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biomarker related to tumor immunology 
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Abstract 

Background:  Xanthine dehydrogenase (XDH) is a critical enzyme involved in the oxidative metabolism of purines, 
pterin and aldehydes and a central component of the innate immune system. However, the prognostic value of 
XDH in predicting tumor-infiltrating lymphocyte abundance, the immune response, and survival in different cancers, 
including hepatocellular carcinoma (HCC), is still unclear.

Methods:  XDH expression was analyzed in multiple databases, including Oncomine, the Tumor Immune Estima‑
tion Resource (TIMER), the Kaplan–Meier plotter database, the Gene Expression Profiling Interactive Analysis (GEPIA) 
database, and The Cancer Genome Atlas (TCGA). XDH-associated transcriptional profiles were detected with an mRNA 
array, and the levels of infiltrating immune cells were validated by immunohistochemistry (IHC) of HCC tissues. A 
predictive signature containing multiple XDH-associated immune genes was established using the Cox regression 
model.

Results:  Decreased XDH mRNA expression was detected in human cancers originating from the liver, bladder, breast, 
colon, bile duct, kidney, and hematolymphoid system. The prognostic potential of XDH mRNA expression was also 
significant in certain other cancers, including HCC, breast cancer, kidney or bladder carcinoma, gastric cancer, meso‑
thelioma, lung cancer, and ovarian cancer. In HCC, a low XDH mRNA level predicted poorer overall survival, disease-
specific survival, disease-free survival, and progression-free survival. The prognostic value of XDH was independent 
of the clinical features of HCC patients. Indeed, XDH expression in HCC activated several immune-related pathways, 
including the T cell receptor, PI3K-AKT, and MAPK signaling pathways, which induced a cytotoxic immune response. 
Importantly, the microenvironment of XDHhigh HCC tumors contained abundant infiltrating CD8 + T cells but not 
exhausted T cells. A risk prediction signature based on multiple XDH-associated immune genes was revealed as an 
independent predictor in the TCGA liver cancer cohort.

Conclusion:  These findings suggest that XDH is a valuable prognostic biomarker in HCC and other cancers and 
indicate that it may function in tumor immunology. Loss of XDH expression may be an immune evasion mechanism 
for HCC.
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Background
Hepatocellular carcinoma (HCC) is the seventh most com-
mon tumor and the third most common cause of cancer-
related death worldwide [1]. Patients with HCC are often 
diagnosed at advanced stages or are not eligible for cura-
tive treatments [2, 3]. Despite optimal treatment, the high 
recurrence rate of HCC remains a significant concern [4]. 
The overall prognosis of HCC is poor, with a 5-year overall 
survival estimated at 10–18% [5].

The major risk factors for developing HCC include 
chronic hepatitis B or C virus infections, nonalcoholic stea-
tohepatitis, and alcohol-related liver diseases [6]. Indeed, 
HCC is strongly influenced by the immune system [7]. 
The background of chronic inflamed livers leads to tumor 
development and is associated with an immune-rich con-
texture in the HCC microenvironment [8–10]. Recently, 
developed immune-based therapies for patients with 
advanced HCC represent a promising treatment option [5, 
9]. However, the complex interface between inflammation, 
fibrosis, and the immune response involved in HCC patho-
genesis is poorly understood [11].

Xanthine dehydrogenase (XDH) functions as a key regu-
lator of purine metabolism [12, 13], inflammatory cascades 
[14], and the innate immune system [15]. In fact, XDH is 
widely expressed in human tissues, with high levels in the 
liver [16–20]. Decreased XDH activity is believed to con-
tribute to the development and progression of HCC [21, 
22]. Indeed, it has been reported that decreases in XDH 
activity levels are associated with poor prognoses for can-
cers, including breast cancer [23], gastric cancer [24], 
ovarian cancer [25], non-small-cell lung cancer [26] and 
colorectal cancer [27]. Despite these intriguing findings, 
how decreased activity or expression of XDH regulates 
tumor immunobiology in the development and progression 
of cancers, including HCC, remains poorly understood.

In this study, we found that the expression of XDH has 
significant prognostic implications in different types of 
tumors, including HCC. Moreover, the XDH-associated 
signaling pathway may regulate the immune response and 
tumor-infiltrating immune cells in HCC. Importantly, the 
prognostic value of the XDH-associated immune signature 
in HCC shed light on XDH might modulate tumor immu-
nity in HCC.

Methods and materials
Data acquisition
The Oncomine database was used to determine the 
expression level of the XDH gene in various types of can-
cers (https://​www.​oncom​ine.​org/​resou​rce/​login.​html) 

[28]. The screening criteria were as follows: P-value of 
0.001, fold change of 1.5, and gene ranking of all. Kaplan–
Meier plotter was used to assess the effect of 54,675 genes 
on survival using 10,461 cancer samples. The correlation 
between XDH expression and survival in breast, ovarian, 
lung and gastric cancers was analyzed by Kaplan–Meier 
plotter (http://​kmplot.​com/​analy​sis/) [29]. Hazard ratios 
(HRs) with 95% confidence intervals and log-rank P-val-
ues were also computed. The Tumor IMmune Estimation 
Resource (TIMER) is a comprehensive resource for the 
systematic analysis of immune infiltrates across diverse 
cancer types (https://​cistr​ome.​shiny​apps.​io/​timer/) [30]. 
TIMER applies a previously published statistical decon-
volution method [31] to infer the abundance of tumor-
infiltrating immune cells from gene expression profiles. 
The TIMER database assesses 10,897 samples from The 
Cancer Genome Atlas (TCGA) to estimate the abun-
dance of immune infiltrates, including B cells, CD4 + T 
cells, CD8 + T cells, neutrophils, macrophages, and den-
dritic cells (DCs) [32]. In addition, correlations between 
the expression levels of XDH and those of gene markers 
of tumor-infiltrating immune cells were explored via cor-
relation modules. Gene Expression Profiling Interactive 
Analysis (GEPIA) (http://​gepia.​cancer-​pku.​cn/​index.​
html) is an interactive website that includes data for 
9736 tumors and 8587 normal samples from the TCGA 
and Genotype-Tissue Expression (GTEx) projects and 
analyzes RNA sequencing expression [33]. GEPIA was 
used to generate survival curves, including overall sur-
vival (OS) and disease-free survival (DFS) curves, based 
on gene expression with the log-rank test and the Man-
tel-Cox test in 25 different types of cancer. Gene expres-
sion correlation analysis was performed to obtain sets of 
TCGA expression data. The Spearman method was used 
to determine the correlation coefficient.

RNA microarray
As in our previous report [21], MHCC-97H cells were 
transfected with plasmids for overexpressing XDH or a 
pEZ-Lv201 control vector (Genecopoeia, Guangzhou, 
China), which served as a negative control. RNA was 
extracted from the tumors using the Qiagen RNeasy Midi 
Kit according to the manufacturers’ instructions. Com-
plementary RNA (cRNA) was prepared according to the 
GeneChip Expression Analysis Technical Manual (Affy-
metrix), hybridized onto Affymetrix Human U133 Plus 
2.0, and scanned by a GeneChip Scanner 3000 (Affyme-
trix). Differential gene expression analysis between treat-
ment groups was calculated using the R limma package 
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[34]. For functional annotation, we used pathways from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and gene ontology (GO) databases as provided by the 
clusterprofiler package [35]. P-values were corrected for 
multiple testing using the Benjamini–Hochberg method. 
The GSEA algorithm [36], which tests whether a gene set 
is significantly perturbed relative to all genes, was applied 
for analysis.

Western blotting
The preparation of cell lysates and the western blotting 
procedure were carried out as previously indicated [21, 
37]. Briefly, whole-cell lysates were separated by 8–10% 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis. Equal amounts of resolved proteins were trans-
ferred to polyvinylidene difluoride (PVDF) membranes. 
After incubation with QuickBlock blocking buffer 
(Beyotime Biotechnology, China, cat. no. P0233), the 
membranes were then probed with specific primary anti-
bodies (Additional file  1: Table  S1) and secondary anti-
bodies (Beyotime Biotechnology, China). Images of the 
bands were acquired with an Amersham Imager 600 (GE 
Healthcare, Russellville, AR, USA).

Immunohistochemical analysis
The immunohistochemical staining procedure was con-
ducted as previously described [21, 37, 38]. All patients 
provided their written informed consent. HCC liver sam-
ples were obtained according to a protocol approved by 
the ethics committee of Fudan University. Immunoreac-
tion images were viewed and captured by Motic DSAs-
sistant software (Motic VM V1 Viewer 2.0). To quantify 
the density of tumor-infiltrating immune cells, the three 
most representative areas of stroma were evaluated at 
200 × magnification, and the mean value was adopted 
[39]. For immune cell markers (CD3, CD4, CD8, CD20, 
CD68 and PD-1) (Additional file 1: Table S2), the counts 
of all positive cells by immunostaining were recorded in 
terms of cells/mm2. Two pathologists who were blinded 
to the patient outcomes independently evaluated the 
immunohistochemistry (IHC) staining of each sample.

Construction of prognostic signature
To develop an XDH-associated prognostic signature 
including multiple immune genes, a comprehensive 
list of immune-related genes was downloaded from the 
Immunology Database and Analysis Portal (ImmPort) 
database (https://​immpo​rt.​niaid.​nih.​gov). The Pearson 
coefficient between XDH and these immune genes was 
calculated, and an absolute value of coefficient > 0.3 with 
P < 0.05 was set as the identification criterion. Then, step-
wise variable selection was performed with the Akaike 
information criterion in the Cox model [40]. After 

the immune genes were chosen, the prognostic index, 
referred to as the risk score, was calculated as follows: 
risk score = β1x1 + β2x2 + … + βixi. In this formula, xi 
is the expression level of each gene, while βi is the risk 
coefficient of each gene derived from the Cox model 
[41]. Multivariate analysis was performed for the risk 
score with adjustment for age, sex, T stage, N stage, M 
stage, and tumor-node-metastasis (TNM) stage. Time-
dependent receiver operating characteristic (ROC) 
curves were adopted to determine the prognostic accu-
racy of the risk score using the timeROC package [42]. 
Then, a nomogram was built by incorporating the clini-
cal characteristics and the risk scores of HCC patients, 
and the prognostic value of the nomogram was evalu-
ated [43]. The nomogram was created via the rms pack-
age for R software. With the application of the bootstrap 
method (1000 replicates), a calibration curve was used to 
visualize the deviation of predicted probabilities from the 
actual values. The concordance index (C-index) was used 
to measure the predictive accuracy of the nomogram.

Statistical analysis
Survival curves were generated by Kaplan–Meier plot-
ter. The results generated in Oncomine are displayed with 
P-values, fold changes, and ranks. The results of Kaplan–
Meier plots and GEPIA are displayed with HR and P or 
Cox P-values from a log-rank test. The gene expression 
correlations were evaluated by Spearman’s correlation 
test and statistical evaluation. P-values < 0.05 were con-
sidered to indicate statistical significance. Significant 
changes are represented as follows: *p < 0.05; **p < 0.01; 
***p < 0.001. Nonsignificant changes are labeled as ns.

Results
Decreased expression of XDH mRNA in certain types 
of human cancer.
To profile XDH mRNA expression in tumor tissues and 
adjacent normal tissues across several types of can-
cer, we analyzed the Oncomine database and RNA-seq 
data of multiple cancers in the TCGA database. In the 
Oncomine database, lower XDH mRNA expression was 
detected in bladder cancer, breast cancer, colorectal can-
cer, leukemia, liver cancer, and lymphoma (Fig. 1A), while 
higher mRNA expression of XDH was observed in head 
and neck cancer (HNSC) and lung cancer in some data-
sets compared to that in normal tissues. The detailed 
results of XDH expression in different cancer types are 
summarized in Additional file  1: Table  S3. Consistently, 
in TCGA, low XDH mRNA expression was significantly 
associated with breast invasive carcinoma (BRCA), colon 
adenocarcinoma (COAD), liver hepatocellular carci-
noma (LIHC), and rectum adenocarcinoma (READ), 
while XDH mRNA expression was higher in HNSC, lung 
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adenocarcinoma (LUAD), and lung squamous cell car-
cinoma (LUSC) tissues than in adjacent normal tissues 
(Fig. 1B). Additionally, in TCGA, XDH mRNA expression 
was lower in kidney chromophobe (KICH) and cholangi-
ocarcinoma (CHOL) tumor tissues and higher in esopha-
geal carcinoma (ESCA) and uterine corpus endometrial 
carcinoma (UCEC) than in adjacent normal tissues. 
However, XDH mRNA expression was higher in bladder 
urothelial carcinoma (BLCA). In summary, a decrease 
in the level of XDH mRNA was detected in human can-
cers originating from the liver, bladder, breast, colon, bile 
duct, kidney, and hematolymphoid system.

XDH mRNA expression is associated with prognosis.
To investigate the impact of XDH mRNA expression 
on outcomes in patients with cancer, the correlations 
between XDH expression and OS prognosis and dis-
ease progression were evaluated using Kaplan–Meier 
plotter data based on Affymetrix microarrays. In HCC, 
patients with a high XDH mRNA expression level had 
significantly prolonged OS (hazard ratio (HR) 0.55, 95% 
confidence interval (CI) 0.38 to 0.78, P = 0.00072) and 
slower disease progression (recurrence-free survival 
(RFS) HR 0.68, 95% CI 0.49 to 0.95, P = 0.024; progres-
sion-free survival (PFS) HR 0.69, 95% CI 0.5 to 0.0.94, 
P = 0.017; disease-specific survival (DSS) HR 0.53, 95% 
CI 0.33 to 0.83, P = 0.0045) than patients with a low XDH 
mRNA expression level (Fig.  2A–D). In addition, high 

XDH mRNA expression was also correlated with better 
OS in bladder carcinoma (HR 0.69, 95% CI 0.52 to 0.93, 
P = 0.015) (Fig. 2E, F) and ovarian cancer (HR 0.87, 95% 
CI 0.76 to 0.99, P = 0.031) (Fig. 2M, N) and better RFS in 
breast cancers (HR 0.77, 95% CI 0.69 to 0.86, P = 1.7e−6, 
Fig. 2G, H). However, high XDH mRNA expression was 
associated with worse OS in patients with gastric cancer 
and lung cancer (Fig. 2I–L). Furthermore, the prognostic 
potential of XDH mRNA expression in 25 types of human 
cancers was assessed via the GEPIA website (Additional 
file  1: Figure S1). Indeed, high XDH mRNA expression 
was associated with a better prognosis in terms of OS in 
LIHC and BLCA. Moreover, high XDH mRNA expres-
sion was correlated with a worse prognosis in terms 
of OS and DFS in mesothelioma (MESO) and in terms 
of DFS in LUSC. Together, these findings suggest that 
the level of expression of XDH mRNA has a significant 
impact on the prognosis of specific human cancers.

XDH mRNA expression correlates with the clinical 
characteristics of HCC patients.
We previously reported that decreased XDH mRNA 
expression is associated with aggressive HCC phenotypes 
[21]. In humans, XDH is mainly expressed in hepatic tis-
sues [44]. Therefore, it is rational to consider liver can-
cers as a representative human cancer with weak XDH 
expression. To better understand the role of XDH expres-
sion in cancers, we investigated the relationship between 

Fig. 1  Xanthine dehydrogenase (XDH) expression levels in different types of human cancers. A A snapshot of XDH mRNA expression levels in 20 
different types of cancers based on the Oncomine database. The datasets displayed in the colored rectangles are those with statistically significant 
XDH mRNA overexpression (right) and underexpression (left) in cancer tissue versus normal tissue. The threshold was set as follows: p-value of 
0.001, fold change of 1.5, and gene ranking of all. B Human XDH expression levels in different tumor types from The Cancer Genome Atlas (TCGA) 
database were determined by the TIMER database (*p < 0.05, **p < 0.01, ***p < 0.001)
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XDH expression and the clinical characteristics of HCC 
patients in the Kaplan–Meier plotter database (Fig.  3). 
Indeed, low XDH mRNA expression correlated with 
poorer OS and PFS in males (OS: HR 0.57, P = 0.0132; 
PFS HR 0.56, P = 0.027), Asians (OS: HR 0.27, P = 0.0041; 
PFS HR 0.56, P = 0.016), alcohol consumers (OS: HR 
0.23, P = 0.0014; PFS HR 0.53, P = 0.045), nonconsum-
ers of alcohol (OS: HR 0.59, P = 0.024; PFS HR 0.65, 
P = 0.042), patients without vascular invasion (OS: HR 
0.27, P = 0.0041; PFS HR 0.56, P = 0.016) and patients 
without hepatitis viral infection (OS: HR 0.63, P = 0.05; 
PFS HR 0.55, P = 0.013). Additionally, low XDH mRNA 
expression correlated with worse OS and PFS in HCC 
patients with grade 3 disease (OS: HR 0.39, P = 0.002; 
PFS: HR 0.55, P = 0.027). However, XDH mRNA expres-
sion was not significantly correlated with OS and PFS in 
stage 1 or stage 2 patients or patients with vascular inva-
sion. Taken together, these results show the prognostic 
significance of XDH expression in HCC patients based 
on their clinical characteristics, particularly in those with 
advanced-stage HCC.

XDH mRNA expression is related to tumor‑infiltrating 
immune cells.
Recently, several clinical trial results showed that 
immunotherapy is a promising therapy in HCC [5, 
45]. In addition, the predictive value of tumor-infil-
trating lymphocytes in lymph node metastases and 
survival has been validated in cancers, including HCC 
[46, 47], gastric cancer [48], and cutaneous melanoma 
[49]. Next, we described the relationship between the 
expression of XDH and infiltrating immune cells in 40 
cancer types, including HCC, using the TIMER data-
base. The results demonstrated that XDH expression 
was significantly correlated with tumor purity in 18 
types of cancer. In addition, XDH expression was asso-
ciated with infiltrating levels of CD4+ T cells in 9 can-
cer types, B cells in 12 cancer types, CD8+ T cells in 
16 cancer types, DCs in 22 cancer types, macrophages 
in 9 cancer types, and neutrophils in 19 cancer types 
(Additional file  1: Table  S4). For HCC, we observed 
that the level of XDH expression was positively cor-
related with the infiltration levels of CD8+ T cells (r 
= 0.157, p=3.46e−03) and macrophages (r  =  0.221, 

p = 3.40e−05) but negatively correlated with the infil-
tration levels of B cells (r = − 0.178, p = 8.68e−04) and 
myeloid DCs (r = −  0.179, p=8.66e−04; Fig.  4A). As 
there is no estimate of exhausted T cells in the TIMER 
algorithm, we selected several marker genes repre-
senting tumor-infiltrating exhausted T cells [50]. The 
expression of XDH negatively correlated with that of 
programmed cell death protein 1 (PD1) (r = −  0.174, 
p = 1.18e−03) and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA4) (r = −  0.212, p = 6.96e−05). Fur-
thermore, a negative trend was also observed in T cell 
immunoglobulin and mucin domain-containing protein 
3 (TIM3) and lymphocyte-activation gene 3 (LAG-3) 
(Fig.  4B). Together, these findings suggest that XDH 
may modulate the infiltration of immune cells into 
tumor tissues.

XDH correlates with the immune response in HCC.
To understand the mechanistic role of XDH, we per-
formed in-depth analysis of the relationship between 
XDH expression and tumor-infiltrating immune cells. To 
profile XDH-related gene expression, XDH was overex-
pressed in an HCC cell line (MHCC-97H), and the cells 
were subjected to RNA array analysis. Differential gene 
expression analysis (overexpression group versus con-
trol group) was performed with the limma package. GO 
enrichment analysis showed that the immune response 
was upregulated by XDH (Fig. 5A). GSEA confirmed that 
XDH overexpression upregulated the purine metabolism 
pathway and activated several immune-related pathways, 
including the T cell receptor, PI3K-AKT, and MAPK 
signaling pathways (Fig.  5B, E). Indeed, western blot 
analysis confirmed that XDH overexpression induced the 
activation of the PI3K-Akt pathway (Fig.  5F; Additional 
file 1: Figure S2; Additional file 3). To clarify the correla-
tion between XDH expression and immune cell markers 
in HCC tumor tissue, IHC analysis of 6 types of immune 
cells was performed (Fig. 5; Additional file 1: Figure S3; 
Additional file 2). As shown in Fig. 5I, the expression of 
XDH was positively correlated with the infiltration of 
CD8 + immune cells (r = 0.6354, p = 0.0025). Further-
more, there was a trend of a negative correlation between 
XDH and PD1 + immune cell infiltration (Fig. 5L). These 

Fig. 2  Kaplan–Meier analysis of survival according to XDH expression status in patients with different types of cancers using Kaplan–Meier plotter 
(A–N). A–D High XDH expression was correlated with worse overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), and 
disease-specific survival (DSS) in hepatocellular carcinoma (HCC) cohorts (n = 364, n = 316, n = 370, n = 362). E–F Survival curves for OS and RFS in 
the bladder cancer cohort (n = 404, n = 187). G, H Survival curves for OS and RFS in the breast cancer cohort (n = 1402, n = 3951). I, J Survival curves 
for OS and RFS in the gastric cancer cohort (n = 875, n = 498). K, L Survival curves for OS and RFS in the lung cancer cohort (n = 1925, n = 344). M, N 
Survival curves for OS and RFS in the ovarian cancer cohort (n = 1656, n = 1435)

(See figure on next page.)



Page 6 of 14Lin et al. Cancer Cell Int          (2021) 21:475 

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
190 80 35 16 9 2 0low     
174 102 49 26 10 4 1high

HR = 0.55 (0.38 − 0.78)
logrank P = 0.00072

Expression
low
high

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
114 22 10 5 3 1 0low     
256 88 37 15 3 2 1high

HR = 0.69 (0.5 − 0.94)
logrank P = 0.017

Expression
low
high

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
189 78 34 16 9 2 0low     
173 102 49 26 10 4 1high

HR = 0.53 (0.33 − 0.83)
logrank P = 0.0046

Expression
low
high

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
128 28 13 6 4 2 0low     
188 77 34 14 3 1 1high

HR = 0.68 (0.49 − 0.95)
logrank P = 0.024

Expression
low
high

Liver Cancer OS Liver Cancer RFS Liver Cancer PFS Liver Cancer DSS

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
202 29 6 1low     
202 37 6 2high

HR = 0.69 (0.52 − 0.93)
logrank P = 0.015

Expression
low
high

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
94 22 4 0low     
93 20 4 1high

HR = 1.1 (0.54 − 2.23)
logrank P = 0.79

Expression
low
high

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
704 535 262 92 17 3 0low     
698 548 215 37 4 0 0high

HR = 1 (0.81 − 1.24)
logrank P = 0.99

Expression
low
high

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
1977 1156 471 121 19 3low     
1974 1363 604 120 8 0high

HR = 0.77 (0.69 − 0.86)
logrank P = 1.7e−06

Expression
low
high

Bladder Carcinoma OS Bladder Carcinoma RFS Breast Cancer OS Breast Cancer RFS

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
441 182 28 0low     
434 116 20 1high

HR = 1.5 (1.27 − 1.78)
logrank P = 2.4e−06

Expression
low
high

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
322 96 11 0low     
318 66 21 1high

HR = 1.38 (1.13 − 1.69)
logrank P = 0.0017

Expression
low
high

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
963 469 123 36 4low     
962 358 80 21 3high

HR = 1.14 (1 − 1.29)
logrank P = 0.043

Expression
low
high

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
172 66 29 9 3 0 0low     
172 66 26 17 8 2 1high

HR = 1.03 (0.8 − 1.33)
logrank P = 0.79

Expression
low
high

Gastric Cancer OS Gastric Cancer PFS Lung Cancer OS Lung Cancer PFS

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
906 203 34 4 1 0low     
750 225 63 14 1 0high

HR = 0.87 (0.76 − 0.99)
logrank P = 0.031

Expression
low
high

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

P
ro

ba
bi

lit
y

Number at risk
718 64 11 1 0 0low     
717 108 24 7 1 0high

HR = 0.91 (0.8 − 1.04)
logrank P = 0.16

Expression
low
high

Ovarian Cancer OS Ovarian Cancer PFS

A B C D

E F G H

I J K L

M N

Fig. 2  (See legend on previous page.)



Page 7 of 14Lin et al. Cancer Cell Int          (2021) 21:475 	

findings suggest that the expression of XDH may trigger 
a cytotoxic immune response in HCC.

The prognostic implication of the XDH‑associated immune 
signature in HCC
To further study the prognostic value of XDH, 218 
immune-related genes were identified to be significantly 
associated with XDH expression by Pearson correlation 
analysis. The protein–protein network generated with 
the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) online server showed a tight cor-
relation (Additional file  1: Figure S3). Then, a stepwise 

multivariable Cox regression analysis was used to identify 
the prognostic value of the XDH-associated immune sig-
nature in HCC. Consequently, an optimal prognostic sig-
nature of 20 genes related to XDH in HCC was revealed. 
The biological functions of these genes are presented in 
Additional file 1: Table S5. The distribution of risk scores, 
survival status, and signature gene expression profiles for 
HCC were visualized (Fig. 6A). Compared with patients 
with high risk scores, patients with low risk scores had 
a significantly longer survival time, as indicated by 
Kaplan–Meier survival curves (log-rank test, P < 0.001; 
Fig.  6B). In addition, the risk score showed a strong 
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discriminative ability for 3-year and 5-year OS (Fig. 6C). 
After adjusting for sex, age, and stage, multivariable Cox 
regression analysis showed that the risk score was an 
independent predictor of prognosis in HCC (HR = 1.35, 
95% CI = 1.26–1.4, p < 0.001; Fig. 6D). Finally, we built a 
prognostic nomogram for HCC patients by determin-
ing weighted coefficients for risk score, stage, age, and 
sex. The calibration curves showed that the nomogram-
predicted probability (solid line) well matched the ideal 
reference line for 3- and 5-year survival (Fig.  6E, F). In 
addition, the prognostic nomogram displayed good dis-
crimination with a C-index of 0.73. These data show that 
the XDH-associated immune signature has probable 
prognostic value in HCC.

Discussion
The recent success of immune-based therapies has revo-
lutionized the HCC treatment armamentarium [51–54]. 
However, there are very few useful biomarkers avail-
able for the identification of sensitivity and resistance to 
checkpoint inhibitors and their combinations in HCC 
[52]. In this study, we found that XDH mRNA levels cor-
related with the prognosis of several human cancers. In 
HCC, the downregulation of XDH was an independent 
survival predictor associated with worse prognosis. The 
XDH-related cell signaling pathway was associated with a 
cytotoxic immune response in HCC. Furthermore, XDH 
mRNA levels correlated with the numbers of tumor-
infiltrated immune cells based on the levels of markers 
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for different immune cell types in HCC. The prognostic 
implication of the XDH-associated immune signature 
in HCC supports that XDH is a potential immune bio-
marker for HCC.

In the present study, we first comprehensively ana-
lyzed the mRNA levels of XDH and their prognostic 
value in cancer tissues using multiple databases. We 
also found that XDH expression was significantly 
downregulated in certain types of cancer, while 
increased XDH expression was detected in some 
other cancers, such as HNSC, LUAD, and LUSC. 
Indeed, the XDH expression data were consistent in 
HCC tissues across different databases. Thus, the 
variability of XDH expression in different types of 
cancers may reflect differences in the underlying 
molecular and genetic mechanisms for cancer devel-
opment and progression. Although the prognostic 
potential of XDH in several types of cancer has been 
reported, our work expands this knowledge of XDH 
in other cancers. Indeed, analysis of the GEPIA data-
base revealed that low XDH expression was correlated 
with a worse prognosis in cancer types such as CHOL, 
lower grade glioma (LGG), LUAD, and thyroid carci-
noma (THCA).

We hypothesized that XDH could play a significant 
role in regulating tumor immunology and therefore 
influence the outcomes of cancer patients. Analysis 
of the TIMER database revealed that XDH expres-
sion correlated with the infiltration status of immune 
cells in several cancer types, including HCC. In HCC, 
a positive correlation was found between XDH expres-
sion and CD8 + T-cell infiltration in the analysis of 
both the TIMER database and IHC staining of immune 
cell markers in HCC tumor tissues. Although there 
was a significant positive correlation between XDH 
expression and macrophage infiltration in the TIMER 
database, only a positive trend was found between 
XDH expression and CD68 + macrophage infiltration 

in this small group of HCC tissues. Indeed, Saidak 
et  al. indicated that XDH expression is linked to an 
immune infiltrate in tumors [55]. XDH expression 
initiates several immune-related pathways, includ-
ing the T cell receptor, PI3K-AKT, and MAPK sign-
aling pathways. Similarly, both Wang et  al. and Peng 
et  al. found that immune-related pathways in HCC 
were mainly involved in the MAPK signaling pathway 
and PI3K-AKT signaling pathway [56, 57]. Moreover, 
the expression of the exhausted T cell markers PD-1 
and CTLA-4, which are critical inhibitory immune 
checkpoint proteins, negatively correlated with XDH 
expression. Thus, decreased expression of XDH may 
facilitate tumor invasion in HCC and possibly in other 
similar cancers with low XDH expression. However, 
this hypothesis warrants further investigation.

The development of well-verified signatures for can-
cer prognosis evaluation represents a critical step for 
the implementation of stratification strategies and 
personalized immunotherapy for cancer [58–61]. In 
this study, we constructed a nomogram for personal-
ized prognosis prediction in HCC with a C-index of 
0.73. The risk scores derived from the XDH-associ-
ated immune gene signatures were significantly asso-
ciated with survival. Notably, most of the immune 
genes integrated into the prognostic signatures par-
ticipate in the regulation of the activity of immune 
cells, highlighting the significance of cytotoxic activity 
in HCC. Indeed, several prognosis-related risk mod-
els have been established according to the TCGA liver 
cancer cohort [62–67]. For instance, among 6 devel-
oped models, the 10-gene model proposed by Zhao 
et al. reached the highest C-index of 0.715 [62]. Simi-
larly, Xu et  al. established an 8-immune-gene prog-
nostic signature with a C-index of 0.725 for HCC [68]. 
Recently, Chen et al. found nine immune-related gene 
pairs (IRGPs) that could be used to determine the 
outcomes of HCC patients with a C-index of 0.755 by 

Fig. 6  Prognostic value of the risk score in the TCGA-LIHC cohort. A Distribution of risk scores, survival statuses, and gene expression profiles for the 
LIHC cohort. B Kaplan–Meier curves for the LIHC patients stratified according to risk score. C Time-dependent ROC curves for 3- and 5-year survival. 
D Multivariate Cox regression analysis of the risk score of LIHC patients in terms of OS. E A nomogram for predicting the possible 3- and 5-year 
survival of individual LIHC patients. F The calibration curve of 3- and 5-year survival for the LIHC cohort. The 45° dashed line represents complete 
agreement between the nomogram-predicted values and real values

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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integrating three public datasets of HCC 67. Moreo-
ver, some other predication models with high C-index 
values have been reported [56]. Nevertheless, none of 
those studies had risk models that reached area under 
the curve (AUC) values as high as 0.81 and 0.802 for 
3-year and 5-year OS, respectively, as indicated by our 
model.

Our study has some limitations to be improved. First, 
this study is mainly based on data retrieved from pub-
lic databases. Some in  vitro or in  vivo experiments are 
necessary to validate the immune evasion mechanism 
by which XDH contributes to the progression of HCC. 
Second, the sample size for some specific tumor types 
including HCC was too small to form a solid conclusion. 
Hence, further studies are necessary to verify the role of 
XDH in the regulation of immune-related pathways in 
HCC.

Conclusion
In summary, our results suggest that XDH is a potential 
independent prognostic biomarker for HCC. The XDH-
associated cell signaling pathway may affect immune 
cell infiltration into the tumor microenvironment. 
In HCC, decreased XDH expression correlates with a 
reduced cytotoxic immune response, and our prognos-
tic XDH-associated immune signature provides a valu-
able tool for precision therapy. These data may indicate 
that XDH plays a role in HCC tumor immunology via 
an immune evasion mechanism.
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