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The significance of exosomal RNAs 
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Abstract 

Exosomes are single-membrane, secreted organelles with a diameter of 30–200 nm, containing diverse bioactive con-
stituents, including DNAs, RNAs, proteins, and lipids, with prominent molecular heterogeneity. Extensive studies indi-
cate that exosomal RNAs (e.g., microRNAs, long non-coding RNAs, and circular RNAs) can interact with many types of 
cancers, associated with several hallmark features like tumor growth, metastasis, and resistance to therapy. Pancreatic 
cancer (PaCa) is among the most lethal cancers worldwide, emerging as the seventh foremost cause of cancer-related 
death in both sexes. Hence, revealing the specific pathogenesis and improving the clinical diagnosis and treatment 
process are urgently required. As the study of exosomes has become an active area of research, the functional con-
nections between exosomes and PaCa have been deeply investigated. Among these, exosomal RNAs seem to play a 
significant role in the development, diagnosis, and treatment of PaCa. Exosomal RNAs delivery ultimately modulates 
the various features of PaCa, and many scholars have interpreted how exosomal RNAs contribute to the proliferation, 
angiogenesis, migration, invasion, metastasis, immune escape, and drug resistance in PaCa. Besides, recent studies 
emphasize that exosomal RNAs may serve as diagnostic and prognostic biomarkers or therapeutic targets for PaCa. In 
this review, we will introduce these recent insights focusing on the discoveries of the relationship between exosomal 
RNAs and PaCa, and the potentially diagnostic and therapeutic applications of exosomes in PaCa.
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Background
Pancreatic cancer (PaCa) is among the most common 
and devastating malignancies worldwide. Globally, there 
were reported cases 495,773 and reported deaths 466,003 
from PaCa in 2020, with approximately as many deaths 
as cases due to its poor prognosis; it ranks, the seventh 
foremost cause of cancer-related death for both sexes 
[1]. PaCa is one of the highest case-fatality cancer types 
among all solid tumors, as the 5-year survival rate is only 
10% [2, 3]. The poor prognosis of PaCa may be attributed 

to several factors, including a lack of typical symptoms, 
difficulties in early diagnosis, high metastatic potential, 
and resistance to conventional treatment. PaCa, which 
has no significant symptoms in the early stage, is com-
monly caught late, which causes a delay in treatment [4, 
5]. In particular, existing methods, including surgical 
techniques, chemotherapy, radiation, and immunother-
apy, each faces its own challenges, such as recurrence 
after resection, resistance to chemotherapy and radia-
tion, and uncertainty whether the immunotherapy can 
be effective for the individual [6, 7]. Hence, it is urgently 
needed to identify the specific pathogenesis mechanism 
and facilitate early diagnosis.
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Introduction to exosomes
Exosomes, first recognized in the 1980s by Trams et al., 
are single-membrane, secreted organelles with a diame-
ter of 30–200 nm [8, 9]. Exosomes are membrane-bound 
extracellular vesicles (EVs) that are produced in the endo-
somal compartment of most eukaryotic cells. Exosomes 
contain diverse bioactive constituents, including mRNAs, 
non-coding RNAs (ncRNAs), proteins, and lipids, with 
prominent molecular heterogeneity [10–13]. Exosomes 
are originate from double invagination of the membranes 
of plasma and endosome, and this process is a dedicated 
mechanism that refers to protein selection, RNA packag-
ing, and EV release [14]. Endosomes form at the plasma 
membrane or the Golgi, which are membrane-delimited 
intracellular transport carriers. Once released, exosomes 
can extend a new paradigm of cell-to-cell communica-
tion by transferring those cargoes from donor cells to 
recipient cells [15]. It is widely documented exosomes 
are associated with both normal physiology and acquired 
pathological activities, including but not limited to repro-
duction, immunity, infection, and tumors [16–19]. As 
for tumor development, exosomes have diverse activi-
ties, such as formation of the tumor microenvironment 
(TME), initiation, proliferation, angiogenesis, and metas-
tasis [20–22]. Furthermore, the molecular heterogeneity 
of exosomes has been observed among cancer patients 
and healthy individuals, and the cargoes and the amounts 
of exosomes created by the same cell may be dramatically 
different if educated with different treatments [23–25]. In 
theory, the heterogeneity of tumor cell-derived exosomes 
(TDEs) allows them to fulfill diagnostic functions. Car-
goes of TDEs, such as microRNAs (miRNAs), long 
RNAs (lncRNAs), and circular RNAs (circRNAs), have 
been detected in PaCa and become novel non-invasive 
biomarkers for PaCa [26, 27]. Moreover, exosomes are 
emerging as therapeutic tools in several diseases, includ-
ing PaCa [28, 29]. Therefore, we will summarize the bio-
logical activities of exosomal RNAs in the initiation and 
development of PaCa, and introduce the potential clinical 
applications of exosomes in PaCa.

Formation, secretion, and uptake of exosomes 
(Fig. 1)
Exosomes are nanosized EVs enriched in specific nucleic 
acids, lipids, proteins, and glycoconjugates [30]. Over-
all, exosomes originate from the first invagination of 
the plasma membrane, giving rise to early endosomes, 
and the sequential engulfment of cytoplasmic con-
tents to form multivesicular bodies (MVBs). MVBs are 
named for their appearance, with a specialized subset of 
endosomes that contain many small vesicles inside the 
larger body. After fusion with plasma membrane, MVBs 
are released as intraluminal vesicles (ILVs) [31, 32]. First, 

the invagination of the cell membrane forms the early 
endosome, and in this process, the extracellular fluids 
and constituents (e.g., proteins, lipids, and other metab-
olites) can be internalized into the early endosome and 
the cell membrane proteins. Next, MVBs are derived 
from the subsequent inward invagination of the endo-
somal membrane, allowing cytoplasmic components to 
be engulfed into the endosomes and enrich the cargoes 
of ILVs. Endosomes are membrane-delimited intracel-
lular transport carriers. Three main endosome com-
partments exist: early, late, and recycling endosomes. 
Early endosomes mature into late endosomes that sub-
sequently fuse with lysosomes. Recycling endosomes 
are a sub-compartment of early endosomes that return 
material to the plasma membrane. Endosomes form at 
the plasma membrane or the Golgi. MVBs may fuse with 
lysosomes, and their cargoes will be degraded and recy-
cled. Some MVBs fuse with the cell membrane and are 
transported into the extracellular milieu as exosomes 
[33, 34]. Such endosomes are called MVBs because of 
their appearance, with many small vesicles ILVs, inside 
the larger body. The ILVs become exosomes if the MVB 
merges with the cell membrane, releasing the internal 
vesicles into the extracellular space. Several proteins 
are indispensable in the formation of exosomes, includ-
ing endosomal sorting complex required for transport 
(ESCRT), ALG-2 interacting protein X (ALIX), soluble 
N-ethylmaleimide-sensitive factor attachment protein 
receptors (SNAREs), tumor susceptibility 101 (TSG101), 
Rab GTPases, CD9, CD63, and CD81, some of which 
serve as markers of exosomes [15, 35, 36]. All these pro-
teins play an integral role in the origin or biogenesis of 
EVs, and the precise functions of these proteins deserve 
further in-depth investigation. Once secreted into the 
extracellular milieu or bloodstream, exosomes can be 
recognized by recipient cells and then dock the cel-
lular membrane, resulting in alterations in the behav-
ior and phenotype of recipient cells [37]. The fate of 
the exosomes and their effects on recipient cells may 
vary because of their different cargoes, as the manners 
of uptake and utilization are complex. Upon docking at 
the plasma membrane, exosomes can fuse with the cel-
lular membrane and deliver cargoes into the cytoplasm. 
In this process, recipient cells can internalize exosomes 
in several possible ways, including phagocytosis, macro-
pinocytosis, caveolae-dependent endocytosis, and clath-
rin-dependent endocytosis [38, 39]. The different uptake 
pathways might rely on the types and physiologic state of 
recipient cells. For example, oncogenic KRAS expression 
can enhance exosome uptake efficacy by macropinocyto-
sis in PaCa [40]. Cardiomyocytes can uptake circulating 
exosomal miRNAs via clathrin-mediated endocytosis, 
and human melanoma cells more readily rely on fusion 
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with the plasma membrane for exosome uptake [41, 42]. 
After internalization, exosomes can deliver functional 
cargoes as the endpoint. In many cases, those exosomes 
can be released de novo by recipient cells, or the contents 
of exosomes are secreted into the endoplasmic reticulum 
and/or cytoplasm after the disintegration of intracellular 
vesicles such as endosomes or MVBs [43]. The different 
fates may depend on specific ligand receptors on the sur-
face of exosomes and acceptor cells, but the exact mecha-
nisms await further investigation.

Current methods and challenges of the purification 
of exosomes
As critical mediators of intercellular crosstalk, exosomes 
exist in virtually all body fluids, and highly purified 
exosomes are indispensable for further structural and 
functional study [44]. However, the acquirement of 
high‐quality exosomes is still challenging due to exo-
some heterogeneity in the source, size, and content [45]. 
The International Society for Extracellular Vesicles has 
suggested that differential ultracentrifugation (DC) is 
the most frequently used method, with several other 

methods, such as density gradient ultracentrifugation 
(DGC), ultrafiltration (UF), precipitation, size-exclusion 
chromatography (SEC), and immunoaffinity capture [46]. 
We introduce the principles, advantages, and disadvan-
tages of each of these conventional methods in Table 1. 
Although these conventional methods are widely avail-
able, several problems exist, such as labor- and time-
consuming process, co-existence with impurities, and 
potential risk of exosomal damage. These disadvantages 
make it challenging to apply in clinical practice, especially 
for point-of-care testing (POCT). Recently, microfluidic 
techniques and aptamer-based magnetic techniques have 
been introduced as novel strategies of exosomal purifica-
tion, which may provide compensation for the limitations 
of conventional methods [47, 48]. Microfluidic devices, 
including physical property-based methods, immune-
chips capture, and comprehensive separation, have been 
developed for exosome purification [49, 50]. Compared 
with conventional methods, microfluidic techniques 
have apparent strengths, such as smaller sample vol-
umes, faster assay times, lower reagent volumes, and 
higher portability. However, several problems are still 

Fig. 1  Formation, secretion, and uptake of exosomes
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to be overcome, such as a lack of standardized protocol, 
further improvement in purity, and additional reduction 
in cost. Aptamer-based magnetic techniques have been 
reported to achieve the rapid capture, adequate enrich-
ment, and safe release of exosomes [51]. Therefore, this 
exosome purification method can potentially be applied 
to further investigations of exosomes and clinical trans-
lation of diagnosis and therapeutics. Nevertheless, there 
is neither sufficient evidence on the stability nor enough 
aptamer selection, which has limited the broad adaptabil-
ity of their applications.

Exosomal RNAs play pivotal roles in PaCa 
development and progression (Fig. 2)
Exosomes are loaded with multiple cargoes, such as 
RNAs, DNAs, proteins, and lipids, and thus the delivery 
of exosomes plays pivotal roles in diverse physiologi-
cal and pathophysiological processes [9]. Investigations 
into the correlation between exosomes and tumors have 
progressed rapidly, which has led to numerous signifi-
cant discoveries in the development and progression of 
tumors, including proliferation, apoptosis, angiogen-
esis, migration, invasion, metastasis, immune escape, 
and drug resistance [20, 52–56]. Among these, exosomal 
RNAs have been intensively studied due to their essential 

roles in regulating all aspects of tumor metabolism and 
function [57]. In PaCa, cancer cells can be influenced by 
exosomal RNAs secreted from neighboring cancer cells 
or other cells, such as pancreatic stellate cells (PSCs), 
tumor-associated macrophages (TAMs), and cancer-
associated fibroblasts (CAFs) [58–60]. Exosomal RNA 
delivery ultimately modulates the various features of 
PaCa, and many scholars have interpreted the role of 
exosomal RNAs in PaCa development and progression 
(Table 2).

Proliferation and angiogenesis
Proliferation and angiogenesis are crucial elements in 
the rapid growth and development of PaCa, contribut-
ing to the severity of the disease. Recently, researchers 
have demonstrated that exosomal RNAs regulate the 
proliferation of PaCa by influencing the expression of 
multiple genes and activating different signaling path-
ways. For instance, tumor-derived exosomal miRNA-222 
was reported to promote the proliferation and invasion 
of PaCa cells via increasing p27 phosphorylation by 
activating Akt signaling [61]. In another study, TAM-
derived exosomal miRNA-501-3p was found to increase 
tumorigenesis and metastasis through the transform-
ing growth factor-β receptor 3 (TGFBR3) -mediated 

Fig. 2  Exosomal RNAs play pivotal roles in Paca development and progression
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TGF-β signaling pathway [62]. In addition, PSC-derived 
exosomal miRNA-5703 was found to promote PaCa 
proliferation by downregulating CKLF like MARVEL 
transmembrane domain-containing protein 4 (CMTM4) 
and activating the PI3K/Akt pathway [63]. Although the 
origins and targeted signaling pathways vary, exosomal 
RNAs appear to play multiple crucial roles in PaCa prolif-
eration. In contrast, some exosomal RNAs have opposite 
effects, such as inducing apoptosis. In this regard, Sun 
et  al. found that natural killer (NK) cell-derived exoso-
mal miRNA-3607-3p inhibits PaCa proliferation, migra-
tion, and invasion by targeting IL-26 [64]. Additionally, 
exosomal miRNA-1231 and miRNA-126-3p, secreted by 
bone marrow mesenchymal stem cells (BM-MSCs), are 
implicated in inhibiting the proliferation, migration, and 
invasion of PaCa cells [65, 66]. Likewise, miRNA-126-3p 
promotes the apoptosis of PaCa cells by silencing of a 
disintegrin and a metalloproteinase 9 (ADAM9)[66]. In 
summary, exosomal RNAs are capable of both promoting 
and inhibiting carcinogenesis depending on their differ-
ent mechanisms. As a unique link between proliferation 
and apoptosis, angiogenesis is deeply involved in tumor 
growth and metastatic dissemination [67]. Several exo-
somal RNAs have been identified to be associated with 
angiogenesis in PaCa. Tumor-derived exosomal miRNA-
27a was found to promote angiogenesis in PaCa via B-cell 
translocation gene 2 (BTG2) [68]. Additionally, hypoxic 
tumor-derived exosomal lncRNA urothelial cancer-asso-
ciated 1 (UCA1) was shown to promote angiogenesis via 
miRNA-96-5p/AMOTL2 (angiomotin-like 2) in PaCa 
[69]. Above all, these studies show how exosomal RNAs 
with different functions from diverse origins can affect 
tumor growth. However, we cannot attribute the poor 
prognosis only to the presence of highly proliferative 
cancer cells, as the prognosis is affected by multiple fac-
tors, including migration, invasion, metastasis, immune 
escape, and drug resistance.

Migration, invasion, and metastasis
PaCa is characterized by aggressive features including 
migration, invasion, and metastasis, which always cause 
early treatment failure [58]. With these features, cancer 
cells are able to move to adjacent and distant areas and 
even settle in secondary tissues and organs [70]. As men-
tioned above, several exosomal RNAs (including miRNA-
222, miRNA-501-3p, miRNA-5703,  miRNA-3607-3p, 
miRNA-1231, miRNA-126-3p) have been found to pro-
mote or inhibit PaCa migration, invasion, and metastasis 
[61–66]. Additionally, CAF-secreted exosomal miRNA-
10a-5p was found to promote migration and invasion in 
PaCa cells, while activating vitamin D receptor (VDR) 
signaling could inhibit these supportive effects on PaCa 
cells [71]. Similarly, CAF-derived exosomal miRNA-21, 

miRNA-221, PSC-derived exosomal miRNA-21-5p, and 
miRNA-451a were reported to confer aggressive features 
in PaCa cells [72, 73]. In the context of inhibitory effects, 
NK cell-derived exosomal miRNA-3607-3p was reported 
to inhibit the migration and invasion of PaCa cells by 
directly targeting IL-26 [64]. In addition, BM-MSCs-
derived exosomal miRNA-1231 and miRNA-126-3p were 
also indicated to act inhibitory roles of the migration and 
invasion of PaCa cells [65, 66]. Interestingly, exosomal 
lncRNAs and circRNAs seem to be more active in migra-
tion, invasion, and metastasis than that in proliferation in 
PaCa. Tumor-derived exosomal lncRNA SBF2 antisense 
RNA 1 (SBF2-AS1), highly upregulated in liver cancer 
(HULC), NONHSAT105177, SOX2 overlapping tran-
script (Sox2ot), circRNA phosphodiesterase 8A (PDE8A), 
and isoleucyl-tRNA synthetase (IARS) have already been 
reported to affect the migration, invasion, and metasta-
sis of PaCa cells [74–79]. Naturally, exosomal RNAs can 
also act as suppressive factors, as mentioned above. Thus, 
exosomal RNAs can act as major regulators of migration, 
invasion, and metastasis, promoting (or inhibiting) the 
progression of PaCa. Moreover, epithelial–mesenchymal 
transition (EMT) is a special biological process involved 
in the migration, invasion, and metastasis [80]. In this 
process, in which epithelial cells become mesenchymal 
cells via loss of cell polarity and gain of molecular altera-
tions [81].EMT is characterized by the loss of epithelial 
E-cadherin and the acquisition of mesenchymal markers 
such as N-cadherin, fibronectin, and vimentin [82–84]. 
Recently, several exosomal RNAs have been reported to 
promote EMT in PaCa [29]. For instance, tumor-derived 
exosomal miRNA-125b-5p was found to be upregulated 
in highly invasive PaCa cells, facilitating migration, inva-
sion, and EMT via the activation of MEK2/ERK2 signal-
ing [85]. In addition, exosomal miRNA-301a, lncRNA 
HULC, and NONHSAT105177 were also reported to 
contribute to EMT in PaCa [75, 76, 86]. Above all, we 
believe that these findings will be of great value if these 
factors are applied as targets for therapeutic intervention.

Immune escape
The immune system is a complicated network of diverse 
cells and biomolecules that prospect the body against 
infection, cancer, and other harmful circumstances. Gene 
mutations and the abnormal proliferation of cancer cells 
can produce different types of antigens; these antigens 
allow the detection and elimination of cancer cells by a 
large variety of immune response factors, preventing 
potential malignant transformation. Exosomes have been 
previously well studied in the context of the immune 
response, and scholars have proposed many mecha-
nisms that explain how cancer cells promote immune 
escape and cancer development [18, 87, 88]. Several 
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studies have pointed out that tumor-derived exosomes 
realized immune escape by inhibiting the activation 
of immune cells, causing a functional loss in immune 
responses[89–92]. Dendritic cells (DCs) serve as the most 
critical antigen-presenting cells (APCs) of the human 
immune system, and they function by promoting the 
expression of Toll-like receptors (TLRs) and generating 
multiple interleukins (ILs). Among TLRs, TLR4 exhibits 
a powerful antitumor effect [93]. In PaCa, tumor-derived 
exosomal miRNA-203 was reported to downregulate 
TLR4 and downstream tumor necrosis factor α (TNF-
α) and IL-12 in DCs, which may help PaCa cells achieve 
immune escape [94]. In another study, tumor-derived 
exosomal miRNA-212-3p was found to inhibit the 
expression of RFX-associated protein (RFXAP), which 
decreased the expression of major histocompatibility 
complex class II (MHC II) and mediated the immune 
tolerance of DCs [95]. These findings infer that exosomal 
RNAs can harbor functional immune activity, allowing 
PaCa cells to escape immune surveillance. However, rela-
tive to that in other research areas, our knowledge about 
how exosomes help cancers cells escape the immune sys-
tem in PaCa is still limited, and additional work is needed 
to address this issue. Deeper insight into the relationship 
between exosomes and immune escape is likely to be 
beneficial for the identification of potential biomarkers 
and the development of therapeutics.

Drug resistance
Systemic chemotherapy combinations, including gemcit-
abine (GEM) plus other drugs, are still the cornerstone 
of treatment for advanced PaCa [3], while drug resist-
ance remains a severe challenge in the context of antitu-
mor therapy. To our knowledge, cancer cells can develop 
drug resistance via enhanced DNA repair, altered mem-
brane transport, defective apoptotic pathways, etc. [96]. 
The effect of exosomes in the process cannot be ignored. 
In normal cells, exosomes are responsible for the trans-
port of many cargoes from one cell to another. Studies 
have demonstrated that, once drug-resistant cancer cells 
develop, exosomes loaded with so-called “anti-chemo-
therapy” information can confer drug resistance to sensi-
tive cells [97, 98]. In PaCa, several exosomal RNAs have 
been discovered to play essential roles in drug resistance. 
For example, exosomes derived from GEM-resistant 
PaCa cells were found to enhance the drug resistance 
of other cancer cells by delivering miRNA-210 [99]. 
Another study indicated that CAF-derived exosomal 
miRNA-106b promoted PaCa GEM-resistance via tumor 
protein 53-induced nuclear protein 1 (TP53INP1) [100]. 
Likewise, the delivery of miRNA-365 in TAM-derived 
exosomes was shown to potentiate the GEM-response in 
PaCa[101]. Notably, with a series of successive validation 

studies, tumor-derived exosomal miRNA-155 was proven 
to be a vital related to GEM-resistance [102, 103]. These 
studies highlight the relationship between exosomal 
RNAs and GEM-resistance that exosomal RNAs can 
accelerate the acquisition of GEM-resistance and mitigate 
the cell-killing effect. In addition to newer therapeutic 
strategies, chemotherapy and radiotherapy still have con-
siderable prospects for PaCa [104]. Similar to their regu-
latory roles in drug resistance, exosomal RNAs can also 
impact the outcome of radiotherapy. It has been reported 
that dying post-radiotherapy PaCa cells can deliver exo-
somal miRNA-194-5p to potentiate cell repopulation 
survival by modulating the expression of E2F transcrip-
tion factor 3 (E2F3) [105]. In another study, exosomal 
hsa_circ_0002130 was considered to modulate cancer 
cell repopulation after radiation [106]. Overall, exosomal 
RNAs are related to the emergence of both drug resist-
ance and radiotherapy resistance, and we believe that 
novel treatments targeting exosome‐specific therapeutic 
resistance markers will be developed soon.

Exosomal RNAs as potential biomarkers for PaCa
With very few specific symptoms in the early period, 
PaCa is often diagnosed in an advanced stage, which leads 
to a high fatality rate [107]. Traditional imaging examina-
tions, such as ultrasound, CT, and MRI, are widely used 
in the clinical evaluation of PaCa. Although CA-199 is 
the only FDA-approved biomarker of PaCa, its accu-
racy is far from satisfactory due to the poor sensitivity 
at an early stage and the relatively low specificity overall 
[108–110]. Therefore, a more precise method is urgently 
needed for non-invasive diagnosis. As mentioned earlier, 
exosomes are enriched with biological cargoes, so they 
have gained interest as potential biomarkers for the early 
diagnosis of multiple malignancies [111]. Among these, 
exosomal RNAs are emerging as novel biomarkers for 
PaCa (Table 3). Accumulated evidence has revealed that 
exosomal RNAs can be more valuable in diagnosis than 
peripheral blood-free RNA as they have several advan-
tages: exosomes can prevent RNAs from being degraded 
via RNases; exosomal RNAs are more closely associated 
with those of the original cells; and there is a higher con-
centration of RNAs in exosomes, which can yield more 
information [112–114].

Among all exosomal cargoes, exosomal miRNAs are 
currently regarded as the most promising biomarkers 
because of their abundance and easy accessibility, indi-
cating that they can be used as potential diagnostic tools; 
in addition, they are closely related to the outcome and 
recurrence of PaCa [115]. For example, several studies 
indicated that elevated exosomal miRNA‑21 levels can 
not only discriminate PaCa patients from healthy indi-
viduals and patients with other pancreatic diseases (e.g., 
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Table 2  Exosomal RNAs involved in the development and progression in PaCa

RNA Type Molecules Origin Effects Targets Refs.

miRNA miRNA-222 TDEs Proliferation ↑
Invasion ↑

p27/Akt [61]

miRNA-501-3p TAMs Tumorigenesis ↑
Metastasis ↑

TGFBR3/ TGF-β [62]

miRNA-5703 PSCs Proliferation ↑ CMTM4/PI3K/Akt [63]

miRNA-3607-3p NK cells Proliferation ↓
Migration ↓
Invasion ↓

IL-26 [64]

miRNA-1231 BM-MSCs Proliferation ↓
Migration ↓
Invasion ↓

Not mentioned [65]

miRNA-126-3p BM-MSCs Proliferation ↓
Migration ↓
Invasion ↓

ADAM9 [66]

miRNA-27a TDEs Angiogenesis ↑ BTG2 [68]

miRNA-10a-5p CAFs Migration ↑
Invasion ↑

VDR [71]

miRNA-21 CAFs Migration ↑
Invasion ↑

Not mentioned [72]

miRNA-221 CAFs Migration ↑
Invasion ↑

NF-κ B/KRAS [72]

miRNA-21-5p PSCs Proliferation ↑
Migration ↑

Not mentioned [73]

miRNA-451a PSCs Proliferation ↑
Migration ↑

Not mentioned [73]

miRNA-125b-5p TDEs Migration ↑
Invasion ↑
EMT ↑

MEK2/ERK2 [85]

miRNA-301a TDEs Migration ↑
Invasion ↑
EMT ↑

PTEN/PI3Kγ [86]

miRNA-203 TDEs Immune Escape ↑ TNF-α/IL-12/TLR4 [94]

miRNA-212-3p TDEs Immune Escape ↑ RFXAP/ MHC II [95]

miRNA-210 TDEs GEM-resistance ↑ mTOR [99]

miRNA-106b CAFs GEM-resistance ↑ TP53INP1 [100]

miRNA-365 TAMs GEM-resistance ↑ NTP/CDA [101]

miRNA-155 TDEs GEM-resistance ↑ SOD/CAT/DCK [103]

miRNA-194-5p TDEs Radiotherapy-resistance ↑ E2F3 [105]

lncRNA UCA1 TDEs Angiogenesis ↑ miRNA-96-5p/AMOTL2 [69]

SBF2-AS1 TAMs Migration ↑
Invasion ↑
Metastasis ↑

miRNA-122-5p/XIAP [74]

HULC TAMs EMT ↑
Invasion ↑
Migration ↑

Not mentioned [75]

NONHSAT105177 TDEs Proliferation ↓
Migration ↓
EMT ↓

Clusterin [76]

Sox2ot TDEs Invasion ↑
Metastasis ↑
EMT ↑

miRNA-200 family/ Sox2 [77]

circRNA PDE8A TDEs Invasion ↑ miRNA-338/MACC1/MET [78]

IARS TDEs Metastasis ↑ HUVECs [79]

hsa_circ_0002130 TDEs Radiotherapy-resistance ↑ Not mentioned [106]
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chronic pancreatitis and intraductal papillary mucinous 
neoplasm) but can also help make an early diagnosis 
and evaluate tumor stage [116–119]. Moreover, other 
exosomal miRNAs, including miRNA-210, miRNA-10b, 
miRNA-451a and miRNA-1246, can be applied for the 
accurate and early diagnosis of PaCa [116, 117, 120, 121]. 
Notably, some exosomal miRNAs may be correlated with 
tumor recurrence or may even be independent prognos-
tic factors for PaCa. For instance, high-level expression of 
exosomal miRNA-451a was found to be associated with 
an increased risk of cancer recurrence and poorer prog-
nosis in PaCa [122]. Similarly, another study illustrated 
that a higher exosomal miRNA-222 level was one of the 
independent risk factors for PaCa patients, which could 
reflect an enlarged tumor size and a high TNM stage [61]. 
Apart from peripheral blood, exosomes collected from 
other bodily fluids may also contribute to PaCa diagnosis 
and prognosis prediction [123]. First, portal vein blood 
assessment of exosomal miRNA-4525, miRNA-451a, 
and miRNA-21 was confirmed to outperform peripheral 
blood assessment evaluating both disease-free survival 
and overall survival in PaCa patients [124]. Next, pan-
creatic juice exosomal miRNA-21 and miRNA-155 levels 
were shown to discriminate PaCa patients from chronic 
pancreatitis patients with better performance than 
blood-free exosomal miRNA and CA-199 levels [125]. 
In addition, salivary miRNA-1246 and miRNA-4644 
were found to be promising biomarkers for PaCa [126]. 
Naturally, some researchers preferred combinations of 
multiple exosomal miRNAs or of exosomal miRNAs and 
other biomarkers to achieve better diagnostic yield in 
PaCa evaluation [127–129]. For example, a 3D microflu-
idic chip was designed to assess multiple exosomal bio-
markers including surface proteins (CD81, EphA2, and 
CA-199) and exosomal miRNAs (miRNA-451a, miRNA-
21, and miRNA-10b), and the accuracy of diagnosis and 
stage monitoring reached up to approximately 100% 
[130]. In another study, a six-miRNA panel, including let-
7b-5p, miRNA-192-5p, miRNA-19a-3p, miRNA-19b-3p, 
miRNA-223-3p, and miRNA-25-3p, was introduced to 
facilitate early and noninvasive diagnosis of PaCa early 
from both serum and exosomal specimens [131]. In 
addition to improving diagnostic yield, researchers have 
introduced many new techniques to better detect exo-
somal RNAs [132–134]. Typically, Pang et al. invented a 
biosensor for one-step detection of exosomal miRNAs, 
which could be of great value for applying point-of-care 
cancer diagnosis in terms of accuracy and convenience 
[135]. Overall, we believe that exosomal miRNAs can 
certainly be applied to improve the diagnosis and prog-
nosis of PaCa.

Although existing studies on exosomal lncRNAs, cir-
cRNAs, and mRNAs are limited compared to those 

on exosomal miRNAs, these molecules can also facili-
tate PaCa diagnosis. Some scholars have suggested that 
many exosomal lncRNAs serve as tumor biomarkers for 
PaCa. For example, high expression of Sox2ot in plasma 
exosomes was shown to predict late TNM stage and 
poor survival in PaCa patients [77]. Additionally, exoso-
mal lncRNA HULC, colorectal neoplasia differentially 
expressed (CRNDE), and metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT-1) were proven 
to have potential value in discriminating PaCa from 
other pancreatic diseases [75, 136]. Exosomal circRNAs 
are another kind of endogenous non-coding RNAs, and 
information on their importance in tumors and other 
diseases is emerging [137, 138]. In PaCa, both exosomal 
circRNA PDE8A and IARS are correlated with progres-
sion and prognosis [78, 79]. Studies have proposed that 
exosomal circRNAs will soon serve as novel biomark-
ers for PaCa. Moreover, exosomal mRNAs have recently 
been discovered as potential diagnostic biomarkers. For 
example, exosomal mRNA Wiskott-Aldrich syndrome 
protein Verprolin-homologous protein 2 (WASF2) pro-
vided excellent accuracy for distinguishing PaCa patients 
from healthy individuals, and distinguishing PaCa 
patients between stage 0/I/IIA and stage IIB/III/IV [139]. 
Another exosomal mRNA, glypican-1 (GPC1), provided 
excellent diagnostic performance in differentiating PaCa 
patients from patients with other pancreatic diseases and 
from healthy individuals, approaching 100% sensitivity 
and specificity [140].

Above all, exosomal RNAs are implied to be potential 
diagnostic and prognostic biomarkers for PaCa, as sum-
marized in Table 3. With the emphasis on their potential 
value as PaCa biomarkers, we still need more experi-
ments to verify their significance in the diagnosis and 
prognosis evaluation of PaCa. Ultimately, there remains 
an endless challenge to identify additional sensitive and 
specific exosomal biomarkers with the growth of our 
knowledge in the field of exosomes. Even though sub-
stantial advancements have been achieved, there is a long 
path ahead before discovering a perfect PaCa biomarker.

The therapeutic value of exosomes 
in the treatment of PaCa
PaCa is one of the deadliest malignant tumors, and thus 
scientists have devoted significant efforts to seek bet-
ter-targeted therapies [141, 142]. With the function of 
drug-payload delivery, exosomes have been increasingly 
explored as therapeutic agents [14, 143] (Fig. 3). Among 
all the drug cargoes loaded into exosomes, nucleic acids, 
especially miRNAs, small interfering RNA (siRNA), 
and hairpin RNA (shRNA), are the most favorite con-
structs [144]. Generally, those cargoes can be loaded 
into exosomes either before or after purification. In 
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most cases, those cargoes can be loaded via incubation, 
transfection-based methods, or ultraviolet irradiation 
before purification [145–147]; whereas after purifica-
tion, they can be loaded into exosomes by either physical 

methods (such as electroporation, plain incubation, 
and sonication), or chemical procedures (such as trans-
fection kit, and mix with organic solvent) [148–152]. 
In contrast to previous drug carriers (e.g., liposomes), 

Table 3  Exosomal RNAs as biomarkers for Paca

RNA Type Molecules Origin Potential functions Refs.

miRNA miRNA‑21 Peripheral blood Early diagnosis/tumor stage/survival evaluation [116–119]

miRNA-210 Peripheral blood Early diagnosis/tumor stage [116]

miRNA-10b Peripheral blood Early diagnosis [117, 120]

miRNA-1246 Peripheral blood Early diagnosis [121]

miRNA-451a Peripheral blood Tumor stage/survival evaluation [122]

miRNA-222 Peripheral blood Tumor stage/survival evaluation [61]

miRNA-4525 Portal vein blood Recurrence prediction/survival evaluation [124]

miRNA-451a Portal vein blood Recurrence prediction/survival evaluation [124]

miRNA-21 Portal vein blood Recurrence prediction/survival evaluation [124]

miRNA-21 Pancreatic juice Early diagnosis [125]

miRNA-155 Pancreatic juice Early diagnosis [125]

miRNA-1246 Salivary Early diagnosis [126]

miRNA-4644 Salivary Early diagnosis [126]

lncRNA Sox2ot Peripheral blood Tumor stage/survival evaluation [77]

HULC Peripheral blood Early diagnosis [75]

CRNDE Peripheral blood Early diagnosis [136]

MALAT-1 Peripheral blood Early diagnosis [136]

circRNA PDE8A Peripheral blood Tumor stage/survival evaluation [78]

IARS Peripheral blood Tumor stage/survival evaluation [79]

mRNA WASF2 Peripheral blood Early diagnosis/tumor stage/ [139]

GPC1 Peripheral blood Early diagnosis/tumor stage/ [140]

Fig. 3  The potential of exosomes to act as therapeutic vehicles
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injected exosomes can be taken up by other cells more 
effectively and confer bioactive cargoes with less immune 
interference [23, 153, 154]. In addition, the heterogene-
ity of surface molecules on exosomes is more suitable 
for receptor-targeted features, which realize exosome-
targeted therapy [155]. Hence, the therapeutic utiliza-
tion of exosomes as nanocarriers has excellent potential. 
Currently, researchers are committed to engineering 
exosomes for the encapsulation of therapeutic ingredi-
ents. For example, Zhou et al. loaded purified exosomes 
with paclitaxel and gemcitabine monophosphate, and 
these exosomes showed extraordinary penetrating abili-
ties and yielded excellent targeted chemotherapy efficacy 
[156]. It is well known that the KRAS gene is closely asso-
ciated with cell proliferation, survival, and differentiation, 
so multiple studies have been conducted on the KRAS 
gene. Kamerkar et  al. engineered exosomes to deliver 
siRNA or shRNA targeting KRAS in PaCa cells, which 
successfully inhibited tumor growth in mouse mod-
els and improved overall survival [40]. Likewise, Mendt 
et  al. engineered exosomes with siRNA to target KRAS 
G12D, which increased the survival of several mouse 
models with Paca [157]. Moreover, the MD Anderson 
Cancer Center is leading a phase I clinical trial of MSC-
derived exosomes with KRAS G12D siRNA to treat 
patients with KRAS G12D mutation–associated PaCa 
(NCT03608631).

Regardless of the exciting progress and these pioneer-
ing developments, using engineered exosomes as vehi-
cles in the clinical treatment of PaCa still presents several 
challenges. First, it is not easy to ensure the homogeneity 
of the treatment effect of different exosomes, as the align-
ments probably having varying degrees of the same ther-
apeutic implication. Subsequently, the present isolation 
techniques of exosomes are relatively suboptimal for the 
requirement of immunotherapy. Overall, increasing stud-
ies and achievements in exosome extraction techniques 
will facilitate the application of exosomes in the clinical 
treatment of PaCa.

Conclusions and perspective
Above all, exosomes are special vesicles that mediate 
diverse biological functions. In this review, we high-
lighted the vital role of exosomal RNAs in PaCa. These 
discoveries may spark more studies to elucidate the 
pathogenesis and mechanism of PaCa, offering a new 
direction and important guidance for the diagnosis and 
treatment of PaCa. Nevertheless, the question remains 
whether observed biological activities, including the phe-
notypic and molecular alterations, can still persist under 
physiological conditions, which merits further validation.

Characterized by high specificity and minimally inva-
sive nature, exosomal RNAs exhibit outstanding value 

as potential biomarkers for PaCa. However, large-scale 
studies are warranted to validate the clinical applica-
tion of exosomal RNAs. To gain a greater value of the 
management of PaCa, exosomal RNAs may need to 
be more intensively studied to develop new utilities 
monitoring the outcome of therapy. In addition to sim-
ple prediction of recurrence and prognosis, if we can 
adjudicate a certain recurrence, judge the existence of 
metastasis, observe the therapeutic efficacy, or even 
determine the length of survival by just testing a spe-
cific exosomal RNA (or a set of exosomal RNAs), it will 
be of great convenience for both the patients and doc-
tors. In terms of therapeutic applications of exosomes 
(represented by engineered exosomes), several major 
challenges remain for investigators, such as the evalu-
ation of adverse effects and the identification of tol-
erated doses. In addition, it is vital to discover more 
active pharmaceutical ingredients, and identify their 
specific mechanisms, ensuring the homogeneity of 
in the treatment effect. Finally, back to the basics, the 
acquirement of high‐quality exosomes is still challeng-
ing, and several obstacles are still formidable, includ-
ing standardization, improvements in throughput and 
purity, cost reduction, and increased exosome recovery. 
These problems, when resolved, will bring the bottom-
up promotion to the application of exosomes to every 
degree.
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