
Zheng et al. Cancer Cell Int          (2021) 21:552  
https://doi.org/10.1186/s12935-021-02252-9

PRIMARY RESEARCH

Integrated single‑cell and bulk RNA 
sequencing analysis identifies a cancer 
associated fibroblast‑related signature 
for predicting prognosis and therapeutic 
responses in colorectal cancer
Hang Zheng1†  , Heshu Liu2†, Yang Ge2* and Xin Wang1* 

Abstract 

Background:  Cancer-associated fibroblasts (CAFs) contribute notably to colorectal cancer (CRC) tumorigenesis, 
stiffness, angiogenesis, immunosuppression and metastasis, and could serve as a promising therapeutic target. Our 
purpose was to construct CAF-related prognostic signature for CRC.

Methods:  We performed bioinformatics analysis on single-cell transcriptome data derived from Gene Expression 
Omnibus (GEO) and identified 208 differentially expressed cell markers from fibroblasts cluster. Bulk gene expression 
data of CRC was obtained from The Cancer Genome Atlas (TCGA) and GEO databases. Univariate Cox regression and 
least absolute shrinkage operator (LASSO) analyses were performed on TCGA training cohort (n = 308) for model 
construction, and was validated in TCGA validation (n = 133), TCGA total (n = 441), GSE39582 (n = 470) and GSE17536 
(n = 177) datasets. Microenvironment Cell Populations-counter (MCP-counter) and Estimate the Proportion of 
Immune and Cancer cells (EPIC) methods were applied to evaluated CAFs infiltrations from bulk gene expression data. 
Real-time polymerase chain reaction (qPCR) was performed in tissue microarrays containing 80 colon cancer samples 
to further validate the prognostic value of the CAF model. pRRophetic and Tumor Immune Dysfunction and Exclusion 
(TIDE) algorithms were utilized to predict chemosensitivity and immunotherapy response. Human Protein Atlas (HPA) 
databases and immunohistochemistry were used to evaluate the protein expressions.

Results:  A nine-gene prognostic CAF-related signature was established in training cohort. Kaplan–Meier survival 
analyses revealed patients with higher CAF risk scores were correlated with adverse prognosis in each cohort. MCP-
counter and EPIC results consistently revealed CAFs infiltrations were significantly higher in high CAF risk group. 
Patients with higher CAF risk scores were more prone to not respond to immunotherapy, but were more sensitive to 
several conventional chemotherapeutics, suggesting a potential strategy of combining chemotherapy with anti-CAF 
therapy to improve the efficacy of current T-cell based immunotherapies. Univariate and multivariate Cox regression 
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Background
Colorectal cancer (CRC) is the most commonly diag-
nosed gastrointestinal cancer and is characterized by 
exhibiting cancer progression due to therapy resist-
ance [1–3]. CRC predominantly originates from dys-
regulated epithelial cells as well as complex genetic 
abnormalities and molecular mechanisms [4, 5], and 
evolves by an accomplice called tumor microenviron-
ment (TME), which comprises admixtures of stro-
mal, immune and tumor cells as well as cytokines, 
chemokines and other extracellular matrix (ECM) 
acellular components [6]. The reciprocal and dynamic 
interactions between tumor cells and their surrounding 
TME play crucial roles in CRC tumorigenesis, progres-
sion and metastasis, as well as anticancer efficacy and 
drug resistance [7, 8], and have attracted wide attention 
in recent years.

As the major TME stromal cellular constituents, can-
cer-associated fibroblasts (CAFs) were found not only 
to promote tumorigenesis and enhance the aggressive-
ness of cancer cells, but also to induce chronic inflamma-
tion by producing pro-inflammatory cytokines that are 
responsible for immune tolerance and tumor metastasis 
[9–12]. Physiologically, quiescent fibroblasts are func-
tionally activated into myofibroblasts in tissue remode-
ling conditions like wound healing and fibrosis processes, 
and are responsible for the integrity and equilibrium of 
ECM, which provides supportive framework for tissues. 
Once the remodeling process is completed, myofibro-
blasts are subsequently dwindling away through apop-
tosis [13]. Pathologically, CAFs are believed to be highly 
heterogeneous: genetic alterations in normal fibroblasts, 
pathological activation mediated by tumor cells [14], as 
well as additional transdifferentiation of epithelial and 
mesenchymal cells [15–17] have all been viewed as the 
origins of CAFs. In an interactional TME network inside 
the tumor, the “wound” does not heal [18] and the acti-
vated CAFs are resistant from apoptosis [19]. Excessive 
ECM proteins depositions and oncogenic molecules 
secreted constantly by CAFs are responsible for the inva-
sion, stiffness, angiogenesis, immunosuppression, drug 
resistance and metastasis of CRCs [20–23]. Therefore, 
targeting CAFs along with current tumor cell-targeting 
agents could be promising therapeutic strategies to syn-
ergistically counteract CRC progression.

Understanding the heterogeneity and identifying the 
biomarkers of CAFs could be of great significance for 
survival prediction and CAF-based therapeutic guid-
ance in CRC. Fibroblast activation protein (FAP), α-SMA 
(ACTA2), platelet derived growth factor receptor-β 
(PDGFRB), caveolin 1 (CAV1) and podoplanin (PDPN) 
are the generally recognized fibroblasts markers in CRC 
[20, 24–26]. Among them, FAP is the most appealing 
therapeutic target owing to its selective expressions in 
tumor as well as its unique collagenase and gelatinase 
activities [27, 28]. Preclinical studies have verified the 
promising effects of eliminating FAP-positive CAFs to 
increase the recruitments of anti-tumor CD8 + T cells 
into tumor stroma, hence rekindling the anti-tumor 
immunity and suppressing tumor progression [29, 30]. 
However, no further therapeutic efficacy was observed in 
metastatic CRC patients treated with anti-FAP inhibitor 
(sibrotuzumab, talabostat) in the subsequent clinical tri-
als [31, 32]. Hence, more effort is needed for the inves-
tigations of innovative therapeutic targets to break the 
logjam of CAF-mediated tumor progression and immune 
suppression.

Recently, substantial interest has been aroused around 
advances in single-cell RNA sequencing (scRNA-seq) 
technology, which is capable of profiling genes as well as 
discovering distinct oncogenic cellular populations and 
associated markers at single-cell resolution [33]. Une-
quivocally characterizing tumor microenvironmental 
heterogeneity would facilitate uncovering drug resistance 
mechanisms and identifying more effective targets for 
individualized managements [34]. In this work, scRNA-
seq profiles from Gene Expression Omnibus (GEO) 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) colorectal cancer 
cells datasets were analyzed to describe the CAF subset 
and its marker genes. In addition, through integrated 
bioinformatics transcriptome analyses at both single-
cell and bulk levels, we aimed to discover promising 
CAF-targeting therapeutic hallmarks and design a CAF-
associated gene signature to predict drug sensitivity and 
prognosis for CRC patients.

Methods
Data source and preprocessing
The scRNA-seq files (raw unique molecular identi-
fier (UMI) counts based on 10X Genomics technology) 

analyses verified the CAF model was as an independent prognostic indicator in predicting overall survival, and a CAF-
based nomogram was then built for clinical utility in predicting prognosis of CRC.

Conclusion:  To conclude, the CAF-related signature could serve as a robust prognostic indicator in CRC, which pro-
vides novel genomics evidence for anti-CAF immunotherapeutic strategies.
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from five CRC tissues were accessed from GSE132257 
[35] via GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). We randomly picked four tissues (GSM3855011, 
GSM3855013, GSM3855017, GSM3855018) as the dis-
covery cohort, and sample GSM3855015 was chosen 
for hallmark validation. The bulk transcriptome RNA-
seq data and corresponding clinical data were obtained 
from The Cancer Genome Atlas rectal adenocarcinoma 
(TCGA‐READ) and colon adenocarcinoma (TCGA‐
COAD) through the UCSC Xena browser (GDC hub) 
(https://​gdc.​xenah​ubs.​net) [36]. The batch effects were 
modified through “ComBat” function of sva R package 
[37]. In total, 441 CRC samples with survival information 
were enrolled and then randomly assigned into TCGA 
training and TCGA validation cohort with a ratio of 7:3. 
Additionally, transcriptomic data of 470 CRC samples 
in GSE39582 and 177 CRC samples in GSE17536 were 
obtained as the external validation cohorts, expression 
values were respectively normalized via Robust Multi-
array Average (RMA) algorithm, and genes mapped to 
multiple probes were summarized by their mean values.

Single‑cell RNA‑seq analysis
We utilized Seurat R package (version 3.0.2) and applied 
standard downstream processing for scRNA-seq data 
(https://​github.​com/​satij​alab/​seurat) [38]. Genes that 
detected in less than 3 cells as well as cells with less than 
200 detected gene numbers were ruled out, and the 
mitochondria proportion was limited to less than 20%. 
Then, LogNormalize method was applied for data nor-
malization. T-distributed stochastic neighbor embedding 
(t-SNE), a nonlinear dimensionality reduction method, 
was utilized after principal component analysis (PCA) 
for unsupervisedly clustering and unbiasedly visualizing 
cell populations on a two-dimensional map [39]. Subse-
quently, “FindAllMarkers” function was utilized to iden-
tify marker genes of each cluster with the filter value of 
absolute log2 fold change (FC) ≥ 1 and the minimum cell 
population fraction in either of the two populations was 
0.25. In addition, the expression pattern of each marker 
gene among clusters were visualized by applying the 
“DotPlot” function in Seurat. Afterwards, SingleR pack-
age (version 1.0.0) was employed for marker-based cell-
type annotation [40].

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Analyses
GO and KEGG pathway functional enrichment analyses 
were conducted through clusterProfiler R package (ver-
sion 3.14.3) to assign various biological processes (BPs), 
molecular functions (MFs), cellular components (CCs) 
as well as pathways of identified marker genes in the 

interested cluster [41], P < 0.05 was regarded as statisti-
cally enriched.

Construction and validation of an individualized 
CAF‑related prognostic signature
We designed a prognostic signature across CRC patients 
by focusing on CAF marker genes, which were identified 
from the CAF-annotated scRNA-seq cluster. The main 
endpoint of this research was overall survival (OS), and 
prognostic CAF-related genes were investigated by uni-
variate Cox regression model in the TCGA training data-
set. Genes with P < 0.1 in univariate Cox analysis were 
regarded as candidate prognostic genes. To minimize 
overfitting risk, we then applied the least absolute shrink-
age and selection operator (LASSO) Cox regression 
model via glmnet R package [42], and the CAF signature 
was calculated as: CAF risk score = Ʃ(βi * Expi), where βi 
represented the LASSO coefficient of ith gene, and Expi 
was the ith candidate gene’s expression value. Subse-
quently, patients were classified into high- and low-CAF 
risk groups by their median CAF scores, and their rela-
tionship with OS was evaluated via Kaplan–Meier analy-
sis. We generated heatmaps to visualize the association 
between CAF risk scores and candidate genes. Similarly, 
we validated our CAF signature in the TCGA validation 
and TCGA COAD/READ total cohorts, GSE39582 and 
GSE17536 external validation cohorts.

Tumor microenvironment infiltration estimation
The relative infiltrations of 24 immune cell types were 
quantified via single sample gene set enrichment analy-
sis (ssGSEA) with GSVA R package (version 1.34.0) [43]. 
The gene set for each immune cell subset was accessed 
from Bindea et al. [44]. Fibroblasts infiltration levels were 
quantified through Microenvironment Cell Populations-
counter (MCP-counter) [45] and Estimate the Propor-
tion of Immune and Cancer cells (EPIC) [46] algorithms 
via MCPcounter (version 1.2.0) [45] and immunedeconv 
(version 2.0.3) [47] R packages. Additionally, we applied 
estimate R package (version 1.0.13) to calculate the stro-
mal and immune scores, which represents the tumor-
associated stromal and immune infiltration levels of each 
sample [48].

Chemotheraeutic sensitivity and immunotherapy response 
predictions
To predict chemosensitivity between high- and low-CAF 
risk groups, we used pRRophetic R package (version 0.5) 
to extrapolate half-maximal inhibitory concentration 
(IC50) values by building ridge regression model with 
ten-fold cross-validation [49, 50]. Several common anti-
cancer drugs (camptothecin, docetaxel, gefitinib, gem-
citabine, pazopanib, sunitinib) and their genetic profiles 
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were obtained from the largest publicly accessible phar-
macogenomics database: Genomics of Drug Sensitivity 
in Cancer (GDSC) (https://​www.​cance​rrxge​ne.​org/) [51]. 
In addition, Tumor Immune Dysfunction and Exclusion 
(TIDE) (http://​tide.​dfci.​harva​rd.​edu/) algorithm was 
implemented to predict immune checkpoint blockade 
therapy response between two groups [52].

Gene set enrichment analysis (GSEA) in TCGA COAD/READ 
cohort.
To explore the different KEGG pathways and hallmark 
gene sets between high- and low-CAF risk groups, GSEA 
was performed with The Molecular Signatures Database 
(MSigDB) (c2.cp.kegg.v7.3.symbols, h.all.v7.3.symbols) 
via fgsea R package (version 1.12.0) [53, 54]. Pathways 
with an adjusted P < 0.05 were deemed to be significantly 
enriched.

Nomogram construction and validation
Univariate and successive multivariate Cox regression 
analyses were performed to ascertain whether CAF 
model was independent of several clinical characteristics 
via survival R package. Subsequently, the nomogram was 
constructed based on the multivariate Cox regression 
coefficients of CAF signature and clinical variables in the 
TCGA training cohort. The concordance index (C-index) 
was calculated to validate the nomogram’s predictive 
performance, and calibration curves were also plotted 
to examine the consistence between the predicted 1-, 3- 
and 5-year OS probabilities and the actual observations 
(bootstrap-based 1000 iterations resampling validations).

Human Protein Atlas (HPA) database 
and immunohistochemistry (IHC) verification
The protein expressions of these CAF signature genes 
in CRC tissues were analyzed in HPA online database 
(https://​www.​prote​inatl​as.​org/), which aims to create a 
human proteome-wide map through integrated omics 
technologies [55].

For markers that are not available in HPA database, 
IHC will be further applied to examine the protein 
expression patterns in CRC samples who underwent 
radical rectal resection in Peking University First Hos-
pital. The research was approved by ethics committee of 
Peking University First Hospital, and written informed 
consent was obtained from all subjects. Formalin-fixed 
paraffin-embedded surgical CRC specimens were col-
lected and incubated with primary antibodies against 
CEBPD (sc-365546, Santa Cruz Biotechnology Inc., 1:200 
dilution) and CXCL1 (ab89318, abcam, 1:200 dilution)) 
overnight at 4 °C, followed by incubation with secondary 
antibody (PV-9000, Beijing ZSGB-BIO) at room temper-
ature for 30  min. Then, diaminobenzidine tetrachloride 

(DAB) staining (10 min at room temperature; ZLI-9019; 
Beijing ZSGB-BIO) was applied for CEBPD and CXCL1 
expressions visualizations.

Real‑time polymerase chain reaction (qPCR)
Tissue microarrays containing 80 colon cancer sam-
ples (HColA095Su01) with the corresponding clinico-
pathological information were purchased from Shanghai 
Outdo Biotech (Shanghai, China) for prognostic veri-
fication. The mRNA expressions of the nine signature 
genes were quantified by qPCR using SYBR Green Pre-
mix (YEASEN, China) on the 7500 Sequence Detection 
System (Applied Biosystems, China). β-actin served as 
internal control for qPCR normalization, and the rela-
tive gene levels were calculated by 2−ΔΔCT method. The 
primer sequences of these genes were listed in Additional 
file 1: Table S1.

Statistical analysis
All statistical analyses and visualization were performed 
using R software v3.6.3 (https://​www.r-​proje​ct.​org/). Wil-
coxon test was applied for the comparisons between two 
groups. Survival analysis was performed using survival 
and survminer R packages. P-value less than 0.05 was 
regarded as statistical significance.

Results
Single‑cell RNA‑seq profiling, clustering and markers 
identifications
The overall study flow scheme was depicted in Fig.  1. 
After preprocessing scRNA-seq data based on the strin-
gent quality control metrics as noted, 8696 high-quality 
cell samples isolated from the four discovery CRC tis-
sues were screened and illustrated in Fig. 2a, and a strong 
positive correlation between numbers of detected genes 
(nFeature) and sequencing depth (total number of UMIs, 
nCount) was observed with the Pearson’s correlation of 
0.94 (Fig. 2b). We subsequently adopted t-SNE technique 
on the top 20 principal components to visualize the high 
dimensional scRNA-seq data, and successfully classified 
cells into fourteen subclasses, which were later anno-
tated to acknowledged cell types using SingleR R package 
(Fig. 2c). The following major cell types were character-
ized: CD8 + T-cells, epithelial cells, macrophages, B-cells, 
fibroblasts, HSC and endothelial cells. In addition, the 
fibroblasts cluster was manually verified through well-
acknowledged CAF markers (ACTA2, FAP, PDGFRB, 
CAV1, PDPN, PDGFRA, ZEB1, FOXF1, SPARC, MMP2, 
FN1) [25, 56], which further conformably confirmed the 
veracity of automated CAF cluster annotation (Fig. 6a, c). 
Furthermore, significant expressed marker genes across 
each group were identified with a threshold of logFC > 1 
and adjPval < 0.05, and the top 10 significant differential 
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markers of each cluster was displayed via heatmap 
(Fig. 2d).

Meanwhile, similar analyses were performed on the 
validation sample (GSM3855015), a total of 1771 high-
quality cell samples were screened (Additional file  2: 
Fig. S1a), the Pearson’s correlation between nFeature and 
nCount was 0.95 (Additional file 2: Fig. S1b). Eleven clus-
ters were classified via t-SNE technique and annotated 
as six types of cells (CD8 + T-cells, epithelial cells, mac-
rophages, B-cells, fibroblasts and HSC; Additional file 2: 
Fig.  S1c), and the top 10 significant differential markers 
of each cluster was visualized in Supplementary Fig. 1d. 
Similarly, the fibroblasts cluster was manually authen-
ticated through the above summarized CAF markers 
(Additional file 3: Fig. S2a, c).

GO and KEGG functional downstream analyses 
of fibroblast marker genes
We conducted GO and KEGG enrichment analyses to 
investigate the correlative functions and pathways of 
the above 208 genes in cluster 10 (fibroblast cluster). 

As shown in Fig.  3a, extracellular matrix organization, 
extracellular structure organization, collagen-containing 
extracellular matrix and extracellular matrix structural 
constituent were the main significantly enriched GO 
terms. Figure  3b exhibited the top 30 enriched KEGG 
pathways, which involved mainly in the desmoplastic 
and immune processes, such as focal adhesion, cell adhe-
sion molecules, proteoglycans in cancer, Th1 and Th2 
cell differentiation, antigen processing and presenta-
tion and leukocyte transendothelial migration pathways. 
These enrichment terms strengthened that the clus-
ter was appropriately annotated and reliable for marker 
screening.

Nine‑gene prognostic CAF signature construction 
and verification
In the TCGA training cohort, by inputting the 208 dif-
ferential CAF marker genes identified above into uni-
variate Cox regression analysis, a total of 41 genes were 
exhibited with P < 0.1. LASSO Cox regression algo-
rithm was then performed on these genes, the lambda.

Fig. 1  The schematic diagram of this study
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min was determined as the optimal lambda value 
by tenfold cross-validations, and 9 prognostic genes 
with non-zero coefficients were successfully identi-
fied (Fig.  4a, b). A nine‐gene CAF signature was subse-
quently constructed based on each gene’s expression 
level and its coefficient: risk score = (0.204341111 
* expression of CEBPD) + (0.054785445 * 
expression of CSRP2) + (-0.123917745 * 
expression of CXCL1) + (0.005667789 * expres-
sion of HSPB1) + (0.044691324 * expres-
sion of PPP1R14A) + (0.014977193 * 

expression of S100A13) + (-0.137566435 * expres-
sion of SPINK1) + (0.230258936 * expression of 
TIMP1) + (0.058696341 * expression of TIMP2). Among 
the 9 prognostic genes, seven genes (HSPB1, S100A13, 
PPP1R14A, CSRP2, TPM2, CEBPD and TIMP1) were 
regarded as risk-related genes (HR > 1), while SPINK1 
and CXCL1 were considered as protective genes (HR < 1) 
(Fig.  4c). Based on this risk formula, CAF risk score of 
each patient was calculated, and heatmaps illustrat-
ing the risk score and expression levels of the 9 genes 
in each cohort were displayed in Fig.  4d–i. Patients in 

Fig. 2  Analysis of single-cell RNA sequencing from 8696 cells of 4 CRC tissues. a Post quality control filtering of each sequenced cell, which was 
plotted in violin plots to display their number of RNA features (nFeature_RNA) and absolute UMI counts (nCount_RNA). b Correlation analysis 
between nFeature and nCount. c Cells were clustered into 14 types via tSNE dimensionality reduction algorithm, each color represented the 
annotated phenotype of each cluster. d Heatmap depicting expressions of top 10 marker genes among 14 detected CRC cell clusters
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TCGA training, TCGA total, GSE39582 and GSE17536 
cohorts were divided into low- and high-CAF risk groups 
in the light of their median risk scores. The pairwise 
comparison of OS in different risk groups was investi-
gated by log-rank test. Kaplan–Meier curves revealed 
that high CAF risk group had significantly unfavora-
ble survival outcomes compared with the low CAF risk 
group (TCGA training cohort, hazard ratio (HR) = 4.178, 
95% CI: 2.222–7.854, log-rank P < 0.001, Fig.  5a; TCGA 
total cohort, HR = 3.272, 95% CI: 2.008–5.332, log-rank 
P < 0.001, Fig.  5c; GSE39582 cohort, HR = 1.496, 95% 
CI: 1.078–2.075, log-rank P = 0.016, Fig.  5d; GSE17536 
cohort, HR = 1.924, 95% CI: 1.197–3.092, log-rank 
P = 0.007, Fig.  5e). In TCGA validation and HCo-
lA095Su01 datasets, the optimal cutoff was determined 
by “sur_cutpoint” function of survminer R package, 
and higher CAF risk group patients also revealed worse 
OS than lower CAF risk group in TCGA validation 
(HR = 2.567, 95% CI: 1.237–5.326, log-rank P = 0.011, 
Fig. 5b) and HColA095Su01 (HR = 2.187, 95% CI: 1.08–
4.433, log-rank P = 0.03, Fig.  5f ) cohorts. In summary, 
this CAF model could serve as a reliable prognostic pre-
dictor for CRC patients.

Subsequently, expression characteristics of the nine 
markers among clusters in single-cell RNA sequencing 
profile were visualized via violin and bubble plots, CSRP2, 
PPP1R14A and TPM2 were up-expressed mainly in fibro-
blasts, while SPINK1 was down-regulated and expressed 
exclusively in epithelial cells. The other six markers were 
upregulated in fibroblasts cluster and revealed multiple 
expression forms among clusters (Fig.  6b, c). Moreover, 

similar results were reached through the external expres-
sion validation in GSM3855015, which confirmed the 
robustness of these genes as markers of CAFs (Additional 
file 3: Fig. S2b, c).

TME infiltration patterns with CAF risk group
By running ssGSEA, MCP-counter, EPIC and ESTI-
MATE algorithms, we investigated the correlation of 
CAF risk score and TME constituents at bulk  RNA-
sequencing level. As shown in Fig.  7, pooled results of 
heatmaps and Wilcoxon analyses on TCGA COAD/
READ, GSE39582 and GSE17536 datasets revealed the 
stromal and immune scores, as well as the infiltrations 
of several TME contents like fibroblasts, Th1 cells, Tgd, 
Tem, NK cells, neutrophils, Mast cells, Macrophages, 
iDC, cytotoxic cells and CD8 T cells were higher in high 
CAF risk group.

CAF‑related signature was predictive to chemotherapy 
and immunotherapy response
We next investigated the practicability of the model in 
guiding systemic therapies. Firstly, estimated IC50 val-
ues were calculated by pRRophetic algorithm to predict 
the different chemotherapy responses of CAF-associated 
high and low risk groups. Based on the GDSC cancer 
cell line database, we found that higher CAF risk score 
increased the sensitivity of 6 types of anticancer drugs 
(camptothecin, docetaxel, gefitinib, gemcitabine, pazo-
panib, sunitinib) in TCGA COAD/READ, GSE39582 and 
GSE17536 datasets (Wilcoxon test, all P < 0.01; Fig.  8a–
c). Subsequently, using the TIDE online algorithm, we 

Fig. 3  Bubble map of a the top 10 GO terms and b KEGG pathway enrichment analysis of 208 significant expressed marker genes in the fibroblasts 
cluster
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predicted the probability of response to immune check-
point inhibitors in the three datasets. In the TCGA 
cohort, as shown in Fig.  8D, low-CAF risk patients 
(54.3%, 120/221) were more reactive to immunotherapy 

compared with high-CAF risk patients (26.36%, 58/220) 
(Chi-Square test, P < 0.001), in addition, responders pre-
sented markedly lower CAF scores compared to non-
responders (Wilcoxon test, P < 0.001). Similarly, in the 

Fig. 4  a, b LASSO Cox regression analysis identified 9 genes significantly correlated with overall survival in TCGA training cohort. (a) Ten-fold 
cross-validations for screening of the optimal parameter (lambda). b LASSO coefficient profiles determined by the optimal lambda. c Forest plot 
presented the HRs and P-values from the univariate Cox regression as well as LASSO coefficients of the nine prognostic signature genes. d–i 
Heatmap visualizing the expression levels of nine prognostic CAF genes with the CAF risk scores in d TCGA training, e TCGA validation, f TCGA 
overall, g GSE39582, h GSE17536 and i HColA095Su01 tissue microarray cohort
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GSE39582 (Fig.  8e) and GSE17536 (Fig.  8f ) validation 
cohorts, low-CAF risk group patients (68.51%, 161/235 
in GSE39582; 64.05%, 57/89 in GSE17536) were also 
more responsive to immunotherapy than high-risk 
patients (28.51%, 67/235 in GSE39582; 26.14%, 23/88 
in GSE17536) (Chi-Square test, both P < 0.001), and the 
responders presented significantly lower CAF scores in 
the two cohorts (Wilcoxon test, both P < 0.001). These 
results implied that while high CAF score was correlated 
with increased chemotherapy sensitivity, immunotherapy 
might be more effective in low CAF score CRC patients.

Functional assessment of CAF signature
Since the designed CAF signature was highly corre-
lated with adverse prognosis and refractory immuno-
therapy response, we then investigated the functional 
pathways in this model through GSEA analysis. Patients 
in the TCGA COAD/READ cohort were separated into 
high- and low-risk groups based on their median CAF 
risk score as the cutoff value. We found several immune-
related KEGG gene sets were enriched in high CAF risk 
group, including antigen processing and presentation, B 

cell receptor signaling pathway, T cell receptor signal-
ing pathway, chemokine signaling pathway, leukocyte 
transendothelial migration, primary immunodeficiency, 
calcium signaling pathway, cell adhesion molecules cams, 
cytokine-cytokine receptor interaction (Fig. 9a). In addi-
tion, several hallmark gene sets, including angiogenesis, 
complement, epithelial mesenchymal transition, hypoxia, 
inflammatory response and myogenesis were also signifi-
cantly enriched in high CAF risk group (Fig. 9b).

CAF‑related signature was an independent prognostic 
factor in CRC patients.
Univariate and multivariate Cox regression analyses 
were sequentially carried out in each cohort to exam-
ine whether the prognostic value of CAF-related gene 
signature was independent of other features including 
age and TNM stage. As shown in Table  1, in TCGA 
training, TCGA total, GSE39582, GSE17536 and HCo-
lA095Su01 cohorts, both univariate and multivariate 
Cox analysis manifested the CAF signature were inde-
pendent prognostic factors. However, after adjusting 
for age and TNM stage parameters, the prognostic 

Fig. 5  Kaplan–Meier curves displayed that high-CAF risk group had worse overall survival (OS) than low-CAF risk group in a TCGA COAD/READ 
training, b TCGA validation, c TCGA overall, d GSE39582, e GSE17536 and f HColA095Su01 tissue microarray cohorts

(See figure on next page.)
Fig. 6  a Recognized and b the nine identified CAF markers expressions in CRC single-cell clusters. c Bubble plot visualizing genes expression 
characteristics in single-cell RNA sequencing profile. Cell phenotypes were listed on y-axis, recognized CAF markers (left part of the dotted line) as 
well as the identified nine prognostic markers (right part of the dotted line) were listed along the x-axis. Dot size reflects each gene’s expressing 
percentage of each cluster’s cells; dot color represents the expression level
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Fig. 6  (See legend on previous page.)
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Fig. 7  a–c Heatmap illustrating the distributions of 24 immune cell subsets, fibroblasts, stromal and immune scores assessed via ssGSEA, 
MCP-counter, EPIC and ESTIMATE algorithms in a TCGA COAD/READ, b GSE39582 and c GSE17536 cohort. (d-f ) Wilcoxon analysis of the differing 
TME subtype distributions (z-score standardized) between high- and low-CAF risk groups in d TCGA COAD/READ, e GSE39582 and f GSE17536 
cohort (* P < 0.05, ** P < 0.01, *** P < 0.001)

(See figure on next page.)
Fig. 8  a–c The IC50 values of six anti-cancer drugs were predicted by pRRophetic algorithm and were Z-score normalized. The difference between 
high- and low-CAF risk groups of each drug in a TCGA COAD/READ, b GSE39582 and c GSE17536 cohort was compared by Wilcoxon test (** 
P < 0.01, *** P < 0.001). d–f TIDE analysis for predicting the likelihood of clinical response to immune checkpoint inhibitors in d TCGA COAD/READ, e 
GSE39582 and f GSE17536 cohort. Patients with a lower CAF risk score are more likely to respond from immune therapy
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Fig. 8  (See legend on previous page.)
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Fig. 9  Gene Set Enrichment Analysis (GSEA) revealed the significant enrichment of a KEGG pathways and b hallmark genes sets in high CAF risk 
group patients compared with low CAF risk patients
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value of CAF signature was limited in TCGA validation 
cohort (HR = 1.334, 95% CI: 0.609–2.920, P = 0.471), 
we considered this was due in part to the relative small 
sample size in this cohort.

Based on the multivariate Cox regression coefficients 
of nine-CAF-related gene signature and clinical traits 
(age and TNM stage) in the TCGA training cohort, we 
built a prognostic nomogram for clinicians to quanti-
tatively predict 1, 3 and 5-year OS probabilities of CRC 
patients (Fig.  10a). The C-index of the nomogram was 
0.813 (95% CI = 0.746–0.88) in TCGA training set, 
0.772 (95% CI = 0.677–0.867) in TCGA validation set, 
0.792 (95% CI = 0.736–0.848) in TCGA total set, 0.658 
(95% CI = 0.611–0.705) in GSE39582 set, and 0.78 (95% 
CI = 0.726–0.834) in GSE17536 set. The calibration 
curves manifested the model’s predictions of 1-, 3- and 
5-year OS probabilities were favorably consistent with 
the ideal predictions (gray line) in all datasets (Fig. 10b). 
These results demonstrated the aggregated nomogram 
model could serve as a reliable tool for OS predictions of 
CRC patients.

Study of the expression patterns of CAF‑related signature 
genes at protein levels via HPA database and IHC analyses
Finally, with respect to CRC tissue protein expression 
levels, the immunohistochemical results from HPA data-
base indicated that protein expression of CSRP2, HSPB1, 
PPP1R14A, S100A13, TIMP1 and TPM2 was higher 
in CRC stroma (Fig.  11a–f), while SPINK1 was weakly 
expressed in interstitial areas (Fig. 11g), and there was no 
immunohistochemical data for the other 2 genes (CEBPD 
and CXCL1) in HPA database. Hence, IHC analyses were 
performed on these two genes, and the examples of IHC 
staining of CEBPD and CXCL1 were shown in Fig. 11h, 
i. The expressions of CEBPD (Fig.  11h) and CXCL1 
(Fig.  11i) were also found mainly in stromal spaces of 
CRC tissues.

Discussion
The recognized tumor-promoting capacity of CAFs 
makes them a prospective immunotherapy target [9, 11, 
57]. However, the clinical applications remain challeng-
ing owing to the lack of effective targetable biomarker, 
which motivated us to investigate the novel CAF markers 

Table 1  Univariate and multivariate Cox proportional hazards regression analysis on OS

OS overall survival, HR hazard ratio, CI Confidence interval, CAF Cancer associated fibroblast

Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

TCGA training cohort

 Age 1.023 0.999–1.049 0.06 1.033 1.008–1.058 0.009

 TNM stage 2.67 1.918–3.718  < 0.001 2.73 1.911–3.9  < 0.001

 CAF signature 4.418 2.521–7.744  < 0.001 3.161 1.828–5.468  < 0.001

TCGA validation cohort

 Age 1.061 1.024–1.099 0.001 1.058 1.023–1.094 0.001

 TNM stage 2.363 1.566–3.564  < 0.001 2.391 1.566–3.651  < 0.001

 CAF signature 2.323 1.094–4.932 0.028 1.334 0.609–2.920 0.471

TCGA total cohort

 Age 1.036 1.016–1.057  < 0.001 1.039 1.02–1.059  < 0.001

 TNM stage 2.553 1.973–3.304  < 0.001 2.568 1.962–3.361  < 0.001

 CAF signature 3.45 2.212–5.381  < 0.001 2.261 1.454–3.516  < 0.001

GSE39582 cohort

 Age 1.039 1.024–1.053  < 0.001 1.037 1.023–1.052  < 0.001

 TNM stage 1.688 1.315–2.167  < 0.001 1.646 1.272–2.13  < 0.001

 CAF signature 1.744 1.277–2.382  < 0.001 1.455 1.055–2.007 0.022

GSE17536 cohort

 Age 1.006 0.988–1.025 0.492 1.027 1.006–1.047 0.01

 TNM stage 2.855 2.112–3.859  < 0.001 3.323 2.373–4.653  < 0.001

 CAF signature 2.553 1.413–4.613 0.002 3.018 1.644–5.539  < 0.001

HColA095Su01 cohort

 Age 0.995 0.969–1.022 0.704 0.997 0.97–1.026 0.86

 TNM stage 1.069 0.631–1.811 0.803 1.239 0.714–2.148 0.446

 CAF signature 1.003 1.001–1.005 0.011 1.003 1.001–1.005 0.014
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in CRC. In this study, by analyzing single-cell genome 
of the GEO CRC patient datasets, we clearly revealed 
the fibroblasts subset and characterized 208 fibroblast 
markers with highly altered expressions that could not 
be discriminated in bulk RNA-seq. Since CAFs revealed 
a high level of heterogeneity [58], a model composed of 

multiple biomarkers would achieve an improved prog-
nostic efficacy over the individual biomarker. Therefore, 
combined with the integrated analysis of TCGA COAD/
READ, GSE39582 and GSE17536 bulk sequencing pro-
jects as well as HColA095Su01 experimental verification 
cohort, we for the first time established and validated a 

Fig. 10  Nomogram construction and calibration plot validations. a Nomogram based on age, TNM stage and CAF signature for 1-, 3- and 5-year 
OS predictions. b Calibration curves for testing the agreement between 1-, 3- and 5-year predicted overall survival and actual observations in TCGA 
training, TCGA validation, TCGA entire, GSE39582, GSE17536 and HColA095Su01 cohorts
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robust nine-gene CAF-related molecular signature capa-
ble of predicting prognosis, estimating TME stromal and 
fibroblasts components and therapy response for CRC 
patients. Univariate and multivariate Cox regression 
analyses verified the CAF-related signature was an inde-
pendent risk factor associated with OS. To improve the 
predictive efficacy of the signature and facilitate clinical 

application, we subsequently constructed and validated a 
nomogram based on age, TNM stage and CAF signature 
for clinical practicality to predict OS.

In this study, we observed the immune and stro-
mal cells infiltrations were more abundant in the high 
CAF risk group, especially several immunosuppressive 
types like fibroblasts, macrophages and mast cells. The 

Fig. 11  (a-g) Immunohistochemistry showing the protein expressions of a CSRP2, b HSPB1, c PPP1R14A, d S100A13, e TIMP1, f TPM2 and g SPINK1 
based on the Human Protein Atlas (HPA) database. h, i Immunohistochemistry images of h CEBPD and i CXCL1 protein expressions in CRC tissues
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effectiveness of most immunotherapies depends on the 
abundant infiltrations of CD8 + T cells in the tumors [59]. 
However, while high CAF risk group harbored relative 
richer infiltrations of Th1 cells, cytotoxic cells and CD8 T 
cells, TIDE algorithm manifested that high CAF risk CRC 
patients were more likely not to respond to anti-PD-1 
and anti-CTLA-4 therapies in all three datasets. This 
could be partly explained by the findings from Ford et al. 
that CAFs modulate immunotherapies resistance spe-
cifically by discharging CD8 + T cells from tumor mass 
to tumor margin [60], meanwhile, the remodeling ECM 
constructed interactively by CAFs and cancer cells serve 
as the physical hamper against the penetration of tumori-
cidal immune cells as well as the delivery of anticancer 
agents to solid tumors [20, 61]. Interestingly, pRRophetic 
algorithm indicated that high-CAF risk CRC patients 
were more sensitive to several conventional chemother-
apy agents than low-CAF risk patients. Researchers have 
demonstrated the anti-tumor immune efficacy of tra-
ditional chemotherapeutics [62]. For example, McDon-
nell et al. reported the standard-dose gemcitabine would 
enhance the tumor-associated antigens cross‐presenta-
tion efficacy of tumor‐resident dendritic cells to enable 
the reactivation capacity of tumor‐infiltrating CD8 + T 
cells [63]. We proposed a promising therapeutic strategy 
of combining conventional chemotherapy, natural-based 
substitutes [64, 65] and CAF-targeting immunotherapy 
to stimulate intratumoral CD8 + T-cell penetrations and 
resensitize high CAF-risk tumors to the current T cell 
based immunotherapies. However, further studies are 
needed for the design of synergistic therapies.

For the CAF-related genes in this well-established 
signature, scRNA-seq displayed TIMP1 expressed 
mostly in fibroblasts, epithelial cells, macrophages and 
endothelial cells. Many studies have identified dys-
regulation of TIMP1 expressions contributed critically 
to pro-tumor inflammation initiation, matrix remod-
eling and fibrosis development [66–68]. Illemann 
et  al. reported that TIMP1 was generally expressed in 
α‐SMA‐positive myofibroblasts in both primary CRC 
and liver metastases, and promotes the anti-apoptosis 
and pro‐angiogenesis activities [69]. TIMP1 has also 
been verified to promote intra-tumoral CAFs infiltra-
tion, proliferation and migration by activating ERK1/2 
kinase in CAFs [70]. In addition, upregulated TIMP1 in 
the cancerous CAF stroma would participate the vas-
cular remodeling process and enhance the invasions of 
colorectal cancer cells [71]. Moreover, knockdown of 
TIMP1 could promote apoptosis of colon cancer cells 
via BCL2-Associated Agonist Of Cell Death (BAD) 
mediated phosphoration pathway and suppress the 
migration and invasion of cancer cells through down-
regulating Fibronectin and upregulating E-cadherin 

[72]. As the only downregulated gene in fibroblasts 
cluster, SPINK1 expressed mainly in epithelial cells and 
was regarded as a protective marker, which was consist-
ent with previous studies [73–75]. However, in  vitro 
experiments exhibited that SPINK1 contributed signif-
icantly to proliferation and invasion of CRC cell lines 
[76, 77]. This discrepancy could be partly explained 
by the concurrent expressions of SPINK1 and EGFR, 
which exerts distinct functions in CRC tissue [74]. 
The inconsistency also occurred in CXCL1, except for 
one study that demonstrated CXCL1 was a protective 
gene [78], other studies demonstrated that high CXCL1 
expression in CRC epithelium correlated with adverse 
clinicalpathological characteristics and poor prog-
nosis [79, 80]. CXCL1 is an inflammatory chemokine 
secreted mainly by CRC epithelia and myofibroblasts 
and is capable of driving tumor initiation and pro-
gression [81]. More experiments are needed to fur-
ther validate the prognostic value of CXCL1 in CRC 
patients. Our results displayed PPP1R14A, TPM2 and 
CSRP2 were mainly expressed in fibroblasts cluster. 
PPP1R14A mRNA codes protein CPI-17, which directly 
deactivates tumor suppressor merlin (encoded by neu-
rofibromatosis type 2 gene NF2) through merlin phos-
phorylation and tumorigenic Ras signaling activation 
[82, 83], and PPP1R14A has been reported to be aber-
rantly methylated in CRC [84] and serves as an epige-
netic biomarker for CRC early detection [85]. A recent 
single-cell sequencing analysis from Zhou et  al. also 
identified TPM2 as fibroblast-specific marker associ-
ated unfavorable prognosis in CRC [86]. Furthermore, 
Wang et  al. reported the knockdown of CSRP2 would 
lead to the transformation from fibroblasts into CAFs 
and enhance their proliferation and migration capaci-
ties in gastric cancer [87], while its function in CRC 
fibroblasts still remains unclear. We showed CEBPD 
expressed mainly in epithelial cells, macrophages and 
fibroblasts. Chi et  al. reported that CEBPD activation 
in M2 macrophages and myofibroblasts/CAFs led to 
the acquisition of chemoresistance and significantly 
promoted sphere-forming ability, stemness, invasion 
and metastasis in both responsive and drug-resistant 
breast cancers [88]. Wang et al. found CEBPD partici-
pated the integration of EMT and lipid metabolism 
signaling to promote lung adenocarcinoma metastasis 
[89]. S100A13 is a calcium binding protein gene [90], 
the digenic mutations of S100A13 would break calcium 
homeostasis, distort ECM and result in progression of 
lung fibrosis [91]. In addition, S100A13 is regarded as 
an angiogenic and prognostic biomarker in melanoma 
[92] and astrocytic gliomas [93]. Lee et al. demonstrated 
that HSPB1 is secreted from endothelial cells and 
physiologically modulates the balance of angiogenesis 
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through interacting with vascular endothelial growth 
factor (VEGF). During the tumor-induced angiogenesis 
process, however, VEGF is overwhelmingly increased, 
yet the concomitant increase of HSPB1 is incapable of 
balancing the pathological angiogenesis, therefore con-
tributes to tumor progression [94]. Nevertheless, the 
effects of CEBPD, S100A13 and HSPB1 on fibroblast-
induced tumorigenesis in CRC have never been eluci-
dated, which necessitate further investigations.

Several limitations in this study should be acknowl-
edged. First, it was a retrospective study based on pub-
lic sequencing data, and the sample capacity of the tissue 
microarray verification cohort was insufficient. Hence, 
the prognostic and predictive efficacies of our CAF-
related signature should be prospectively verified in large 
clinical trial. In addition, cross-validations at proteomics 
level are also necessary to serve the clinical applications. 
Secondly, the molecular mechanisms of how these CAF-
related genes affect patient prognosis and therapeutic 
responses need to be clarified by further basic experi-
mental studies.

Conclusions
In summary, based on integrated single-cell and bulk 
RNA sequencing analysis, we constructed and validated 
a nine-gene CAF-related signature as an independent 
prognostic indicator for CRC patients. Our results also 
provided genomic evidence for future research directions 
on anti-CAF therapeutic strategies for those who might 
not benefit from immunotherapy.
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