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Abstract 

As the life expectancy of the population increases worldwide, cancer is becoming a substantial public health prob-
lem. Considering its recurrence and mortality rates, most cancer cases are difficult to cure. In recent decades, a large 
number of studies have been carried out on different cancer types; unfortunately, tumor incidence and mortality have 
not been effectively improved. At present, early diagnostic biomarkers and accurate therapeutic strategies for cancer 
are lacking. High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease that is also a chymotrypsin-like 
protease family member originally discovered in bacteria and later discovered in mammalian systems. HtrA1 gene 
expression is decreased in diverse cancers, and it may play a role as a tumor suppressor for promoting the death of 
tumor cells. This work aimed to examine the role of HtrA1 as a cell type-specific diagnostic biomarker or as an internal 
and external regulatory factor of diverse cancers. The findings of this study will facilitate the development of HtrA1 as 
a therapeutic target.
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Background
Cancer is among the main health issues worldwide and is 
also the main cause of mortality in China [1, 2]. In 2018, 
4,285,033 cancer patients were diagnosed, and 2,865,174 
cancer-related deaths were reported by the Global Can-
cer Observatory [3]. Cancer represents a malignant dis-
order characterized by aggressive and out-of-control cell 
growth resulting from increased expression of tumor-
enhancing genes and decreased expression of tumor sup-
pressor genes [4]. Limited by the atypical early symptoms 
and the lack of early sensitive and specific diagnostic 
markers, most cancer cases are diagnosed at advanced 
stages, and the best opportunity for surgery is missed [5, 
6]. Despite the continuous advancement of radiotherapy 
and chemotherapy, the incidence and mortality of malig-
nant tumors have not been significantly reduced. Thus, 

studies of early diagnostic markers and novel targets for 
treatment development are urgently needed.

High-temperature requirement A (HtrA) family mem-
bers are homo-oligomeric serine proteases with a high 
degree of conservation that participate in diverse mam-
malian cell processes, such as proliferation [7], mitochon-
drial homeostasis [8], apoptosis [9], and protein quality 
control [10]. The dual effects of bacterial HtrA proteases 
as high-temperature proteases or low/normal-temper-
ature chaperone proteins have been extensively studied 
[11]. HtrA family members have vital roles in the activa-
tion of cell stress responses, and these proteins have also 
been suggested to enhance the proteolytic activity nec-
essary for degrading periplasmic misfolded proteins [10, 
12, 13]. Additionally, certain mammalian HtrA proteins 
have been identified as possible regulators of chemother-
apy-mediated cytotoxicity and programmed cell death 
[9]. On the other hand, HtrA proteases have been related 
to carcinogenesis, and their expression is decreased in 
ovarian cancer (OC) [14], thyroid cancer (TC) [9], endo-
metrial carcinoma (EC) [15], breast cancer (BC) [16], 
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hepatocellular carcinoma (HCC) [17], and colorectal 
cancer (CRC) [18].

There are 4 members of the human HtrA family, 
namely, HtrA1–4. In human HtrA1, there are 4 well-rec-
ognized domains, including one PDZ domain, one IGFBP 
domain, one protease domain and one Kazal domain. 
HtrA1 is an extensively studied secretory protein that 
is distributed in cells and related to microtubules [19]. 
HtrA1 promotes cartilage degradation by degrading 
extracellular matrix in the pathology of arthritis [20]. 
A significant increase in HtrA1 expression during late 
pregnancy, especially in syncytiotrophoblasts, leads to 
ischemia and hypoxia of the placenta, which has become 
one of the etiologies of hypertension in pregnancy [21]. 
Polymorphisms in the promoter region of HTRA1 are 
strongly associated with age-related macular degen-
eration (AMD) [22]. Therefore, regulation of the expres-
sion and protease activity of HtrA1 is an opportunity 
for preventing life-threatening illnesses, such as skeletal 
disorders, AMD, and neuropathological disease. Exist-
ing studies suggest that HtrA1 protects against diverse 
malignant tumors because of its antitumor activity [23]. 
Promoter methylation-mediated HtrA1 downregulation 
induces diverse phenotypes that may serve as cancer cell 
hallmarks; therefore, HtrA1 may be used as a biomarker 
for malignant transformation or tumor development [23]. 
Here, we review the actions of HtrA1 in the pathogenesis 
of cancers, which may contribute to the development of 
therapeutic agents targeting HtrA1 in tumorigenesis.

Gynecological cancers
Endometrial carcinoma
EC, a frequently occurring malignancy in the genital tract 
of women, usually affects postmenopausal women [24]. 
Notably, endometrioid carcinoma is the most frequently 
observed EC type (approximately 80% of EC cases) and 
is related to endometrial hyperplasia [24]. At present, 2 
distinct clinicopathological subtypes of EC have been 
discovered, namely, the estrogen- and nonestrogen-asso-
ciated subtypes (referring to type I and type II, endome-
trioid and nonendometrioid, respectively) [25]. Although 
EC has been studied for years, its molecular basis 
remains incompletely understood, and there is currently 
no specific test to screen EC. There is no useful assay to 
diagnose EC or evaluate the treatment response of EC. 
Therefore, more genetic and biochemical studies should 
be conducted to reveal the biology of EC and to predict 
its prognostic outcome.

A loss of heterozygosity (LOH) at DMBT1 occurs in 
50% of EC cell lines [26]. DMBT1 is a potential tumor 
suppressor that is located on 10q26.13 and that is char-
acterized by intrasolar homozygous deletions and rare 
mutations [27]. The human HTRA1 gene is located 

on chromosome 10q25.3-q26.2, which is very close to 
DMBT1, suggesting HtrA1 as a presumed tumor sup-
pressor [28]. The expression of the HTRA1 and HTRA3 
genes is detected within mouse embryonic organs in a 
complementary pattern [29]. The highest expression of 
HTRA1 is observed in the placenta, but its expression 
is relatively low compared to that of HTRA3 in other 
organs such as fetal heart, heart, and ovaries [30]. Con-
sistently, HTRA1 and HTRA3 are differentially expressed 
within OC cells. The gene abundance of HTRA1 and 
HTRA3 is decreased to varying degrees with increas-
ing EC grade. The difference is that HTRA3 mRNA lev-
els gradually decline as tumor grade increases, while 
HTRA1 mRNA levels immediately decrease with the 
increase in early G1EC, then remain at a lower level, and 
then dynamic change with the increase in tumor grade. 
Presumably, a low level of HTRA1 mRNA predicts early 
G1EC, but a low level of HTRA3 mRNA is a more reli-
able predictor of late G3EC. In light of the differences in 
the HTRA1 and HTRA3 sequences, identifying subtype-
specific substrates will shed more light on the real func-
tions of HTRA1 and HTRA3 in EC.

Ovarian cancer
OC ranks 7th among female cancers in terms of its mor-
bidity. OC is a fatal gynecological malignancy, and over 
75% of cases are diagnosed at advanced stages because 
of a lack of symptoms; its 5-year survival postdiagnosis 
is 46% [5]. In the USA, OC is a fatal gynecologic tumor, 
which affects approximately 22,000 patients and results 
in 16,000 deaths every year [31]. Over 80% of patients 
originally respond to chemotherapy and surgery, but over 
75% of patients ultimately die due to disease relapse or 
chemoresistance [32]. Thus, it is of great importance to 
formulate new treatment options to overcome chemore-
sistance to improve patient survival.

HtrA1 expression was not detected or is detected at a 
low level in 59% of primary OCs relative to that in the 
ovarian surface epithelium. High loss-of-allele frequency 
is detected in microsatellite markers close to HTRA1 
locus on 10q26 in the context of primary OC [14]. More-
over, HtrA1 expression is decreased in 5/7 OC cell lines, 
including OSE50, OV202, OV207, OVCAR5 and SKOV3. 
Consistent with the concept that HtrA1 is a tumor sup-
pressor, HtrA1 expression downregulation in SKOV3 
cells after antisense transfection enhanced anchored 
independent growth [14]. Although it is currently rec-
ognized that HTRA1 expression is reduced in different 
types of ovarian carcinoma, in high-grade serous OC, 
nuclear expression of cleaved HtrA1 is associated with 
good prognosis [33, 34].

Patients with OC mainly die from metastasis. Epithe-
lial cells constitute the physiological barrier against the 
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development of metastasis and undergo the process of 
cell death known as “anoikis” because they do not contact 
the extracellular matrix (ECM) [35]. Therefore, OC cells 
must acquire nest-loss apoptosis resistance for their sur-
vival within ascites prior to the formation of metastases. 
HtrA1 has been identified as a proapoptotic factor in OC. 
Overexpression of full-length HtrA1 can promote OC 
cell apoptosis [36]. A growing body of studies suggest the 
involvement of nuclear EGFR in some diverse cell pro-
cesses that are important for cancer development, such as 
cell proliferation-related gene transcription, DNA repair 
and biosynthesis, and cell chemoresistance [37, 38]. In 
recent years, the upregulation of nuclear EGFR has been 
suggested to predict dismal prognostic outcomes in OC 
[39]. Nuclear colocalization of EGFR and HtrA1 indicates 
the role of nuclear HtrA1 in regulating nuclear EGFR, 
which may affect OC metastasis. Mechanistically, HtrA1 
acts upstream of EGFR, which attenuates the activation 
of the EGFR/Akt pathway and ultimately promotes nest-
loss apoptosis. p-EGFR expression markedly is increased 
in xenograft tumors with downregulated HtrA1 expres-
sion, further confirming this inhibition in  vivo [37, 38]. 
High PAX2 expression is observed in low malignant 
potential and low-grade OC but not in normal ovarian 
tissues. In normal murine OSE cells (mOSE) transformed 
with K-RAS and c-MYC, PAX2 exhibits oncogenic prop-
erties by enhancing pERK1/2 and COX2 expression with 
loss of p53 expression; however, PAX2 reduces prolifera-
tion and metastasis in high-grade serous OC by increas-
ing HtrA1 expression and decreasing COX2 expression 

[40]. X-linked inhibitor of apoptosis protein (XIAP), a 
member of the inhibitor of apoptosis proteins (IAPs) 
family, performs a vital function in regulating apoptosis. 
XIAP protects cells against death due to various cellular 
attacks through the direct suppression of caspase cas-
cade initiation and execution [41]. XIAP levels are rec-
ognized to be a vital factor for cell survival in OC, and 
XIAP endows cells with resistance to cisplatin (CDDP)-
induced apoptosis [42–45]. HtrA1-mediated apoptosis 
is dependent on serine protease activity, indicating that 
there is an unknown substrate related to chemoresistance 
[12]. A consistent cleavage site for HtrA1 has been identi-
fied through mixture-oriented peptide library screening, 
where XIAP is matched as the possible HtrA1 substrate 
[46]. Purified wild-type (WT) HtrA1, rather than mutant 
(mut) HtrA1, can degrade recombinant XIAP in  vitro. 
Consistent with data in  vitro, XIAP and HtrA1 were 
found to form a complex in  vivo, as revealed by coim-
munoprecipitation (Co-IP) assays. Ectopic HtrA1 expres-
sion reduced XIAP expression in OV202 and OV167 
cells, whereas HtrA1 silencing led to XIAP expression 
upregulation in SKOV3 cells [47]. HtrA1 expression was 
reported to increase with CDDP- and paclitaxel-induced 
cytotoxicity. Both CDDP and paclitaxel enhance the 
overexpression of HtrA1, which in turn leads to limited 
self-proteolysis and activation of HtrA1, inducing cell 
death in a serine protease-dependent manner. Patients 
with higher HtrA1 expression levels showed a higher 
tumor response rate to chemotherapy than patients with 
lower expression levels [12] (Fig. 1).

Fig. 1  The potential mechanisms underlying the effects of HTRA1 on EOC, BC and PC. In EOC, HtrA1 mediates apoptosis by inhibiting the levels 
of nuclear EGFR and XIAP, X-conjugated inhibitor of apoptosis proteins. In BC, PN-1 expression is regulated through the EGF/EGFR/PKCδ/MEK/
ERK/EGR1 signaling pathway to inhibit the effect of the HTRA1 protein on tumors. In PC, HTRA1 directly inhibits the Notch-1 signaling pathway to 
regulate the tumor microenvironment
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Breast cancer
BC is the female cancer with the highest morbidity rate 
worldwide, and at present, there is no radical treatment 
for metastasis [48]. BC is a frequently occurring can-
cer in females and a major reason leading to mortality; 
approximately 508,000 women die annually from BC 
[49]. In developed countries, BC has a generally favora-
ble prognosis, but the situation in developing countries 
is not favorable, and locally advanced BC is reported to 
be associated with a high morbidity rate [50]. According 
to histological and molecular findings, BC is divided into 
3 types, namely, hormone receptor-positive EC (proges-
terone receptor (PR+) and estrogen receptor (ER+)), 
human epidermal receptor 2-positive EC (HER2+), or 
triple-negative breast cancer (TNBC, ER-, PR-, HER2-) 
[51]. Treatment of BC cancers must be selected accord-
ing to the molecular features of BC. Additionally, TNBC 
can be classified into 6 types: basal-like 1 (BL-1), basal-
like 2 (BL-2), mesenchymal (M), immunomodulatory 
(IM), luminal androgen receptor (LAR) and mesenchy-
mal stem cell-like (MSL) [52]. Developing new treat-
ments is of great necessity for improving patient survival.

Recently, downregulated HTRA1 mRNA expression 
was detected in BC cases, showing aggressive clinical 
characteristics [53]. Based on Cox proportional hazard 
models, the high expression of HTRA1 is associated with 
favorable overall survival (OS) and disease-free survival 
(DFS), particularly in node-positive patients [16]. HTRA1 
is significantly expressed within the normal ductal glands 
in the breast, but HTRA1 expression is significantly 
downregulated or disappears within the tumor tissues 
of those with invasive BC or ductal carcinoma in  situ 
(DCIS) [54]. Furthermore, HTRA1 was discovered, with 
an additional 2 genes, MTSS1 and CLPTM1, to be an 
indicator of doxorubicin-sensitive disease among nonre-
sponsive BC cases in 95% of samples [55]. A retrospective 
study of 333 nonmetastatic patients with locally advanced 
BC who underwent neoadjuvant chemotherapy (NACT) 
showed that high HTRA1 expression may indicate a lack 
of response to NACT and a predictor of increased risk of 
cancer recurrence and death [56].

In BC, Wang et al. recently showed that HTRA1 defi-
ciency is actually accompanied by stromal characteristic 
acquisition [54]. It is hypothesized that HtrA1 plays an 
important role in modulating the stability and dynamics 
of microtubule assembly due to intracellular HtrA1 colo-
cation and binding to microtubules via the PDZ domain. 
HtrA1 upregulation weakens cell motility, while loss of 
HtrA1 expression promotes cell motility [57].  Epithelial-
mesenchymal transformation (EMT) is characterized by 
elevated aggressiveness and motility. In samples from 
patients who progressed to metastasis after NACT, the 
potential 6-EMT gene signature, including LUM, SFRP4, 

COL6A3, MMP2, CXCL12, and HTRA1, was consist-
ently expressed at higher levels [58]. The reduction of 
HtrA1 expression promotes EMT and contributes to 
the acquisition of a mesenchymal-like phenotype, such 
as promoted proliferation rate, invasion and migration 
ability and higher expressions of mesenchymal biomark-
ers. Additionally, decreased HtrA1 expression activated 
DNA damage response (DDR) and ataxia telangiectasis 
mutated (ATM), while upregulation of HtrA1 expres-
sion prevents DDR and ATM [54]. In vitro, knockdown-
ing of HTRA1 by siRNA suppressed breast epithelial cells 
migration and invasion [57]. Protease nexin-1 (PN-1) 
increased the migration, invasion and stemness of BC 
cells via the EGF/EGFR/PKCδ/MEK/ERK/EGR1 axis. 
In breast tumorigenesis, EGF, which is increased in the 
tumor microenvironment, upregulates the expression of 
PN-1 through binding to EGFR and followed by the acti-
vation of downstream kinases, such as ERK, PKCδ, MEK, 
and its transcription factor EGR1. PN-1 will block the 
function of HtrA1, that is, disrupt EGF cleavage, result-
ing in further activation of the EGF signal as a feedback 
signal to upregulate PN-1 expression [48] (Fig. 1).

Cervical cancer
Cervical cancer is one of the most common malignant 
tumors in women, and its morbidity and mortality rates 
rank first among those of female reproductive system 
malignant tumors. Human papilloma virus (HPV) is 
a DNA virus, and persistent HPV infection contrib-
utes to 99% of the malignant transformation of cervical 
epithelial cells [59]. Stuqui et  al. showed that HTRA1 
overexpression does not affect apoptosis in either HPV-
negative (C33) or HPV16-positive (CasKi) cervical cells 
but interferes with cell proliferation. More CasKi cells 
with HTRA1 overexpression are arrested in the S phase, 
while more HTRA1-transfected C33 cells are arrested in 
the G0/G1 phase [60].

Gastrointestinal cancer
Esophageal cancer
Esophageal cancer is a common malignant tumor in 
some countries and regions of the world. China is one of 
the countries with a high incidence of esophageal cancer 
and a high mortality rate of esophageal cancer worldwide. 
Compared with that in adjacent tissue, HTRA1 mRNA 
and protein expression in esophageal carcinoma is sig-
nificantly decreased, especially in highly undifferentiated 
esophageal tumor tissue. In addition, HtrA1 expression 
has a significant negative correlation with pathological 
stages and lymph node metastasis but a significant posi-
tive correlation with the survival rate of patients [61, 62]. 
Elevated HtrA1 expression inhibits the phosphorylation 
of IκBα and p65, which is coupled to decreases in Ki-67, 
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Bcl-2, Bcl-xL, cyclin D1, and MMP-9 protein expression 
[62].

Gastric cancer
In many parts of the world, the total numbers of gastric 
cancer patients and related deaths are increasing each 
year. For East Asia, China is a country with high gastric 
cancer occurrence rates, and its death rate and DALY 
remain high. Compared with the general issue, gastric 
cancer (GC) tissue expresses lower HtrA1. It is pre-
dicted that when HtrA1 is detected before chemotherapy, 
platinum-based chemotherapy for gastric cancer may 
be needed. The median overall survival (OS) of patients 
who suffer from high or medium HtrA1 expression is 17 
months, while that of patients who suffer from low HtrA1 
expression is 9.5 months [63]. Mechanistically, HtrA1 
inhibits gastric carcinoma cells, and weakened the effect 
of cell in proliferating, invading, and migrating [64].

Carcinoma-associated fibroblasts (CAFs), a vital part 
of tumor stroma, supports epithelial cells physiologically 
and play a pivotal role in the functionality regulation of 
tumor invasion, metastasis and poor prognosis, promot-
ing and delaying tumor development in an environment-
dependent manner [65, 66]. Tumor cells and fibroblasts 
can secret a variety of cytokines and growth factors, 
including il-6, bFGF/FGF2, TGF-β1 and HGF, which trig-
gers the transdifferentiation of nontransgenic normal 
fibroblasts (NFSs) to CAFs [67, 68]. After transdifferen-
tiation, CAFs are associated with high-level protein bio-
markers, particularly α-smooth muscle actin (α-SMA) 
[69, 70]. As HtrA1 expression in gastric carcinoma cell 
line is up-graduated, α-SMA expression in normal fibro-
blasts will be increased. According to the studies, overex-
pression of HtrA1 can significantly increase bFGF/FGF2 
secretion by gastric cancer cells by activating NF-кB sig-
nal [71]. Gene sequence analysis showed that the HTRA1 
promoter supermethylated region includes a variety of 
transcription factor binding sites, such as c-Myc, AP-1, 
and E2F. Therefore, epigenetic silencing of the HTRA1 
gene enables the reactivation of HTRA1 gene expression 
in gastric carcinoma cells [72].

Pancreatic cancer
Pancreatic cancer (PC) results in 331,000 deaths annually, 
and it ranks 7th among the causes of cancer-associated 
mortality in the general population [73]. Many efforts 
have been made in recent years, but the 5-year survival 
rate is as low as 5% [74]. Typically, tobacco smoking is 
identified as a cause of PC, which may account for cer-
tain gender differences as well as international varia-
tions [75]. PC has a high mortality rate since there are no 
effective early diagnostic markers or efficient treatments 
for advanced cancers [76]. Therefore, it is important to 

further identify new therapeutic targets to successfully 
treat PC.

HTRA1 mRNA is expressed at low levels in PC tissues 
compared with matched noncarcinoma tissues. Similarly, 
HtrA1 expression is decreased in PC cells relative to non-
carcinoma pancreatic epithelial cells [77]. Notch signaling 
performs an important function in cell proliferation, dif-
ferentiation, migration and apoptosis. Changes in Notch 
signaling are suggested to be related to carcinogenesis. 
An increasing number of studies have shown aberrant 
Notch-1 expression within certain malignant tumors, 
particularly PC [78–80]. Recent research found that the 
antiproliferative effect of HTRA1 in PC is dependent on 
Notch-1. The upregulation of HtrA1 expression inhibits 
Notch-1 expression in PC cells, which can be reversed by 
HtrA1-specific siRNA knockdown. Notch-1 overexpres-
sion further reverses the inhibitory effect of HtrA1 on 
tumor cell growth (Fig. 1) [77].

Colorectal cancer
In China, the morbidity of colorectal cancer (CRC) ranks 
only second to that of lung cancer and stomach cancer, 
all of which are deemed as the most common cancers. 
A low HtrA1 expression in cancer tissues is related to 
the poorer survival of CRC patients [81]. In an analy-
sis of tissue specimens from Caucasian Italian subjects, 
HtrA1 expression was negatively correlated with ulcera-
tive colitis duration and functioned as a biomarker to 
identify patients with ulcerative colitis of > 10 years dura-
tion (UCL) who were at high risk of developing CRC 
[18]. Additionally, the methylation status of the HTRA1 
catalyst is a biomarker concerning tumor cells or cells to 
be transformed. Epigenetic silencing of HTRA1 by the 
epigenetic adaptor protein MBD2 accelerates late the 
growth of cells, amplifies the centrosome, and makes 
colon carcinoma cells polyploid [23].

Classic Wnt signaling pathways (also called Wnt/β-
catenin signaling pathway) consist of specific Wnt ligands 
and their specific receptor-mediated interactions with 
β-catenin. Changes in Wnt structure from typical to 
abnormal proliferates the cells irregularly and aggra-
vates various human cancers, especially human colorec-
tal cancer [82, 83]. Studies have shown that HtrA1 is a 
new inhibiting factor of typical Wnt pathway. Inhibition 
of Wnt/β-catenin signal transduction by HtrA1 has an 
impact on the expression of multiple Wnt target genes 
through paracrine and autocrine pathways. In addition, 
HtrA1 generates a complex together with β-catenin, 
resulting in decreased cell proliferation [84].

HtrA1 expression is increased inSW480, a CDDP-
cultured human colonic cancer cell line. The expres-
sion level of HtrA1 was decreased by continuous 
exposure of SW480 cells to CDDP. Instead, HtrA1’s 
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ectopic expression in SW480/CDDP cells lowered XIAP 
expression and deactivated the PI3K/Akt signal pathway 
to eliminate the resistance of CDDP. XIAP interference 
inhibited CDDP resistance in SW480/CDDP cells [85], 
directly bound to caspase-3 and caspase-7 via the sec-
ond baculoviral IAP repeat (BIR) domain (BIR2) region, 
and inhibited caspase-9 via the third BIR domain (BIR3) 
region [86].

Liver cancer
Liver cancer is the fifth most common cancer in the 
world. In China, the death rate of liver cancer now ranks 
second among the death rates of malignant tumors. 
HtrA1 expression in tumor tissues is downregulated than 
that in adjacent liver tissues. Patients expressing higher 
HtrA1 levels show a higher survival rate compared with 
those with lower HtrA1 levels [87]. Moreover, inverse 
relationships have been reported between HtrA1 expres-
sion and the differentiation of HCC and lymph node 
metastasis due to downregulation of HtrA1 expression 
and significantly increased the migration of cells. The 
expression of Vimentin and E-cadherin were decreased 
[17]. High HtrA1 expression targets XIAP to reverse the 
multidrug resistance of hepatoma cells; therefore, HtrA1 
may be an effective target in HCC therapy [88].

Lung cancer
Lung cancer is a disease that seriously endangers human 
health. In terms of incidence and mortality, both the 
lung cancer in China ranks first worldwide. According 
to immunohistochemistry of human lung cancer speci-
mens, the expression of HtrA1 is significantly downregu-
lated in metastasis of primary tumors and lymph node, 
which means that it is possibly associated with the pro-
gression of lung cancer [89]. HTRA1 is a CDDP resist-
ance-related gene. In human nonsmall cell lung cancer 
(NSCLC), the targeting of HDAC/RXR/HtrA1 signaling 
axis may increase HtrA1 expression and overcome CDDP 
resistance [90]. PI3K/Akt signaling pathway is related 
to chemotherapy resistance in tumors. There have been 
a lot of studies on the structural activation of the PI3K/
Akt signaling pathway regarding different cancers [91]. 
Inhibition of HTRA1 expression induces tumor stem cell 
characteristics in samples and CDDP resistance through 
the PI3K/Akt signal pathway [92].

Lymphoma
Splenic marginal zone lymphoma (SMZL) is a rare 
type of lymphoma [93]. Inhibition of DNA promoter 
methylation is associated with the pathogenesis of 
B-cell lymphoma and may affect the prognosis of 
patients [94–96]. Research has integrated the whole 
genome DNA promoter methylation spectrum and 

gene expression spectrum, as well as clinical and bio-
logical variables. The high promoter methylation (high-
M) group had a lower total survival rate than the low 
promoter methylation (low-M) group. In the high-M 
group, many tumor suppressive genes were methylated 
and suppressed, but only three genes (KLF4, CACNB2 
and HTRA1) seemed to be able to identify high-risk 
cases, while abnormal DNA methylation seemed to 
play a role in influencing important biological pathways 
[97].

Conclusions
HtrA1, which is a tumor suppressor, mediates the pro-
liferation, migration, and invasion of cancer cells via 
a series of signals in the tumor progression and the 
microenvironment. To fully illustrate the mechanisms 
through which HtrA1 involved in cancers, it is neces-
sary to further investigate the underling mechanism 
of HtrA1 as a cell type-dependent internal and exter-
nal regulator. In particular, illustrating the mechanism 
of HtrA1 regulation, expression and protease activity 
will provide us a novel strategy in targeted therapeu-
tics. The identification of HtrA1 substrates is also criti-
cal to gain insight into how to target this novel pathway 
efficiently, and it will be vital in clinic to determine 
the underlying mechanism that HtrA1 expression is 
regulated in chemotherapy. Generally, this review will 
arouse the interests of researchers in this novel path-
way and jointly develop a novel and efficient approach 
for cancer cells targeted therapeutics.
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