunosuppressive condition thus facilitate 
tumor immune evasion, leading to poor overall survival 
rate accordingly. Nevertheless, the biological role of 
HTRA3 in HCC remains lacking, which needs further 
and deeper experimental exploration.

To elucidate the cumulative effective of mutation 
genes, top 3 genes with highest mutation frequency were 
selected for further analysis. Notably, mutation of TP53 
was significantly and positively correlated with risk score. 
Furthermore, the prognosis value of risk score was inde-
pendent of mutation of TP53. In the TP53-relevant path-
way, gene mutation was mainly enriched in mutation of 
TP53.

Compared with published articles that investigated 
the TMB status in HCC, it was worthy mentioned that 
there were some superiorities in this study. Firstly, all 
HCC cases from TCGA-LIHC project and ICGC-LIRI-
JP dataset were included for thoroughly analysis, and the 
total specimen size was considerably large. Furthermore, 
WGCNA network and DEGs analysis were integrated 
to comprehensively identify difference between low-/
high-TMB subgroups from sequencing level. Addition-
ally, seven algorithms (XCELL, TIMER, QUANTISEQ, 
MCPcounter, EPIC, CIBERSORT, and CIBERSORT-
ABS) were performed to elucidate the potential players 
of TMB hub genes in the formation of TIME complexity 
and diversity and immunotherapeutic outcome. Besides, 
as we know, this work is the first placing emphasis on the 
biological role of HRTA3 and cumulative effect of TP53 
mutation in HCC.

Conclusion
In conclusion, systematical bioinformatic analyses in 
prognosis predictive value of TMB were performed, 
which was proposed to improve prognosis prediction in 
HCC. Moreover, a robust and promising prognostic clin-
ical-risk nomogram with encouraging potential for clini-
cal practice was constructed to predict clinical outcome 
quantitatively. It is noteworthy that the comprehensive 
analysis of TMB status hub genes in the context of TIME 
will facilitate understanding TMB from biological stand-
point and contribute into tailored immunotherapeutic 
administration. Notwithstanding, these results required 
further experimental and more clinical exploration focus-
ing on tumor initiation and development and the roles of 
TMB status hub genes in HCC.
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