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Therapeutic potentials of resveratrol 
in combination with radiotherapy 
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treatment: a mechanistic review
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Abstract 

Glioblastoma, WHO grade IV astrocytoma, is the most aggressive type of brain tumors. These cancerous cells have a 
rapid growth rate, tendency to penetrate vital brain structures, molecular heterogeneity, etc. and this cancer is associ-
ated with a poor prognosis and low survival rate. Due to the resistance of glioblastoma cells to conventional thera-
peutic modalities (such as radiation therapy and chemotherapy) as well as the adverse effects of these modalities, the 
researchers have attempted to discover an appropriate alternative or adjuvant treatment for glioblastoma. Resveratrol, 
as an herbal and natural polyphenolic compound, has anti-tumoral property and has shown to be effective in GBM 
treatment. Resveratrol exerts its anti-tumoral effect through various mechanisms such as regulation of cell cycle 
progression and cell proliferation, autophagy, oxidant system, apoptosis pathways, and so on. Resveratrol in combina-
tion with radiation therapy and chemotherapy has also been used. In the present study, we summarized the current 
findings on therapeutic potentials of resveratrol in glioblastoma radiotherapy and chemotherapy.
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Introduction
Gliomas arise from glia cells (including oligodendrocytes, 
astrocytes, ependymal cells) or cancer stem cells and are 
categorized histologically in accordance with the similar-
ity to their putative cell of origin [1]. They are different 
in terms of aggressiveness from benign to highly malig-
nant which are graded from I to IV by the World Health 
Organization (WHO) [2, 3]. The most frequent of these 
fatal tumors in adults is WHO grade IV astrocytoma or 
glioblastoma (or glioblastoma multiform (GBM)) which 

occurs in brain or spinal cord and accounts for 50% of 
diffuse gliomas [4, 5]. The standard treatment modal-
ity for GBM is complete surgical resection followed by 
radiation therapy and chemotherapy. Moreover, a num-
ber of efforts have been made to develop new thera-
peutic modalities. Despite such efforts, these treatment 
modalities do not dramatically improve clinical outcome 
of GBM patients [3, 5, 6]. According to a report by Jack-
son et al. [2], rapid progression, resistance to treatment, 
and inexorable recurrence of GBM can be attributed to 
some factors such as its rapid growth rate, its tendency 
to penetrate vital brain structures, its molecular hetero-
geneity, problems in obtaining high concentrations of 
chemotherapeutic drugs in the central nervous system, 
etc. It has also been reported that dysregulation of cel-
lular signaling pathways (such as hyperactivation of PI3 
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kinase pathway) and genetic mutations (such as mutation 
in retinoblastoma and p53 genes) can play critical roles in 
GBM ignition, invasion and progression [7–9].

The use of radiation therapy and chemotherapy can 
also damage the normal tissues severely; as it may stop 
the course of cancer treatment due to acute reactions 
[10]. In other words, these two treatment modalities 
can be considered as double-edged swords; as the use of 
these treatments may induce second cancers and adverse 
effects, negatively affecting patients’ quality of life. In 
this regard, management of early and late complications 
arisen from cancer treatment without a negative effect 
on cancer response is one of the most important goals in 
radiation therapy and chemotherapy [11, 12]. Therefore, 
the introduction and development of radio/chemothera-
peutic modifiers (as radio/chemoprotectors and radio/
chemosensitizers (can improve therapeutic efficiencies of 
chemotherapy and radiotherapy [13].

During past decades, tendency to use herbal and natu-
ral compounds or their derivatives (with less toxicities) 
have attracted much attention for various therapeu-
tic purposes, especially cancer treatment. Resveratrol 
(3,5,4′-trihydroxy-trans-stilbene) is a herbal and natural 
polyphenolic compound that can be found in grapes, red 
wine, peanuts, soy, etc. [14–16]. The molecular structure 
of resveratrol is shown in Fig.  1. This herbal agent has 
some abilities to kill cancerous cells and amplify tumor 
response to therapeutic modalities such as radiotherapy 
and chemotherapy [17]. Interesting properties of resvera-
trol as a potential anti-oxidant agent have been resulted 
to its use in other different health benefits, such as neu-
roprotective and radioprotective effects [18]. Other bio-
logical activities of resveratrol such as cardioprotective, 
chemopreventive, anti-inflammatory, proapoptotic, and 
anti-proliferative properties have also been reported [15, 
16].

Despite the remarkable beneficial effects of resveratrol, 
some studies have failed to reflect these properties which 

it may be due to its high absorption but low bioavailability 
[19, 20]. Moreover, the use of resveratrol can be compro-
mised because of its hydrophilicity when apply in lipo-
philic systems [21]; nevertheless, this drawback could be 
overcome by structural modification [22]. In this regard, 
some researchers have developed novel resveratrol deriv-
atives, such as pterostilbene [23, 24], trimethoxystilbene 
[25, 26], hydroxystilbene [27, 28], dihydroxystilbene [29, 
30], bridged stilbenes [31], etc. Compared to resveratrol, 
modifying some substitutions can improve their bioavail-
ability and biological activities.

The use of nanotechnological strategies can improve 
the bioavailability and efficacy of resveratrol and its 
analogues. In this regard, some studies have been inves-
tigated the efficacy of resveratrol delivery systems on 
treatment of many tumors [32–35].

The present review aims to summarize current studies 
on therapeutic potentials of resveratrol in GBM radio-
therapy and chemotherapy. It is also tried to present the 
resveratrol roles and molecular mechanisms involved in 
GBM radiotherapy and chemotherapy. Furthermore, the 
findings obtained from derivatives/analogues and deliv-
ery systems of resveratrol in GBM treatment have been 
addressed.

Role of resveratrol in glioblastoma treatment
Products derived from nature have been one of the most 
main and considerable sources in drug discovery and 
development [36–38]. For many years, the use of natu-
ral products and/or natural herbal formulations has been 
of interest to humans for the preservation of health, 
improvement of physical and mental health, and preven-
tion of diseases. Many studies have also reported that 
some natural products in combination with radiotherapy 
and chemotherapy can have radio/chemoprotective and/
or synergistic effects in terms of alleviating cancer radi-
otherapy/chemotherapy associated complications and 
increasing the therapeutic efficacy [14, 39]. Moreover, 
some of them can penetrate blood brain barrier (BBB) 
which this property is one of the principal considera-
tion for development of drugs for central nervous system 
(CNS) [40, 41].

Resveratrol is a natural pharmaceutical compound 
which has a broad range of biological activities such as 
anti-fungal, anti-viral, anti-inflammatory, anti-oxidant, 
and anti-aging effects [42–46]. The biological activities 
of this natural polyphenol are mainly attributed to its 
unique structure feature with multiple phenolic hydroxyl 
groups; as polyphenol components are able to scavenge 
free radicals to produce more stable molecules with low 
toxicity than the original radicals [47]. It has also been 
reported that resveratrol can prevent the tumor initia-
tion, promotion and progression [48]; for example, its Fig. 1  Chemical structure of resveratrol
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anti-tumoral activity has been assessed in many tumor 
types, such as colorectal, prostate, lung, liver, breast can-
cers, etc. [49–52]. Furthermore, resveratrol can cross the 
BBB successfully and hence, it may be used as an effi-
cient therapeutic or protective agent against CNS-related 
injuries/disorders and tumors, including global cerebral 
ischemic injury [53], Alzheimer’s [54–56], Parkinson [57, 
58] and GBM [59, 60].

Some studies have also showed that resveratrol, as a 
radio/chemosensitizer agent, can enhance the thera-
peutic efficacy of radiotherapy/chemotherapeutic drugs 
against glioblastoma cells which are discussed the follow-
ing (Table 1).

Therapeutic potentials of resveratrol in glioblastoma 
radiotherapy
Standard treatment for newly diagnosed GBM patients is 
complete surgical resection followed by adjuvant chem-
oradiation therapy (CRT) [6, 61]. Conventional radio-
therapy protocol used in these patients is as follows: total 
dose of 59.4 to 60 Gy, dose per fraction of 1.8 or 2.0 Gy, 
five fractions per week and treatment period of 6 to 7 
weeks [62]. In this regard, the use of resveratrol in com-
bination with radiotherapy can increase the therapeutic 
efficacy (synergistic effects) [63, 64].

One of the reasons for radioresistance of tumoral cells 
is the upregulation of transcription factors such as sig-
nal-transducer-and-activator-of-transcriptions (STATs) 
after exposure to radiation [12]. These enzymes are tran-
scription factors for cytokine signaling which are consti-
tutively activated in some tumor types such as prostate, 
breast, brain cancers, nasopharyngeal carcinoma, leuke-
mia, etc. [65–68]. It has been proposed that the targeting 
of STATs in combination with radiation therapy can be 
considered as a strategy for overcoming tumor resistance. 
STAT3, as one of the subfamilies, contributes in modula-
tion of angiogenesis, suppression of apoptosis, regulation 
of cell cycle progression and metastasis through stimula-
tion of VEGF, MMP-2, MMP-9 and IAP-1 [12, 69]. In a 
study by Yang et al. [70], the therapeutic effect of resvera-
trol on GBM-derived radioresistant tumor initiating cells 
was investigated. In their study, the cells in control and 
irradiated groups were categorized; as the cells of irradi-
ated groups were exposed to various radiation dose val-
ues of 2, 4, 6, 8, and 10 Gy by a 60Co unit. Their findings 
revealed that primary GBM-CD133 tumor initiating cells 
increased protein levels of phosphorylated STAT3 as well 
as showed high tumorigenic and radiochemoresistant 
properties. Moreover, they stated that treatment of GBM-
CD133 cells with 100 µM resveratrol increased radio-
sensitivity and induced apoptosis by suppressing STAT3 
signaling. Resveratrol also facilitated the differentiation 
of GBM-CD133+ into GBM-CD133− and prevented 

the stemness gene signatures of GBM-CD133+. In addi-
tion, the xenotransplant experiments showed that the 
use of resveratrol can significantly improve the survival 
rate and synergistically increase the radiosensitivity of 
GBM-tumor initiating cells exposed to radiation [70]. It 
is notable that one of the main contributors to radiore-
sistance are cancer stem cells (CSCs). These cells are also 
responsible for cancer progression and recurrence of 
gliomas after conventional treatment modalities [71–75]. 
It has also been reported that radioresistance is resulted 
from brain tumor-derived CD133+ cells that possess CSC 
capabilities [76–79].

The role of gap junction intercellular communica-
tion (GJIC) in the modification of growth and cell death 
has been proven. The changes in GJIC (including loss of 
homologous and/or heterologous) happens during the 
promotion/progression stages of carcinogenic process 
[80]; as the majority of cancerous cells lack GJIC [81]. 
Furthermore, additional epigenetic or genetic modifi-
cations, which stably inhibit GJIC, can lead to grow the 
cell without inhibition; hence, it becomes genomically 
unstable and obtains phenotypes needed for invasion and 
metastasis. In a study by Leone e al. [82], the regulation 
of cell cycle progression induced by resveratrol and asso-
ciation of this regulation with gap junction expression 
in human glioma U87 cells were investigated. They also 
evaluated the ability of this polyphenol to enhance radio-
sensitivity of these cancerous cells. In that study, the cells 
were treated with various dose values of resveratrol (0, 
20, 40, 80, 160, 320, and 640 µM). To assess the combined 
therapeutic efficacy, the cells were treated with 20 mM 
resveratrol for 1 day and were then irradiated with 5 Gy 
X-rays. Their results showed that resveratrol significantly 
increased the fraction of cancerous cells in S phase of cell 
cycle in a dose-dependent manner (starting from 20 µM). 
Also, treatment with resveratrol resulted in a significantly 
higher fraction of cancerous cells in S phase compared to 
untreated cells (control group), with a concomitant sig-
nificant decrease in the fraction of cancerous cells in G1 
phase. These findings revealed a time-dependent manner 
and percentage of cancerous cells both in the S and G1 
phase was comparable to that of control cells after 2‏-day 
resveratrol treatment. Additionally, 24–48  h after the 
X-ray treatment of cancerous cells, a significant increase 
of cancerous cells in the G2 phase compared to non-irra-
diated cells was observed, with a concomitant significant 
reduction of cancerous cells in G1 phase. The results of 
combined treatment (resveratrol + X-rays) demonstrated 
a significantly increase of cancerous cells in the S phase 
after irradiation, with a concomitant significant decrease 
in G1 phase cells (in a time-dependent manner). Com-
pared to resveratrol or X-rays alone, the combined treat-
ment showed a significant increase of S phase cells (after 
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28 and 30 h), with a concomitant decrease of G1 phase 
cells. Two days after irradiation, there was a significant 
increase in the fraction of G2 phase cells for combined 
treatment in comparison to single treatment. In conclu-
sion, they stated that resveratrol can induce a delay in cell 
cycle progression and it is also capable of enhancement 
of GJIC, both alone and in combination with X-rays [82].

Hypoxia is known as a common characteristic of all 
solid malignancies [83–86] and it adjusts wide aspects of 
tumor biology, consisting of cellular proliferation, angio-
genesis, invasion and metastasis [87, 88]. It has been 
shown that hypoxia is strongly related with poor progno-
sis [89–91] and it is considered as a leading cause of ther-
apy resistance [92, 93]. Hypoxia-inducible factors (HIFs), 
including two α and β subunits, are mediators of hypoxia 
and responsible for monitoring cellular responses to 
oxygen levels [83, 94]. Among HIFs, HIF-1α and HIF-2α 
have critical roles in solid malignancies [83]; as these two 
factors adjust apoptosis, inhibit cellular differentiation, 
and activate DNA repairing enzymes, support formation 
of blood vessels, all of which are associated to treatment 
resistance [95]. Hypoxic tumor cells are also radioresist-
ant [96] and these cells represent a two- to three-fold 
increase in radioresistance [97]. Hypoxia is a common 
characteristic in gliomas and decreases the sensitivity 
of cancerous cells to radiotherapy [98]; hence, inhibi-
tion of HIFs pathway may reduce radioresistance of gli-
oma cells [99]. In this regard, it has been reported that 
resveratrol can inhibit HIF-1α expression in the hypoxia 
condition. Khoei et  al. [100] investigated effect of res-
veratrol on radiosensitivity of iododeoxyuridine (IUdR), 
a halogenated pyrimidines analogue which is one of the 
most effective non-hypoxic radiosensitizers, in U87MG 
glioblastoma cell line. The cells were treated with 20 µM 
resveratrol and/or 1 µM IUdR, and were then exposed 
to 2  Gy radiation dose (by 60Co unit). Their findings 
revealed that resveratrol significantly decreased colony 
number and increased the DNA damages of GBM cells 
treated with IUdR in combination with radiotherapy. In 
conclusion, they stated that use of resveratrol (as HIF-1α 
inhibitor) in combination with IUdR (as radiosensitizer) 
can enhance the radiosensitization of U87MG glioblas-
toma cells [100].

In addition to the above-mentioned mechanisms, res-
veratrol can induce senescence and autophagy as well 
as attenuate the stemness of CSCs, leading to radiosen-
sitization of cancer cells [101, 102]. Wang et  al. [101] 
evaluated the therapeutic efficacy of resveratrol in com-
bination with radiotherapy against radioresistant SU-2 
glioma stem cells in both in vitro and invivo models. In 
that study, the cells and mice were treated with resvera-
trol in dose values of 75 µmol/L and 150 mg/kg, respec-
tively and were then exposed to 0–6  Gy radiation dose 

values generated from a 6 MV X-ray linear accelerator. 
They represented that resveratrol has the ability to sig-
nificantly increase the radiosensitivity of cancerous cells 
in both in vitro and nude mouse models which it can be 
attributed to its synergistic anti-cancer effects, includ-
ing prevention of self-renewal and stemness, increase 
of apoptosis, induction of autophagy, and inhibition of 
DNA repair [101]. Self-renewal is a key property of stem 
cells and this ability of CSCs is necessary for tumorigen-
esis and tumor development [103]. CSCs also present 
stemness potential and this shows that proliferative can-
cer cells are continuously renewed by asymmetric divi-
sion of CSCs [104].

Therapeutic potentials of resveratrol in glioblastoma 
chemotherapy
A range from common chemotherapeutic agents are used 
for GBM treatment, such as temozolomide, doxorubicin, 
paclitaxel, etc. Some studies showed that resveratrol, as a 
chemosensitizer agent, can enhance the therapeutic effi-
cacy of chemotherapeutic drugs through several mecha-
nisms, which are discussed the below.

Oxidative stress conditions occur following the chem-
otherapy drug administration. The generated reactive 
oxygen species (ROS) can induce DNA damage either 
directly or indirectly, resulting in cancerous cell death 
[105]. It has been reported that resveratrol can increase 
ROS level in cancerous cells [106–108]. For instance, 
the interaction of resveratrol with the mitochondria of 
cancerous cells can induce an imbalance in cellular anti-
oxidant activities, thereby a remarkable increase in the 
levels of both intracellular ROS and lipid peroxides [107]. 
Furthermore, resveratrol can inhibit oxidation–reduc-
tion (redox) system in cancerous cells [107]. It is nota-
ble that redox systems normally prevent cell oxidative 
damage; nevertheless, the cellular redox mechanisms 
in brain tumors are highly impaired which lead to the 
stimulation of survival cell pathways, thereby facilitat-
ing tumor growth and resistance [105]. Moreover, com-
bined therapy using the resveratrol and chemotherapy 
agents showed synergistic effects against the cancerous 
cells in terms of ROS levels and redox activity [107, 108]. 
Öztürk et  al. [108] investigated therapeutic efficacies 
of resveratrol (50 µM), paclitaxel (50 µM), and resvera-
trol plus paclitaxel on DBTRG glioblastoma cells. Their 
results showed that mitochondrial ROS levels signifi-
cantly increased in these cancerous cells following treat-
ment with paclitaxel and resveratrol. The mitochondrial 
ROS level of cells also increased further following com-
bined treatment of paclitaxel plus resveratrol (synergistic 
effect). They also stated that synergic interactions of res-
veratrol on paclitaxel-induced oxidative stress can stimu-
late activation of the TRPM2 channel in the glioblastoma 
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cells; as these changes contribute to the cancerous cell 
death by increment of the influx of Ca2+ into the cell 
through the channel [108].

Evasion of apoptosis is one of the features of most 
malignant cells, because defects in regulators of this 
physiological process invariably accompany tumorigen-
esis and maintain malignant progression [109]. Some 
chemotherapeutic agents induce apoptosis in cancerous 
cells [110]. It has also been reported that the resveratrol 
is able to induce apoptosis in different cancerous cells, 
such as glioma [111], prostate [112], breast [113], head 
and neck [114], ovarian [115] cancer cells. The apop-
totic activity of resveratrol is related to induce ROS pro-
duction, caspases activation, mitochondrial membrane 
permeability, p53 and BAX activation, etc. [106, 108, 
116–118]. Furthermore, some studies have reported 
that the use of resveratrol can enhance chemother-
apy-induced apoptosis in glioblastoma cell lines. The 
mechanisms would be either increased expression lev-
els of apoptotic factors such as p53, BAX and caspase 3 
or decreased expression levels of anti-apoptotic factors 
such as NF-κB and BCL-2 [119–122]. Li et  al. reported 
that temozolomide-induced apoptosis in glioblastoma-
initiating cells is enhanced by resveratrol through DNA 
double-stranded breaks (DSBs)/pATM/pATR/p53 
pathway activation [119]. Huang et  al. [120] stated that 
T98G glioblastoma cells receiving combination treat-
ment of resveratrol and temozolomide had an increased 
apoptotic morphology, such as nuclear and cytoplasmic 
condensation and chromatin aggregation. Their other 
findings showed a significant increment in cleavage of 
caspase-3 and reduction in intracellular level and nuclear 
translocation of NF-κB in the cancerous cells treated 
with resveratrol and temozolomide than those treated 
with temozolomide alone [120]. Yang et al. reported that 
resveratrol could sensitize temozolomide-induced glioma 
cell apoptosis by suppressing Wnt signaling pathway acti-
vation and downregulating O-6-methylguanine-DNA 
methyltransferase expression [121].

Many studies have reported that resveratrol can regu-
late cell cycle progression and cell proliferation in dif-
ferent cancers, such as pancreatic cancer [123], breast 
cancer [124], melanoma [125], lung cancer [126], 
glioblastoma [59], and so on. Resveratrol exerts its 
tumor-suppressive effect through inhibition of NF-κB, 
mitogen-activated protein kinases (MAPKs), cyclooxyge-
nases, metabolism of prostaglandins and also induction 
of apoptotic factors [12, 127, 128]. This chemosensitizer 
agent can also enhance AMPK expression (as a stimula-
tor of p53) and prevent Akt expression (as a cancer pro-
liferation gene) [63]. Inhibition of mTOR pathway may 
suppress Akt pathway [129]. Moreover, resveratrol may 
stop cell cycle progression through preventing DNA 

replication [130, 131]. It has also been reported that res-
veratrol via stimulation of SIRT1 increases the regulation 
of cyclin D1 which leads to inhibition of cancerous cell 
proliferation [132]. Furthermore, it has been reported 
that resveratrol can enhance cancer cell suppression 
induced by chemotherapy agents. Yuan et al. [133] stated 
combined treatment of resveratrol and temozolomide 
against U251 glioma cells significantly results in G2/M 
cell cycle arrest. They also reported that the chemo-
therapy drug in combination with resveratrol consider-
ably increased ROS production which activated AMPK. 
Then, activated AMPK prevented mTOR signaling and 
downregulated BCL-2. Moreover, results of in  vivo (an 
orthotopic xenograft model of glioblastoma) showed 
that combination treatment significantly decreased the 
volume tumor. Finally, they stated that resveratrol can 
enhance temozolomide-mediated anti-tumoral effects 
in glioblastoma through ROS-dependent AMPK–TSC–
mTOR signaling pathway [133].

CSCs, a small population of cancerous cells, are tumor-
initiating cells and include a group of quiescent self-
renewing cell types which pre‐exist in primary malignant 
tumors and localized within the tumor niches bearing 
enriched functional potential to drive tumor growth, to 
reconstruct their heterogeneity and to make changes in 
tumor regenerative capacity [134, 135]. The different cell 
surface markers are often applied to identify and enrich 
CSCs, including CD44, CD24, and CD133 [136]. Glio-
blastoma stem cells play main roles in the glioblastoma 
development and therapeutic resistance [76, 137–139]. 
It has also been reported that there is an association 
between tumor formation by the glioblastoma stem cells 
and their peculiar resistance to chemotherapy treatment 
in comparison with other cell populations of the tumor 
[140]. The first accepted surface marker for glioblastoma 
stem cells was CD133 [141] that it allows the subdivi-
sion of stem cells into two groups of CD133+ or cancer 
stem cells and CD133− or non-cancer stem cells [142]. 
Other markers expressed in glioblastoma stem cells 
are CD15, CD184, CD44, A2B5, CD90, SOX2, OCT-4, 
SALL4, NANOG, ALDH1, L1CAM, KLF4, and so on [76, 
143–153]. Some studies have reported that resveratrol 
is able to target glioma glioblastoma stem cells through 
various molecular pathways involved in self-renewal 
and several stem cell markers. Song et  al. showed that 
resveratrol could inhibit self-renewal ability of glioma 
stem cells and cancer stem cell markers (such as Bmi1 
and Sox2) induced by epithelial mesenchymal transition 
[154]. Sayd et  al. reported that increased expression of 
SIRT2 induced by resveratrol inhibits glioma stem cell 
proliferation [155]. Clark et al. [59] mentioned that res-
veratrol significantly inhibited proliferation and inva-
sion of glioblastoma stem cells. This chemosensitizer 
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agent also inhibited the sphere-forming ability. They 
also reported that resveratrol decreases AKT phospho-
rylation and induces p53 expression and activation. It is 
noteworthy that AKT and p53 mechanisms involve in 
growth, survival, and invasion of glioblastoma [59]. Cili-
bras et al. evaluated effect of resveratrol on glioma stem 
cells and showed that it is able to inhibit cell prolifera-
tion, increase cell mortality, and decrease cell motility. 
They also reported that resveratrol can modulate Wnt 
signaling pathway and epithelial mesenchymal transition 
activators [156]. Li et  al. [119] demonstrated the use of 
resveratrol sensitizes temozolomide-induced apopto-
sis of glioblastoma-initiating cells through activation of 
the DSBs/pATM/pATR/p53 pathway. They also men-
tioned that combined treatment of temozolomide and 
resveratrol could induce cell differentiation and inhabit 
self-renewal capacity of glioblastoma-initiating cells via 
STAT3 inactivation [119]. Figure 2 represents some sign-
aling pathways in cancer (stem) cells that regulate apop-
tosis, metastasis or angiogenesis following radiotherapy 
or chemotherapy.

Autophagy, as a physiological cellular process, partici-
pates in cell death under different conditions [157, 158]. 

The autophagic process is also associated with various 
diseases such as cancer [159]. It can decrease cell insta-
bility and damage to prevent tumorigenesis; hence, the 
regulation of autophagic process is of great significance 
in cancer treatment [160, 161]. Aberrant regulation of 
autophagy has been reported in different diseases and is 
common in tumors [159, 160]. For instance, autophagy 
deficiency can result in aberrant accumulation of p62 
(an autophagy adaptor protein and preferred target for 
autophagy) and activate p62-regulated pathways, such 
as activation of mTOR and Keap1–Nrf2 pathways which 
are associated with tumor development [160]. Moreo-
ver, some cancer types such as glioblastoma are intrinsi-
cally resistant to apoptotic cell death and may be more 
sensitive autophagy [162]. Autophagy has a dual role in 
cancers and may result in sensitization or resistance of 
cancerous cells. This dual role induced by autophagy is 
remarkably dependent on genetic changes in cancer-
ous cells [12]. The chemotherapeutic agents can induce 
autophagy in cancerous cells through different mecha-
nisms; however, alteration in autophagic response could 
be considered as a key mechanism in drug resistance 
[163–166]. Resveratrol regulates the autophagic process 

Fig. 2  Resveratrol as an enhancer of radio/chemosensitizer. Resveratrol is able to induce or inhibit various pathways related to apoptosis, 
angiogenesis and metastasis. This figure shows some signaling pathways in cancer (stem) cells that regulate apoptosis, metastasis or angiogenesis 
following radiotherapy or chemotherapy. Resveratrol can potentiate apoptosis signaling pathways, while it suppresses angiogenesis and metastasis
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and may affect the response of cancerous cells to therapy 
[12]. It has also been reported that resveratrol inhib-
its glioblastoma cell growth and causes the cell death 
through mechanisms involved in autophagy [167, 168]. 
Induction of autophagy by resveratrol can happen by 
several mechanisms, including the acceleration of p62 
degradation, suppression of mTOR and Nrf2 activations, 
induction of apoptosis, activation of p38-MAPK pathway, 
inhibition of STAT3 activation, and so on [160, 169–171]. 
Furthermore, the effect of resveratrol on chemotherapy-
induced autophagy in glioblastoma cells has been investi-
gated (Fig. 3). Lin et al. [172] reported that temozolomide 
induced both apoptosis and cytoprotective autophagy in 
glioma cells via a ROS burst and extracellular signal-reg-
ulated kinase (ERK) activation; however, resveratrol sup-
pressed them and resulted in a reduction in autophagy 
and an increment in apoptosis. Therefore, they suggested 
that the ROS/ERK pathway can play a critical role in the 
fate of cancerous cells after temozolomide treatment. 
Furthermore, an in vivo mouse xenograft study revealed 
that the combined treatment of temozolomide and res-
veratrol can decrease ERK activity and LC3-II protein 
level as well as increase the cleavage of PARP; as these 
findings represented that resveratrol enhances tumor 
apoptosis through suppressing the autophagic path-
way. In conclusion, they reported that resveratrol sensi-
tizes glioma cells to temozolomide-mediated apoptosis 
in a synergistic manner via down-regulation of protec-
tive autophagy [172]. Zanotto-Filho et  al. [164] showed 

that temozolomide efficacy in glioblastoma treatment 
improved by inhibition of ERK1/2-dependent autophagy 
induced by resveratrol. In another study by Filippi-
Chiela et al. [163], it was shown that resveratrol increases 
autophagy induced by temozolomide in glioblastoma 
cells, but autophagy did not affect acute cell death.

Resveratrol derivatives/analogues in glioblastoma 
treatment
In the current study, the anti-tumoral, radiosensitizer, 
and chemosensitizer properties of resveratrol were 
reviewed and it was found that resveratrol, in addition to 
having anti-tumoral properties alone, can have synergis-
tic effects in combination with radiotherapy and chemo-
therapy. Despite its remarkable anti-cancer beneficial 
effects, unfavorable pharmacokinetics/pharmacodynam-
ics profile of resveratrol such as poor bioavailability has 
restricted its applications. Hence, researchers have syn-
thesized novel derivatives and analogues for this anti-
tumoral agent using various modification strategies to 
overcome these restrictions and improve anti-tumoral 
efficacy. The anti-tumoral properties of resveratrol deriv-
atives/analogues have been evaluated in different cancers 
such as breast cancer [173], ovarian cancer [174], gastric 
cancer [175], renal carcinoma, lung cancer, colon cancer, 
prostate cancer [176], glioblastoma [177], etc. The design, 
synthesis, and anti-tumoral properties of resveratrol-
based compounds have recently reviewed by Ahmadi and 
Ebrahimzadeh [178].

Fig. 3  Schematic mechanisms for anti-tumor effect of resveratrol in glioblastoma through inhibition of autophagy pathways
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In a study by Chelsky et  al. [177], anti-tumoral effect 
of the resveratrol derivative (E)-4-(3,5-dimethoxystyryl)
phenyl acetate against U251MG glioma cells was inves-
tigated. Their findings showed that the use of this res-
veratrol analog resulted in reduction of colony formation, 
induction of cell cycle arrest in the G2/M phase, sup-
pression of survivin, Bcl-xL, cyclin D1 and cyclin B1 
expression, and induction of cleavage of caspases 3, 8, 
and 9 and poly(ADP ribose) polymerase. Mechanisti-
cally, it was found that treatment of U251MG cells with 
this resveratrol analog resulted in suppression of STAT3 
tyrosine705 phosphorylation and induction of STAT3 
serine727 phosphorylation [177]. Zielińska-Przyjemska 
et al. [179] assessed effects of resveratrol and its analogs 
(3,5,4′-Trimethoxystilbene (TMS) and pterostilbene) 
on apoptosis and cell cycle in rat C6 and human T98G 
glioma cells. Their results showed that resveratrol and 
pterostilbene administrations increased percentage of 
the cancerous cells in S phase, while TMS led to a mas-
sive accumulation of cancerous cells at the G2/M phase 
of the cell cycle. Furthermore, the apoptosis rate in the 
cancerous cells was most significantly increased by TMS 
through p53 induction [179]. Majchrzak-Celinska et  al. 
[180] investigated the anti-tumoral effects of resveratrol 
and its five analogs on T98G glioblastoma cells. They 
reported that these agents downregulated the expression 
of genes involved in Wnt/β-catenin pathway. Moreover, it 
was observed that the 4′-methoxy substituted derivatives 
had higher activity, whereas 3,4,4′-Tri-methoxy-trans-
stilbene was the most potent Wnt/β-catenin pathway 
inhibitor. Furthermore, administration of the compounds 
did not affect DNA methylation level of MGMT, SFRP1, 
or RUNX3T, despite moderate alterations in expression 
levels of epigenetic modifiers DNMT3B and TET1-3 
were observed. Importantly, it was found that treatment 
with 3,4,4′-Trimethoxy-trans-stilbene and 3,4,2′,4′-tetra-
methoxy-trans-stilbene resulted to cycle arrest in the S 
phase and induced apoptosis [180].

To the best of our knowledge, no research has been 
conducted on the radio/chemosensitizer properties of 
resveratrol derivatives/analogues in glioblastoma treat-
ment. Therefore, it is proposed studies geared towards 
this direction.

Delivery systems of resveratrol in glioblastoma 
treatment
Besides the beneficial effects of resveratrol, several 
drawbacks such as poor solubility in water, high photo-
sensitivity, and low oxidative stability have limited its 
application. It has been reported that nanostrategies for 
delivery of resveratrol can overcome to these limitations. 
For instance, improved toxicity against cancerous cells 
was obtained by polymeric and lipid-based nanocarriers. 

Or, silica nanoparticles significantly improved the bio-
logical activity and loading capacity of resveratrol and 
gold and silver nanoparticles promoted anti-bacterial and 
anti-tumoral activities of resveratrol [181].

There are some studies which have evaluated the effi-
cacy of delivery systems of resveratrol in glioblastoma 
treatment. Shao et  al. [182] synthesized resveratrol-
loaded methoxy poly(ethylene glycol)-poly(caprolactone) 
(mPEG-PCL) nanoparticles with high encapsulation effi-
ciency, because of its lipophilicity. They also stated that 
the resveratrol-loaded nanoparticles at lower concentra-
tion could cause significantly higher glioma cell death 
in comparison with equivalent dose of free resveratrol. 
Moreover, ROS determination showed the significantly 
lower intracellular ROS levels in resveratrol-treated can-
cerous cells compared to nanoparticle-treated cancerous 
cells. Hence, they reported that the differential cytotox-
icity between free resveratrol and resveratrol-loaded 
nanoparticles may be mediated by the difference of intra-
cellular ROS levels [182]. Figueiró et al. [183] investigated 
the anti-tumoral effect of resveratrol-loaded lipid-core 
nanocapsules against C6 glioma cells in both in vitro and 
in vivo models. In vitro, the resveratrol-loaded nanopar-
ticles reduced the viability of cancerous cells to a higher 
extent than free resveratrol through induction of apop-
totic cell death. In vivo, treatment with the nano-complex 
promoted a remarkable reduction in tumor size and also 
decreased the incidence of some cancer-associated char-
acteristics (such as intratumoral edema and hemorrhag-
ing) compared to free resveratrol [183]. Guo et al. [184] 
assessed therapeutic efficacy of transferrin-modified 
PEG-poly lactic acid (PLA) nanoparticles conjugated 
with resveratrol against C6 and U87 glioma cells in both 
in  vitro and in  vivo models. Their findings showed that 
in  vitro cytotoxicity of nano-complex against the can-
cerous cells was higher than that of free resveratrol. In 
comparison with free resveratrol, the nano-complex 
could significantly reduce tumor volume and accumu-
late in brain tumor, thereby prolonging the survival of 
tumor-bearing rats [184]. Jhaveri et al. [185] synthesized 
resveratrol-loaded PEGylated liposomes and modified 
the liposome surface with transferrin moieties to make 
them tumor cell-specific. They reported that the transfer-
rin-modified PEG-PLA nanoparticles conjugated to res-
veratrol had significantly more cytotoxic and increased 
apoptosis accompanied by activation of caspases 3/7 
in U-87 MG glioblastoma cells compared to free res-
veratrol or resveratrol-loaded PEGylated liposomes. In 
addition, their results demonstrated that transferrin-
modified PEG-PLA nanoparticles conjugated to res-
veratrol were more effective than other treatments in 
inhibition of tumor growth and improvement of survival 
in tumor-bearing mice [185]. Xu et al. [186] constructed, 
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characterized and tested mPEG-PCL nanoparticles 
coloaded with temozolomide and resveratrol for anti-
tumoral effect against U87 glioma cells in both in  vitro 
and in  vivo models. The temozolomide/resveratrol-
coloaded nanoparticles induced higher apoptosis in the 
cancerous cells compared to those treated by the combi-
nation of free temozolomide and resveratrol. Moreover, 
the temozolomide/resveratrol-coloaded nanoparticles 
led to more effective inhibition of phosphor-Akt, result-
ing to upregulation of the downstream apoptotic pro-
teins. Furthermore, the in vivo findings demonstrated the 
superior tumor delaying effect of the temozolomide/res-
veratrol-coloaded nanoparticles compared to that of free 
temozolomide and resveratrol combination [186].

However, more studies are required to approve the 
effectiveness of nano-based delivery systems of resvera-
trol in glioblastoma treatment. In addition, it is proposed 
to evaluate the delivery systems of resveratrol in combi-
nation with radiotherapy and chemotherapy.

Conclusions
The standard treatment modality for GBM include sur-
gery, radiation therapy and/or chemotherapy. Never-
theless, these cancerous cells are resistant to radiation 
therapy and chemotherapy; hence, efficient therapeutic 
modalities for GBM treatment are still required. Resvera-
trol, as an anti-tumoral agent, has shown to be effective 
in GBM treatment and it exerts this property through 
various mechanisms such as regulation of cell cycle pro-
gression and cell proliferation, autophagy, oxidant sys-
tem, apoptosis pathways, etc. The synergistic effects of 
resveratrol in combination with radiation therapy (radio-
sensitizer) and chemotherapy (chemosensitizer) have also 
been confirmed. Furthermore, the use of derivatives/ana-
logues and delivery systems of resveratrol could improve 
anti-tumoral efficacy of resveratrol.
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