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Abstract 

Osteosarcoma is a primary bone tumor. Although it is a rare disease in general, it is the most common primary bone 
tumor among children. Despite the significant advances made in the field of osteosarcoma treatment, the outcomes 
of this disease are still unfavorable. Besides, there is still no targeted therapy for osteosarcoma that can be used in 
clinical settings. Quercetin is a member of the phytochemical family which is used for different diseases including 
cardiovascular diseases, diabetes, and cancer. Its anti-cancer effects are examined in many types of cancer including 
breast, colon, lung, prostate, and pancreatic cancers and have shown promising results. Herein, the studies dealing 
with the antitumor roles of quercetin in osteosarcoma are reviewed in this article. We take a look into quercetin’s 
ability to affect proliferation, apoptosis, invasion, and chemo-resistance of the osteosarcoma cells through regulating 
protein expression and signaling pathways.
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Background
Osteosarcoma is a high-grade primary bone tumor that 
is defined by spindle cells originated from mesenchyme. 
Overall, osteosarcoma is a rare disease. However, it is the 
most common primary bone malignancy among chil-
dren [1]. While this disease occurs sporadically, approxi-
mately 70% of tumor specimens show an abnormality in 
the chromosome. Moreover, regulation of cell cycle has 
been reported to demonstrate inherited defects in some 
cases [2]. In patients younger than 25 years old or older 
than 59 years, the age-adjusted incidence of osteosar-
coma is 4 per 1 million people. However, this number 
drops to fewer than 2 per 1 million in people ages 25 to 
59 years. The incidence of osteosarcoma is bimodal. The 
first peak occurs at the ages of puberty, implying the ages 

of 15 to 19 in boys and the ages of 10 to 14 in girls. The 
second peak occurs in the elderly with the age of 75 years 
[3]. Noteworthy, osteosarcoma is rare before the age of 5 
[4]. With the application of multimodal chemotherapy, 
disease-free survival of patients with high-grade osteo-
sarcoma has been improved to more than 60% compared 
to 10–20% which was reachable with the surgery as the 
only therapeutic approach. Currently, treatment of osteo-
sarcoma is a combination of surgery and chemotherapy 
both before and after the surgery. Cisplatin, methotrex-
ate, doxorubicin, and ifosfamide are common cytotoxic 
agents used for chemotherapy [5]. Although several 
chemotherapy regimens have been applied in the past 20 
years, survival rates of patients are still not satisfying and 
no practical targeted therapy is discovered [6]. Therefore, 
it is important to investigate different therapeutic meth-
ods and anti-tumor agents in order to find an approach 
that provides a higher survival rate.

Quercetin is a common member of phytochemicals 
which can be found in daily foods, such as vegetables, 
nuts, and teas [7, 8]. Quercetin is a commercially acces-
sible supplementary agent. It is reported that oral admin-
istration of 1 g quercetin per day is safe and is absorbed 
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up to 60% [9]. Several studies have shown that querce-
tin plays a variety of pharmacological roles, including 
anti-proliferation, anti-oxidant, anti-inflammation, anti-
microbial and anti-diabetes activities [8, 10–12]. Further-
more, quercetin is indicated to exert various anti-tumor 
effects both in vitro and in vivo against several cancers, 
such as ovarian cancer, colorectal cancer, lymphoma, gas-
tric cancer, and breast cancer [13–17]. Herein, the stud-
ies dealing with the role of quercetin in the treatment of 
osteosarcoma are reviewed.

Osteosarcoma pathogenesis
The molecular pathogeneses of osteosarcoma are hetero-
geneous (Fig. 1) [18]. Predisposition to osteosarcoma has 
been related to some syndromes, such as Li-Fraumeni 
syndrome, Retinoblastoma, Bloom’s syndrome, Werner’s 
syndrome, and Rothmund–Thomson syndrome [19–25]. 
The most common syndrome that predisposes to pediat-
ric sarcomas is Li-Fraumeni syndrome in which the TP53 
gene is mutated in the germline. TP53 encodes p53 which 
is a transcription factor regulating DNA repair genes and 
inducing post-damage apoptosis [26]. It is estimated that 
30% of patients with Li-Fraumeni syndrome develop 
osteosarcoma. Furthermore, 18–26.5% of patients with 
sporadic osteosarcoma have shown somatic p53 loss 

[27, 28]. Retinoblastoma also leads to a predisposition 
to osteosarcoma. RB1 gene encodes retinoblastoma pro-
tein pRb which binds to the transcription factors of E2F 
family [29]. pRb loss occurs frequently in osteosarcoma 
sporadic cases and is associated with poor outcomes 
[30, 31]. Mutations in genes of RecQ helicases are also 
related to some rare autosomal recessive disorders, such 
as Rothmund–Thomson syndrome, Bloom’s syndrome, 
and Werner’s syndrome. These disorders are reported to 
be correlated to the higher osteosarcoma incidence [32].

In metastatic forms of osteosarcoma, some specific 
genetic changes have been observed which include 
upregulation of Wnt/β-catenin and src pathway, Notch1 
and Notch2 receptors. Besides, downregulation of Fas/
Fas ligand pathway (a cell death pathway) [33, 34]. Fur-
thermore, angiogenic enzymes and growth factors (e.g. 
IL-8, PDGF-R, EGFR, and VEGF) are helpful for tumor 
progression and growth in target cells. Src pathway 
which is reactivated results in tumor hyper-proliferation 
and neovascularity [35, 36]. The heterogeneity in the 
genotype of osteosarcoma has translated into several 
expression profiles of macromolecular biomarkers which 
are helpful in the clinic. A variety of studies have found 
abnormally-expressed levels of certain proteins and 
mRNAs, such as HMGB1, ErbB-2, FBXW7, cathepsin 

Fig. 1 Factors involved in the pathogenesis of osteosarcoma can be divided into two types: environmental factors and endogenous factors. 
Endogenous factors include some predisposing syndromes (such as Li-Fraumeni syndrome), changes in cell signaling pathways, and abnormal 
expressions of proteins and RNAs. Meanwhile, environmental factors are mainly radiation and chemical agents
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D, and miR-421. Nevertheless, the significance of these 
biomarkers is still under investigation and controversy 
[37–41].

Among the environmental factors that are suggested 
as carcinogens of osteosarcoma, ultraviolet and ionizing 
radiation are well-established [42]. In only 2% of osteo-
sarcoma cases, radiation exposure is implicated [43]. 
Moreover, data suggest that radiation does not play a sig-
nificant role in the pediatric form of the disease. Between 
the exposure to radiation and the formation of osteo-
sarcoma, there is an interval of 10–20 years [44]. Some 
chemical agents are also reported to be associated with 
the formation of osteosarcoma, including asbestos, meth-
ylcholanthrene, zinc beryllium silicate, chromium salts, 
aniline dyes, and beryllium oxide [45–48].

Quercetin is a natural compound with a variety 
of advantages
The name of “Flavonoid” reminds us of a group of natu-
ral substances which are mostly found in vegetables [49]. 
These substances which encompass phenolic structures 
are classified into 6 subclasses: flavones, isoflavones, fla-
vanones, flavonols, flavan-3-ols (flavanols), and antho-
cyanins [50]. Quercetin is a member of the flavonol 
group and is derived from quercetum (oak forest) [49, 
51]. Apples, berries, onions, tea, tomatoes, and many 
seeds and nuts have quercetin as one of their ingredi-
ents [51, 52]. This polyphenol is one of the most investi-
gated flavonols due to the diversity of its effects including 
anti-oxidative, anti-inflammatory, hepatoprotective, 
genoprotective, cytoprotective, and angioprotective [53, 
54]. Investigations regarding the therapeutic applications 
of quercetin have shown its effectiveness on a number of 
diseases such as arthritis, allergy, diabetes, viral and bac-
terial infections, and finally cancer [53]. Before discussing 
the anti-cancer properties of quercetin, we would explain 
the mechanisms by which it is adsorbed, transferred, and 
metabolized inside the body.

The most common form of quercetin in nature is 
quercetin glycoside which is known to have poor bioa-
vailability in the oral cavity [51]. In other parts of the gas-
trointestinal tract, quercetin adsorption is dependent on 
several factors especially the attached functional groups 
but the small intestine is the major adsorption site for 
quercetin glycosides [51]. Quercetin glycosides are degly-
cosylated in this site by the lactase phlorizin hydrolase 
(LPH) in order to form quercetin aglycone [55]. After-
ward, quercetin aglycon enters stage II of the metabolism 
process [55, 56].

Quercetin gets metabolized in the small intestine 
through the xenobiotic metabolism which is made up of 
three stages: modification, conjugation, and elimination 
[57]. The metabolites of stage II, which are the results of 

glucuronidation, sulfation, and methylation, experience 
two different events: some of them are secreted into the 
portal and lymph circulation and some other metabolites 
go through elimination in the small intestine [53, 57]. 
In the liver, these metabolites get conjugated again and 
eventually, either enter the circulation or the bile [55]. 
Noteworthy, several factors involved in the regulation of 
these three stages of the quercetin metabolism are land-
marks of its bioavailability [53]. The bioavailability of this 
agent is nearly 16% when ingested as a suspension and 
this poor bioavailability is mostly related to its absorption 
and biliary elimination [58]. However, a 44.8% bioavail-
ability is also reachable for quercetin when administering 
quercetin aglycone solubilized in ethanol [59].

After all, despite this feature of quercetin getting in 
the way of its applications, still, quercetin is considered 
an advantageous agent for therapeutic purposes. Investi-
gations have approved its efficacy when used in a great 
number of diseases including cardiovascular diseases, 
diabetes, neurodegenerative diseases such as Alzhei-
mer’s disease, arthritis, asthma, inflammatory bowel dis-
ease, and gastric ulcer [54, 60–69]. From a cancer point 
of view, quercetin affects many cancer hallmarks, such as 
proliferation, apoptosis, and autophagy, by the means of 
its properties (Fig. 2) [70–72]. For instance, quercetin is 
able to protect cells against oxidative stress by decreasing 
the number of reactive oxygen species (ROS) [70]. Sub-
sequently, signaling pathways induced by ROS which are 
participating in cancer initiation/progression are inhib-
ited by quercetin [70, 73]. In this regard, a great body of 

Fig. 2 Quercetin beneficial roles in cancer treatment
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research has examined quercetin on different types of 
cancer. Anti-apoptotic effects of this favorable agent are 
observed in breast, colon, prostate, myeloma, pheochro-
mocytoma, acute lymphoblastic leukemia, and ovarian 
cancer [74]. According to evidence, the vast majority of 
cancer types are prone to be affected by the anti-prolifer-
ative impacts of quercetin [75–77].

Additionally, quercetin also exerts some anti-metas-
tasis effects through affecting inhibition of receptor for 
advanced glycation end products (RAGE) expression, 
c-MYC reduction, STAT3 signaling inhibition, inhibiting 
mesenchymal to epithelial transition (EMT), and increas-
ing the invasiveness of the gastric, lung, bladder, and pan-
creatic cancerous cells [13, 78–81]. On the other hand, 
quercetin also has the capacity of targeting cancer cells 
in another way: chemo-sensitizing [82–85]. This effect of 
quercetin is mainly investigated in prostate cancer and 
it seems that it’s possible through regulating androgen 
receptor and PI3K/Akt signaling pathways [84]. Recent 
researches have demonstrated that radio-sensitizing is 
also detectable after quercetin treatment in bladder and 
colon cancer [86, 87]. After all, it seems that quercetin is 
a proper option for cancer treatment either alone or in 
combination with other therapeutic agents.

Quercetin and osteosarcoma
Studies have shown that quercetin plays a variety of anti-
tumor roles against osteosarcoma (Table  1). Although 
these studies are mainly limited to in  vivo and in  vitro 
investigations, findings are promising (Fig. 3). In canine 
osteosarcoma cell lines, DSN and D-17, quercetin is 
indicated to reduce proliferation, change cell cycle and 
ROS levels, and increase apoptosis as well as altering the 

depolarization of mitochondria and calcium cytoplas-
mic concentration [88]. Besides, quercetin increases the 
phosphorylation of c-Jun N-terminal kinase, ERK1/2, 
P38, and P90RSK proteins. Meanwhile, it inhibits the 
phosphorylation of S6, AKT, and P70S6K proteins [88]. 
Evidence demonstrated that heat shock response leads to 
the reduction of glucocorticoid receptor binding activity 
in human osteosarcoma cell line HOS-8603 [89]. A study 
has shown that quercetin is able to suppress the mRNA 
expressions of heat shock protein (HSP)90α and HSP 70. 
However, it cannot abolish the reduction of glucocor-
ticoid receptors during heat shock treatment. Also, it is 
found that quercetin-induced downregulation of gluco-
corticoid receptor is accompanied by a reduction in func-
tional responses that are mediated by glucocorticoid [89].

Inhibiting proliferation, migration, and invasion
A study has also reported that quercetin treatment results 
in various antitumor effects in human osteosarcoma cell 
line 143B, including suppression of proliferation, cell 
cycle arrest at G2/M phase, induction of apoptosis, and 
reduced potential of cells for adhesion and migration 
[90]. Lan and colleagues have indicated that quercetin 
leads to a reduction in invasion and migration of osteo-
sarcoma HOS and MG-63 cells [91]. They reported that 
quercetin-treated HOS cells show lower mRNA and pro-
tein levels of VEGF, HIF-1α, MMP2, and MMP9. Fur-
thermore, the formation and growth of metastatic lung 
tumors are suppressed by quercetin treatment as studies 
in the nude mouse osteosarcoma model [91].

Quercetin treatment is shown to significantly reduce 
the cell viability of osteosarcoma U2OS and Saos-2 cells 
after 48 h of incubation [92]. Quercetin also significantly 

Table 1 Studies investigated the antitumor roles of quercetin on human osteosarcoma

Dose(s) Duration of incubation Quercetin’s effect Cell line(s) Ref.

80 and 100 µM 48 h Inhibits proliferation and metastasis through suppressing PTHR1 U2OS and Saos-2 [92]

25 or 50 µM 18 h Suppresses proliferation and migration while inducing apoptosis 143B [90]

25, 50 and 100 µM 12 and 24 h Suppresses metastatic lung tumors HOS and MG-63 [91]

10, 25 or 50 µM 48 h Induces apoptosis by mitochondrial dysfunction and dephos-
phorylation of Akt

U2OS/MTX300 [94]

– – Reduces mitochondrial membrane potential and release of 
mitochondrial cytochrome c to cytosol while dephosphorylat-
ing Akt

U2OS/MTX300 [95]

50, 100 and 200 µM 24 h Induces autophagy by the ROS-NUPR1 pathway MG-63 [97]

10, 100, 200, 500 and 1000 µM 48 h Induces apoptosis and cell cycle arrest at G(1)/S HOS [96]

20, 40, 80, 160, 240 and 320 µM 48 h Induces apoptosis via a mitochondrial-dependent pathway and 
reduces cell viability

MG-63 [93]

– – Downregulated glucocorticoid receptors in osteosarcoma cells HOS-8603 [89]

5 µM 24 h Improves cisplatin sensitivity by miR-217/KRAS axis 143B [98]

50 µM 48 h Leads to the alteration in G1/S phase and reduction in cyclin D1 
in U2OSPt

U2OS and U2OSPt [99]
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reduces the invasion, adhesion, and migration of cancer 
cells. It is reported that quercetin is able to decrease the 
expression of matrix metalloproteinases (MMP)-2 and -9 
at the mRNA level. Meanwhile, it increases the mRNA 
expression of tissue inhibitors of metalloproteinases 
(TIMP)-1 and -2. 80 and 100 µM of quercetin leads to a 
significant reduction in parathyroid hormone receptor 1 
(PTRH1) mRNA level by respectively, 0.27- and 0.55-fold 
in U2OS cells and 0.19 and 0.41-folds in Saos-2 cells. Fur-
thermore, quercetin anti-tumor effects on osteosarcoma 
cell lines are improved by PTHR1 knockdown [92].

Quercetin‑induced induction of autophagy and apoptosis
Liang et  al. [93] have found that quercetin inhibits 
the viability of human osteosarcoma MG-63 cells in a 
dose-dependent manner. They reported that querce-
tin treatment results in the activation of caspase-3 and 
-9, downregulation of Bcl-2, upregulation of Bax and 
cytochrome C, and loss of mitochondrial membrane 
potential. Based on this evidence, it is suggested that 
quercetin-induced apoptosis may be mediated by the 
mitochondrial-dependent pathway [93]. Another study 
has demonstrated that quercetin suppresses the viabil-
ity of methotrexate (MTX)-resistant osteosarcoma cell 

line U2OS/MTX300 cells in a dose-dependent manner 
[94]. As evidenced by fluorescence staining and flow 
cytometry, quercetin induces apoptosis in the MTX-
resistant cells, paralleled by a decrease in the potential 
of mitochondrial membrane, caspase-3 activation, mito-
chondrial cytochrome c release, Bax upregulation, and 
downregulation of p-Bad and Bcl-2. Followed by querce-
tin treatment, Akt dephosphorylation is observed. Active 
Akt plays a protective role against the Akt dephospho-
rylation, Bad, and degradation of poly(ADP-ribose) poly-
merase (PARP). Whereas, the combination of quercetin 
with LY294002 promotes the Bad and Akt dephospho-
rylation and cleavage of PARP [94]. The same result is 
concluded in a study by Yin et  al. [95]. They reported 
that quercetin suppresses the proliferation and induces 
apoptosis in U2OS/MTX300 cells, suggesting that these 
might be associated with the apoptosis pathway of mito-
chondria and Akt activity [95]. Studies have also shown 
that quercetin treatment leads to the cell cycle arrest at 
G(1)/S phase accompanied by cyclin D1 downregulation 
[96]. Subsequently, caspase-3 activation and PARP cleav-
age induce apoptosis [96].

Quercetin’s ability to induce cell death in osteosarcoma 
cell lines is not limited to apoptosis. As shown by Wu and 

Fig. 3  A summary of quercetin roles in osteosarcoma which include inducing apoptosis and suppressing proliferation as well as inhibiting 
migration and invasion. Furthermore, quercetin is shown to be effective in overcoming drug-resistance in osteosarcoma cells. To exert its anti-tumor 
roles, quercetin affects several molecular and cellular signaling pathways, such as VEGF, MMPs, caspases, AKT, and KRAS. Downward arrows represent 
downregulation or reduction. Upward arrows shows upregulation or increase
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colleagues, incubation of MG-63 cells with quercetin for 
24 h leads to an increase in autophagic flux [97]. Down-
regulation of P62/SQSTM1 and upregulation of LC3B-
II/LC3B-I are confirming evidence of this effect. Using 
Bafilomycin A1, an inhibitor of autophagy, or block-
ing autophagy by knockdown of ATG5 causes a reduc-
tion in cell death induced by quercetin. Results indicate 
that quercetin treatment results in higher expression 
of NUPR1 and activation of NUPR1 reporter activity, 
leading to the expression of genes related to autophagy. 
Besides, NURP1 is reported to be associated with the 
dysregulation in the hemostasis of reactive oxygen spe-
cies (ROS) which can be suppressed by NAC inhibiting 
intracellular ROS. Furthermore, in  vivo studies reveal 
that quercetin-induced autophagy is suppressed by NAC 
[97].

The role of quercetin in overcoming drug‑resistance 
in osteosarcoma cell lines
5 µM quercetin is shown to increase the sensitivity 
of 143B cells to cisplatin treatment. Cisplatin and/or 
quercetin treatment leads to the upregulation of miR-217 
and downregulation of KRAS, the target of miR-217, at 
both protein and mRNA levels. Knockdown of miR-217 
abolishes the improved sensitivity to cisplatin. Mean-
while, overexpression of miR-217 leads to the opposite 
results, demonstrating that the miR-217-KRAS axis is 
involved in the quercetin-improved sensitivity of cispl-
atin [98]. Following the treatment with 50 µM quercetin 
for 48 h, the expression level of cyclin D1 is shown to be 
reduced in the cisplatin-resistance osteosarcoma cell line, 
U2OSPt; however, this did not occur in U2OS cells [99]. 
Moreover, it is reported that cyclin D1 decrease can be 
related to the changes in the G1/S phase following the 
quercetin treatment [99]. Altogether, these findings sug-
gest that quercetin can be used alone as an anti-tumor 
agent or in combination with other cytotoxic agents as a 
synergistic compound.

Conclusions
Osteosarcoma is a primary bone malignancy in both 
children and adults which is not considered to be com-
mon cancer. The number of newly diagnosed patients 
is not high but this fact has not affected its survival 
rate which recently has been enhanced to 60%. Other 
than the low efficacy of the common treatments, side 
effects of these methods are also interfering with the 
life quality of osteosarcoma patients especially the ones 
developing osteosarcoma at a young age. Considering 
this, increasing the effectiveness of common meth-
ods and decreasing their side effects would be a great 
help for osteosarcoma patients. Quercetin is a plant 

compound that has shown to be suitable for cancer 
treatment in recent years. Therefore, we tried to gather 
evidence on how quercetin is able to inhibit osteosar-
coma in order to suggest a new candidate for the treat-
ment of this cancer. In the osteosarcoma viewpoint, 
abundant effects of this agent have been indicated to 
be useful for inducing apoptosis, cell cycle arrest, and 
autophagy and reducing proliferation, viability, inva-
sion, chemo-resistance, and migration (Figs.  1, 2 and 
3). Nevertheless, for a complete confirmation of these 
effects and a wider usage in clinics, human studies in 
this field are required. As mentioned before, querce-
tin has a low bioavailability in the human body which 
increases the need for examining this agent on humans 
who are developing osteosarcoma. Moreover, the side 
effects of quercetin as an antitumor agent have not 
been fully investigated in previous studies and need 
to be addressed. Taken together, in this paper we have 
shown that quercetin executes a wide range of mecha-
nisms for preventing osteosarcoma from progression; 
thus, it has the potential to become a common method 
in osteosarcoma management.
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