
Ghorbani et al. Cancer Cell Int          (2021) 21:346  
https://doi.org/10.1186/s12935-021-02053-0

PRIMARY RESEARCH

Aberrantly methylated‑differentially 
genes and pathways among Iranian patients 
with colorectal cancer
Mahla Ghorbani1,2†, Marjan Azghandi2,3† and Mohammad Amin Kerachian2,4,5*   

Abstract 

Background:  Methylation plays an important role in colorectal cancer (CRC) pathogenesis. The goal of this study was 
to identify aberrantly differentially methylated genes (DMGs) and pathways through bioinformatics analysis among 
Iranian CRC patients using Methylation Next Generation Sequencing.

Methods:  This study has integrated results of SureSelectXT Methyl-Seq Target with the potential key candidate genes 
and pathways in CRC​. Six CRC and six samples of normal colon were integrated and deeply analyzed. In addition to 
this gene methylation profiling, several other gene methylation profiling datasets were obtained from Gene Expres-
sion Omnibus (GEO) and TCGA datasets. DMGs were sorted and candidate genes and enrichment pathways were 
analyzed. DMGs-associated protein–protein interaction network (PPI) was constructed based on the STRING online 
database.

Results:  Totally, 320 genes were detected as common genes between our patients and selected GEO and TCGA 
datasets from the Agilent SureSelect analysis with selecting criteria of p-value < 0.05 and FC ≥ 1.5. DMGs were identi-
fied from hyper-DMGs PPI network complex and 10 KEGG pathways were identified. The most important modules 
were extracted from MCODE, as most of the corresponding genes were involved in cellular process and protein 
binding.

Conclusions:  Hub genes including WNT2, SFRP2, ZNF726 and BMP2 were suggested as potentially diagnostic and 
therapeutic targets for CRC.
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Introduction
Colorectal cancer (CRC) is one of the most common 
malignancies, which estimated more than 1.9 million 
new cases in developed countries in 2020. Overall, colo-
rectal ranks third in terms of incidence, but second in 
terms of mortality [1]. In recent years, young Iranians 
show a rising trend of CRC scenarios probably due to 

their modern lifestyle and the young age structure of the 
country [2]. Despite detailed research into the mecha-
nisms of CRC formation and growth, the causes of CRC 
are still unknown. Many factors, such as gene mutations, 
cellular and environmental factors, are linked to the 
development and growth of colon cancer [3]. Due to the 
high morbidity and mortality of CRC, it is critically nec-
essary and strongly demanded to establish the causes and 
underlying molecular mechanisms for the discovery of 
molecular biomarkers for early detection, prevention and 
personalized therapy [4].

Epigenetics is defined as inherited variations of gene 
expression that is not regulated by changes in the DNA 
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sequence. By altering the expression of several control-
ling genes, especially tumor suppressor genes, abnormal 
methylation can affect their functions and contribute to 
the development of various CRC processes [5]. While 
numerous studies have shown that several genes in CRC 
have abnormal DNA hyper- or hypo- methylation, the 
general profile and pathways of the interaction network 
are still unknown.[6].

Over the last few years, a number of methodologies 
have been established that rely on the use of bisulfide-
converted DNA. Such techniques have not only been 
used to identify changes in gene or allele-DNA meth-
ylation but have also been modified for genome-DNA  
methylation analysis and are capable of delivering single-
resolution DNA methylation information [7–10]. Epi-
genetics was one of the first molecular areas to benefit 
from next-generation sequencing (NGS) methodologies, 
offering a detailed and objective view of epigenome, and 
also freeing researchers from content-limited microarray 
platforms [11]. NGS technology has opened a new era in 
epigenomic science, especially in the area of DNA meth-
ylation. It is now possible to identify methylation status 
on a global scale with a single-base resolution by mas-
sively parallel sequencing [8]. The complete methylome’s 
characterization, as well as its complex modifications, 
may be used as a precise diagnostic, prognostic, and pre-
dictive tool. Thus, detecting methylated-differentially 
expressed genes and learning more about their properties 
could be very helpful to discover the molecular mecha-
nism and also the pathogenesis of CRC.

However, fewer investigations have narrowed the 
numbers of overlapping gene profiling to recognize the 
main genes and pathways involved in multiple cellular 
processes and biological functions. Now, by means of 
advanced bioinformatics analysis, more robust and pre-
cise screening results could be achieved by overlapping 
the related datasets.

To the best of our knowledge, there is no published 
research exploring molecular high-throughput methyla-
tion approach study in Iranian CRC patients except from 
our research team.

In the current study, we obtained Agilent SureSe-
lect data, from our previous study [12]. Several other 
gene methylation profiling datasets were derived from 
Gene Expression Omnibus (GEO) and TCGA datasets 
in addition to this gene methylation profiling dataset. 
We filtered differentially methylated genes (DMGs), and 
consequently, developed Gene Ontology and pathway 
enrichment analysis for screening DMGs with DAVID, 
KEGG PATHWAY (available online: http://​www.​genome.​
jp/​kegg), Reactome (available online: http://​www.​react​
ome.​org), BioCyc (available online: http://​biocyc.​org), 
Panther (available online: http://​www.​panth​erdb.​org) 

[13], NHGRI and Gene Ontology online website for 
developing integration of DMGs protein–protein interac-
tion (PPI) network (available online: http://​string-​db.​org) 
and conducted modular analysis to identify hub genes in 
CRC (Additional file 1: Figure S1). Identifying DMGs and 
enriching their biological functions and main pathways 
can provide more precise, and technically effective bio-
markers for early diagnosis and the treatment of cancer.

Materials and methods
Samples and tumor characteristics
This study has been approved by the Mashhad University 
of Medical Sciences, Mashhad, Iran (approval number: 
975011). Patient samples with CRC (N = 6) had a diag-
nosis determined by colonoscopy and confirmed by an 
expert pathologist report. Only CRC patients with stages 
I, II & III disease were included. Excluding criteria were 
patients with prior CRC, other cancers, a clear family 
history of adenoma polyposis, inflammatory bowel dis-
ease, inherited CRC and patients with incomplete colo-
noscopy and documentation. Normal samples (N = 6) 
were individuals who were age and sex-matched and 
underwent colonoscopy screening with a negative for 
CRC. Demographic profiles, colonoscopy records, alco-
hol history, smoking, as well as medical history have all 
been collected. Anal, rectum, sigmoid, cecum, transverse, 
descending, and ascending colon were defined as the 
location of the lesion. The data is presented in Table 1.

Date processing
SureSelectXT methyl‑seq data information and DMGs 
identification
In the process of SureSelectXT Methyl-Seq to detect 
DMRS, we used DMRFusion tool [14] to normalize the 
raw data of Agilent SureSelect [15]. In addition to this 
gene methylation profiling, several other gene methyla-
tion profiling datasets (GSE48684, GSE53051, GSE77718, 
GSE101764, and GSE42752) were obtained from Gene 
Expression Omnibus (GEO, [16]) of the National Center 
for Biotechnology Information (NCBI). Data from each 
methylation was analyzed independently in a GEO series 
using the online program GEO2R (http://​www.​ncbi.​nlm.​
nih.​gov/​geo/​geo2r/) to identify differentially methylated 
genes (DMGs) by contrasting the two CRC and normal 
mucosa tissue sample groups through setup conditions. 
The TCGA database was also used to download DNA 
methylation data (IlIumina Human Methylation 450). 
Finally, data from 321 tissues (300 colorectal tumor tis-
sues and 21 non-tumor tissues) with DNA methylation 
information were collected. R 3.5.1 program (https://​
www.​rproj​ect.​org/) was applied to evaluate the TCGA 
results. MethylMix version 3.7 package [17] was used to 
study the methylation data. These DMGs were compared 
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with our current experiment results [hypo- or hyper-
DMRs] in order to detect the robust hypo- or hyper-
methylated genes. Only genes which met the cut-off 
criteria of p value < 0.05 and |log2 fold change (FC)|≥ 1.5 
were considered as DMGs.

Functional and pathway enrichment analysis of DMGs
Gene functional annotation and pathway enrichment 
analysis is performed using the Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID, 
https://​david.​ncifc​rf.​gov/) [18]. Gene ontology (GO) is a 
classification system that includes cellular components, 
molecular functions, and biological processes [19]. Path-
way enrichment study using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [20] has been performed 
for selected DMGs with the thresholds of p value < 0.05 
[21, 22].

Protein–protein interaction (PPI) network construction 
and module analysis
PPI research is important to understand the molecu-
lar mechanisms of key cellular involvement in car-
cinogenesis. We generated a PPI network of DMGs 
using the Search Tool for the Retrieval of Interacting 
Genes (STRING) database. Interaction score of 0.4 was 
regarded as the cut-off criterion [23] and the PPI was 
visualized by Cytoscape software 3.7.2 [24]. Molecular 
Complex Detection (MCODE) was used to find dense 
clique-like structures within a network, with MCODE 
score > 3 and number of nodes ≥ 4. The hub genes were 
identified on the basis degree and through the value of 
using cytoHubba [25, 26]. Functional enrichment analysis 
of the genes in the individual modules was performed by 
DAVID with a significance level of p < 0.05.

Survival analysis
Candidate hub genes were subjected to a survival study 
to see how they affected CRC survival. The Kaplan Meier 
plotter was used to perform overall survival (OS) analysis 
using TCGA methylation results. We divided the patients 
into two groups based on their Mean. In other words, in 
the survival study, the groups were split into two catego-
ries: low methylation level and high methylation level. 
The hazard ratio for OS was estimated, and the P value 
was calculated using log-rank test.

Experimental validation in the CCLE database
The methylation levels of key genes were analyzed in 
other types of cancer cell lines from the TCGA database 
to equate the function of hub genes in CRC with that 
of other cancer types from the CCLE database (https://​
porta​ls.​broad​insti​tute.​org/​ccle/​about).

Statistical analysis
During statistical evaluation of DMGs, false discovery 
rate (FDR) was applied for Student t-test with the crite-
ria p < 0.05 in all comparisons. Db-values were used to 
identify variations in methylation between diagnostic 
types (the differences of the average b-values of sample 
groups).

Results
Identification of DMGs
A total of 871-shared DMGs (496 hyper and 375 hypo) 
were obtained in the comparison  of the tumor  and 
the  normal group, according to the cut-off value 
selected for the screening. Then, totally 320 genes (215 
hyper and 105 hypo) were detected as common genes 
between our patients and the selected GEO and TCGA 
datasets.

Table 1  Clinicopathological characteristics of 6 CRC samples matched with normal controls

ID Age Sex Drug Smoking Hubble-
bubble

Location of tumor Grade Result

65T 56 Male Yes Yes No Cecum 2 Well differentiated Adenocarcinoma

16N 60 Male Yes No No Cecum 2

20T 59 Male No No No Cecum 2 Adenocarcinoma, moderately differentiated

4N 56 Male No No No Cecum 2

31T 61 Male Yes Yes No Sigmoid 2 Adenocarcinoma, moderately differentiated

10N 60 Male Yes Yes No Sigmoid 2

35T 71 Male No No No Rectum 2 Adenocarcinoma, moderately differentiated

7N 74 Male No No No Rectum 2

45C 69 Male No No No Rectum 2 Adenocarcinoma, moderately differentiated

8N 60 Male No No No Rectum 2

67C 70 Male No No No Recto sigmoid 2 Adenocarcinoma, well differentiated

14N 76 Male No No No Recto sigmoid 2

https://david.ncifcrf.gov/
https://portals.broadinstitute.org/ccle/about
https://portals.broadinstitute.org/ccle/about
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Gene ontology enrichment analyses
In view of the analysis in DAVID for hyper-DMRS in 
CRC (Fig. 1), gene ontology enrichment analysis dem-
onstrated biological process (BP) including biologi-
cal adhesion, cell killing, biological regulation, cellular 
component organization or biogenesis, developmental 
process, immune system process, metabolic process, 
localization, multicellular organismal process, cellular 
process, reproduction, rhythmic process and response 
to stimulus. As molecular function (MF), enrichment 
analysis indicated histone and protein binding, catalytic 
activity, structural molecule activity, signal transducer, 
translation regulator activity and transporter receptor 
activity sites. Besides, for cell component (CC) enrich-
ment analysis displayed apparatuses cell membrane, 
synapse, organelle, in which DMGs might play a critical 
role.

In view of the analysis in DAVID for hypo-DMRS in 
CRC (Fig.  1), GO enrichment analysis demonstrated 
BP including biological regulation, biological adhesion, 
cellular component organization or biogenesis, cellular 
process, developmental process, localization, metabolic 
process, locomotion, and multicellular organismal pro-
cess. As MF, enrichment analysis indicated histone and 
protein binding, catalytic activity, structural molecule 
activity, signal transducer, translation regulator activ-
ity and transporter receptor activity sites. Besides, for 
cell component enrichment analysis displayed cell junc-
tion, cell part, extracellular matrix, extracellular region, 
macromolecular complex, membrane, organelle and 
synapse.

KEGG pathway analysis
To investigate the potential mechanism of methylation-
regulated genes in CRC, pathway enrichment analysis 

was used. KEGG pathway enrichment analysis suggested 
that the hyper-DMGs were significantly enriched in 10 
pathways including: Wnt signaling pathway, hedgehog 
signaling pathway, basal cell carcinoma, pathways in can-
cer, melanogenesis, proteoglycans in cancer, hippo sign-
aling pathway, transcriptional misregulation in cancer, 
prostate cancer and calcium signaling pathway (Table2).

Interestingly, KEGG pathway analysis suggested that 
the hypo-DMGs were enriched in only one pathway 
termed “Ribosome with pathway” (Fig. 2).

PPI network construction
A total of 215 PPI nodes of the hyper-DMGs were con-
structed on the basis of STRING database (Fig.  3 and 
Additional file 2: Figure S2). A total of 105 PPI nodes of 
the hypo-DMGs were constructed through the basis of 
STRING database (Fig. 3 and Additional file 3: Figure S3).

The four node proteins, including WNT2, SFRP2, 
ZNF726 and BMP2 which showed a close interaction 
with other node proteins, were chosen as hub proteins. 
One important module was selected, based on the num-
ber of nodes > 4 as shown in Additional file  2: Figure 
S2.The key module demonstrated functions enriched in 
pathways such as Wnt signaling (Table 2 and Fig. 4). PPI 
network of DMGs illustrated the overview of the func-
tional connections, in which the top 4 hub genes were 
presented as WNT2, SFRP2, ZNF726 and BMP2.

Furthermore, Wnt signaling pathway as a crucial path-
way in tumorigenesis was unveiled by KEGG enrich-
ment analysis. The aberrant activation of canonical 
Wnt signaling is a hallmark occurrence for colorectal 
carcinogenesis.

Fig. 1  GO-Enrichment Analysis of A hyper-methylated genes and B hypo-methylated genes
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Survival analysis of candidate hub genes
In our research, associations between methylation of 
candidate hub genes and OS of CRC patients were ana-
lyzed using the KM approach to estimate the hub genes’ 
prognostic significance. The results indicated that high 
methylation of SFRP2, ZNF726 and BMP2 lead to lower 
OS rate than low methylation. On the other hand, WNT2 
gene methylation were not significantly relevant to OS 
(Fig. 5).

Experimental validation in cancer cell lines
The methylation of hub genes were further examined in 
various types of tumor cells. As presented in Additional 
file 4: Figure S4, among other tumor cell lines, WNT2 and 
ZNF726 had the highest methylation in CRC, indicating 
that the role of WNT2 and ZNF726 genes in the CRC 
may be linked to methylation regulation.

Discussion
A large amount of core slice data has been created 
by the widespread use of gene methylation, with the 
majority of the data being deposited and processed in 
public databases. Integrating and re-analyzing these 
data will yield important insights for future analysis. 
In recent years, several methylation sequencing data 
profiling experiments on CRC have been conducted 
[27] and hundreds of DMGs have been obtained. 
However, the findings are often limited or contradic-
tory due to the variability of the tissue or sample in 

independent studies or the findings of a single cohort 
study.

In this study, the DMGs from CRC patients and nor-
mal participants were screened. From the Agilent Sure-
Select analysis, eight hundred and seventy-one DMGs 
(496 hyper and 375 hyper) were classified with select-
ing parameters of p value < 0.05 and |log2 fold change 
(FC)|≥ 1.5.

In view of the analysis in DAVID for DMRS in CRC, 
GO enrichment analysis demonstrated BP including 
biological regulation, biological adhesion, cellular com-
ponent organization or biogenesis, cellular process, 
developmental process, localization, metabolic pro-
cess, locomotion, and multicellular organismal process. 
It has been reported that cell proliferation and lack of 
cell adhesion are a common characteristic of cancers, 
particularly in CRC [28]. Previous research studies 
have showed that the cell cycle plays a critical role in 
cancer development by controlling cell division and 
specifically in CRC the incidence and metastasis are 
significantly associated with cell proliferation, cell cycle 
deregulation, and cell cycle related kinase [29].

PPI network of DMGs illustrated the overview of the 
functional connections, in which the top 4 hub genes 
were presented as WNT2, SFRP2, ZNF726 and BMP2.

KEGG enrichment analysis has revealed the Wnt 
signaling pathway as a critical pathway in tumorigen-
esis which is characterized by irregular activation of 
canonical Wnt signaling [30, 31].

Table 2  KEGG pathway analysis of the hyper-DMGs

ID Pathway description Gene count False discovery rate Matching proteins in network (labels)

5217 Basal cell carcinoma 12 5.79E−07 BMP2,FZD1,GLI3,TCF7,TCF7L1,WNT1,WNT16,WNT2,WNT3A,WNT5A,WNT6,WNT7B

4340 Hedgehog signaling 11 1.25E−06 BMP2,GAS1,GLI3,IHH,WNT1,WNT16,WNT2,WNT3A,WNT5A,WNT6,WNT7B

4340 Hedgehog signaling 11 1.25E−06 CTBP2,DKK1,FZD1,NFATC1,SFRP2,SFRP5,TCF7,TCF7L1,WNT1,WNT16,WNT2,WNT3A
,WNT5A,WNT6,WNT7B

4310 Wnt signaling 15 2.78E−05 CREB3L1,FZD1,GNAS,TCF7,TCF7L1,WNT1,WNT16,WNT2,WNT3A,WNT5A,WNT6,W
NT7B

4916 Melanogenesis 12 9.14E−05 BCL2,BMP2,COL4A2,CTBP2,FGF12,FGF3,FGFR1,FZD1,GLI3,IGF1R,JUP,PDGFRA,TCF7,
TCF7L1,TGFB1,WNT1,WNT16,WNT2,WNT3A,WNT5A,WNT6,WNT7B

5200 Pathways in cancer 22 0.00015 BMP2,FZD1,PPP2R2A,STK3,TCF7,TCF7L1,TGFB1,WNT1,WNT16,WNT2,WNT3A,WNT
5A,WNT6,WNT7B

4390 Hippo signaling 14 0.000203 CAV1,FGF12,FGF3,FGFR1,FZD1,IGF1R,IGF2,SDC2,TGFB1,TWIST2,WNT1,WNT16,WN
T2,WNT3A,WNT5A,WNT6,WNT7B

5205 Proteoglycans in cancer 17 0.000286 CDK14,IGF1R,IGFBP3,JUP,MEIS1,NGFR,NR4A3,PAX7,SIX1,TLX3,WNT16,WT1

5202 Transcriptional mis-
regulation in cancer

12 0.01 BCL2,CREB3L1,CREB5,FGFR1,IGF1R,PDGFRA,TCF7,TCF7L1

5215 Prostate cancer 8 0.0177 AVPR1A,CACNA1I,CD38,GNAS,GRIN2A,GRIN2C,ITPKB,NOS1,PDE1B,PDGFRA,TACR1

4020 Calcium signaling 11 0.0474 CTBP2,DKK1,FZD1,NFATC1,SFRP2,SFRP5,TCF7,TCF7L1,WNT1,WNT16,WNT2,WNT3A
,WNT5A,WNT6,WNT7B

4340 Hedgehog signaling 11 1.25E−06 CREB3L1,FZD1,GNAS,TCF7,TCF7L1,WNT1,WNT16,WNT2,WNT3A,WNT5A,WNT6,W
NT7B
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The most important modules were extracted from 
MCODE and 14 central node genes were identified as 
the majority of the corresponding genes were found 
to be involved in cellular process and protein bind-
ing. Hub genes including WNT2, BMP2, ZNF726, 
and SFRP2 were suggested as potentially diagnostic 
and therapeutic targets for CRC.

Secreted Frizzled Related Protein 2 (SFRP2) gene 
encode extracellular Wnt signaling inhibitors that are 
often inhibited by CRC promoter methylation [32]. In 
several tumors, including CRC, both of these methyla-
tion events have been identified as prognostic indi-
cators of patient outcome and tumor subtype. SFRP2 
gene is found in the upstream of the canonical Wnt 
signaling pathway which its methylation contributes 
to the down-regulation of gene expression, inhibi-
tion of gene action, activation of the Wnt pathway and 

promotion of CRC [33, 34]. The DNA hyper-methyla-
tion of this gene may be used as a biomarker for CRC 
detection [35].

Bone morphogenetic proteins (BMPs) belong to the 
transforming growth factor beta superfamily (TGFβ) and 
are essential regulators of embryogenesis and body axes. 
Adult tissue homeostasis is controlled by regulating cell 
production, apoptosis and differentiation [36]. BMP2 
has been identified as a tumor suppressor gene in CRC. 
Nevertheless, the association between BMP2 and clini-
calopathological influences has not been established in 
clinical CRC cases [37].

ZNF proteins, such as ZNF346, ZNF638, and 
ZNF768, are used as capture antigens in CRC to detect 
autoantibodies [38]. Furthermore, in a previous study, 
epigenetically activated ZNF726 was identified as a prog-
nosis‑associated gene for CRC [39].

Fig. 2  Ribosome pathway and matching genes in network. Our founded genes are marked by a bold box in the pathway
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Fig. 3  Top four modules of hyper and hypo-methylated genes; a–d 4 top modules

Fig. 4  Wnt signaling pathway and matching genes in network. Our founded genes are marked by a bold box in the pathway
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The important GO concepts were linked to positive 
regulation of gene expression, protein binding, and 
cellular protein metabolic mechanism, as indicated 
by DAVID study. Staring at the signaling pathway, we 
noticed that the Wnt signaling pathway, the Tran-
scriptional Cancer Misregulation, and the Hedgehog 
signaling pathway were highly enriched which been 
previously reported [36].

In the present study, some limitations should be 
mentioned. Although the number of patients who 
were analyzed in this study was small, our results were 
confirmed by the results of analyzing data taken from 
other databases. However, larger sample size could lead 
to more powerful results. Besides, molecular studies 
should also be conducted to further validate the find-
ings of our investigation. Hub genes including WNT2, 
SFRP2, ZNF726 and BMP2 were suggested as poten-
tially diagnostic and therapeutic targets for CRC. 

Targeting the identified pathways particularly WNT 
signaling could close us to a more efficient treatment 
for CRC. More clinical and biological experimental evi-
dence on the candidate genes is needed to confirm their 
clinical utility, which would help clinicians establish 
new diagnostic and therapeutic strategies for patients 
with CRC.

Conclusions
The results obtained using an integrated bioinformat-
ics framework allowed to identify DMG candidate genes 
and pathways in CRC, which could enhance our under-
standing of the consequences and also the underlying 
molecular events in cancer initiation and progression. 
In addition, some of which following validation could be 
used for clinical applications.

Fig. 5  The survival analysis of four hub genes by the KM-plotter. a WNT2; b SFRP2; c ZNF726; d BMP2 
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