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Abstract

Background: Osteosarcoma (OS) metastasis is the most common cause of cancer-related mortality, however, no
sufficient clinical biomarkers have been identified. In this study, we identified five genes to help predict metastasis at
diagnosis.

Methods: We performed weighted gene co-expression network analysis (WGCNA) to identify the most relevant
gene modules associated with OS metastasis. An important machine learning algorithm, the support vector machine
(SVM), was employed to predict key genes for classifying the OS metastasis phenotype. Finally, we investigated the
clinical significance of key genes and their enriched pathways.

Results: Eighteen modules were identified in WGCNA, among which the pink, red, brown, blue, and turquoise
modules demonstrated good preservation. In the five modules, the brown and red modules were highly correlated
with OS metastasis. Genes in the two modules closely interacted in protein—protein interaction networks and were
therefore chosen for further analysis. Genes in the two modules were primarily enriched in the biological processes
associated with tumorigenesis and development. Furthermore, 65 differentially expressed genes were identified as
common hub genes in both WGCNA and protein—protein interaction networks. SVM classifiers with the maximum
area under the curve were based on 30 and 15 genes in the brown and red modules, respectively. The clinical signifi-
cance of the 45 hub genes was analyzed. Of the 45 genes, 17 were found to be significantly correlated with survival
time. Finally, 5/17 genes, including ADAP2 (P =0.0094), LCP2 (P =0.013), ARHGAP25 (P =0.0049), CD53 (P=0.016),
and TLR7 (P =0.04) were significantly correlated with the metastatic phenotype. In vitro verification, western blotting,
wound healing analyses, transwell invasion assays, proliferation assays, and colony formation assays indicated that
ARHGAP25 promoted OS cell migration, invasion, proliferation, and epithelial-mesenchymal transition.

Conclusion: We identified five genes, namely ADAP2, LCP2, ARHGAP25, CD53, and TLR7, as candidate biomarkers for
the prediction of OS metastasis; ARHGAP25 inhibits MG63 OS cell growth, migration, and invasion in vitro, indicating
that ARHGAP25 can serve as a promising specific and prognostic biomarker for OS metastasis.
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5-year survival rate of OS patients with localized tumors
remains at 60—-70%, while that for metastatic and recur-
rent patients is <20% [2, 3]. Several molecular mecha-
nisms have been identified to play a role in the OS
metastasis cascade, such as the Wnt/B-catenin pathway
[4, 5], PI3K/Akt/mTOR [6] and Notch signaling [7]. Many
genes have been identified as potential biomarkers for the
prediction and treatment of OS metastasis [8—10]. How-
ever, the mechanism underlying OS metastasis remains
unclear. Thus, a better understanding of the mechanism
of OS metastasis is urgently required to identify more
effective and specific biomarkers for early prediction,
survival assessment, and treatment.

Data-driven approaches, such as gene microarrays,
have been employed to identify the driver genes of OS
genesis and metastasis [11, 12]. Several studies screened
genes based on their expression patterns and analyzed
their function using Gene Ontology (GO) or Kyoto Ency-
clopedia of Genes and Genomes (KEGG). However, with
this method, a number of potential interconnections
among genes are missed. Weighted gene co-expression
network analysis (WGCNA) is a systematic biology
method to cluster highly correlated genes into one mod-
ule and to relate the module to clinical traits. Therefore,
WGCNA is more beneficial for identifying driver genes
in prognosis and therapy [13].

The support vector machine (SVM) classifier is a spe-
cific method of machine-learning. It has been widely
applied in selecting biomarker genes for disease classi-
fication and prediction because of its high accuracy and
the ability to identify the multivariate statistical proper-
ties of data between two different groups [14]. Receiver
operating characteristic curve analysis was used to eval-
uate the performance of the SVM classifier. It is widely
used as a valid statistical method to determine the clini-
cal utility of biomarkers [15].

In this study, we aimed to provide a bioinformatics
method to identify the most relevant genes as potential
biomarkers in OS metastasis and to employ biological
methods to verify its effectiveness.

Materials

Data information

We obtained the gene expression profiles of GSE33382
and GSE21257 from the NCBI Gene Expression Omnibus
(GEO; https://www.ncbinlm.nih.gov/geo/). GSE33382
and GSE21257 consist of 84 and 53 OS samples, respec-
tively, based on the GPL10295 Illumina Human-6 v2.0
Expression BeadChip Platform (Illumina Inc., CA, USA).
The Cancer Genome Atlas (TCGA) and TARGET-OS
(Children’s Oncology Group and the Hospital for Sick
Children in Toronto, Canada) data matrix (https://ocg.
cancer.gov/programs/target/data-matrix) were used to
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validate the SVM classifier. The R packages illuminaio
and lumi were used to process and analyze the raw data.

In silico analysis

WGCNA was performed on the genes that appeared in
TCGA and GEO, and GO and KEGG enrichment analy-
ses were conducted to explore the biological relevance of
the key modules in WGCNA. CytoHubba on Cytoscape
v3.6.0 (http://www.cytoscape.org/) was used to con-
struct a protein—protein interaction (PPI) analysis of key
WGCNA modules. An SVM classifier was employed for
the prediction and evaluation of key genes involved in OS
metastasis. The relationship between the key genes and
OS prognosis was analyzed using Kaplan—Meier survival
curve analysis. To evaluate the prognostic effect of the
key genes in OS patients, data from TCGA were used to
verify their expression levels in OS.

Modules identification and preservation analysis

As a training set, the raw data of GSE33382 and
GSE21257 were used to construct co-expression net-
works and to screen hub genes. Distance in Pearson’s
correlation matrices and average linkage between dif-
ferent samples were used to cluster samples and assess
the microarray quality. As a result, three samples
(GSM825681, GSM531298, and GSMS825697) were
excluded in subsequent analyses (Additional file 3: Fig.
S1). The radiometric multiresolution analysis algorithm
was used for background correction. To evaluate the
impact of power value on the mean connectivity and
scale independence, the function “softConnectivity” in
WGCNA package was used, and the “randomly selected
genes” parameter was set at 16,000. The “pick SoftThresh-
old” function of WGCNA was used to evaluate the best
soft thresholding power for constructing networks. Then,
we calculated the dissimilarity of module eigengenes to
provide a cutline for module merging.

The stability of the identified modules was tested using
fragments per million expression data of 86 samples
from TCGA dataset. We conducted preservation analysis
using 9081 common genes in both the training and test
datasets with the “nPermutations” parameter set at 200.

Identification of key modules and functional annotations
We correlated module eigengenes with clinical traits to
identify the relevant modules. In the present study, clini-
cal traits refer to metastatic conditions. A linear regres-
sion model was used to evaluate the correlation between
gene expression and clinical traits. We performed the
functional enrichment analysis of key modules using
“clusterProfile” package in R.
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Identification of hub genes in key modules

In the present study, the relationship between module
connectivity and metastasis traits was evaluated to iden-
tify hub genes in the key modules. We also constructed
a PPI network of genes in key modules. CytoHubba,
a Cytoscape plugin app, sorts the genes by analyzing
12 parameters, namely DEGREE, EcCentricity, MCC,
RADIALITY, STRESS, CLOSENESS, DMNC, MNC,
BETWEENNESS, EPC, BOTTLENECK, and Cluster-
ingCoefficient. The top 50 genes, ranked by each param-
eter, were recorded. We explored the genes in the top 50
sorting by 8 or more parameters to identify the essential
hub genes in the functional network as the hub genes
with more essential in the functional network [16]. Fur-
thermore, we screened the differentially expressed genes
(DEGs) using the “limma” R package. The common hub
genes identified in the co-expression network, PPI net-
work, and DEGs were considered as key genes for further
analysis and validation [17, 18].

Prediction and evaluation of key genes for OS metastasis
by SVM classifier

The samples GSE33382 and GSE21257 were ranked ran-
domly, and 75% of the samples were selected to train the
SVM classifier. In each key module, an increment of five
genes was added to the classifier to separate metastatic
OS from non-metastatic OS. The remaining 25% of sam-
ples were used as validation sets. Sensitivity, specificity,
area under the curve (AUC), positive predictive value,
and the negative predictive value were calculated to eval-
uate the SVM classifier.

Survival analysis and efficacy evaluation

TCGA database was used to perform the survival anal-
yses. We performed survival and relapse-free survival
analyses for all key genes from the brown and red mod-
ules using the survival package in R. The relationship
between the key genes and OS prognosis was analyzed
using Kaplan-Meier survival curve analysis. Genes with a
value of P <0.05 were considered to be statistically signifi-
cant and used for further validation.

Cell lines

The OS cell lines MG-63 (BNCC338584) and
U20S(BNCC352039) used here were purchased from
Beina Cell Bank (Beijing, China). Cells were cultured
in Dulbecco’s Modified Eagle Medium (HyClone, UT,
USA) containing 10% fetal bovine serum (FBS; Gibco,
TX, USA) at 37 °C and 5% CO,. pcDNA-ARHGAP25

Page 3 of 14

plasmids were designed and synthesized by Sangon Bio-
tech (Shanghai, China).

Cell transfection

MG63 and U20S cells were seeded at a density of
3x10° cells/well in 6-well plates. For ARHGAP25
overexpression, the cells were transfected with an
expression vector containing the ARHGAP25 coding
sequence or pcDNA3.1 vector control (NC; 1.5 pg/
well). Transient transfection was performed using
Lipofectamine 2000 (11668030, Invitrogen, CA, USA).

Quantitative real-time polymerase chain reaction
Real-time polymerase chain reaction (RT-PCR) was
performed to quantitatively identify ARHGAP25
expression levels. Briefly, total RNA was extracted, and
c¢DNA was synthesized from RNA by reverse transcrip-
tion, quantitative real-time PCR was undertaken using
qPCR SYBR Green Master Mix for (11201ES03, Yeasen,
China). The primer sequences used for RT-qPCR were
5-CCTGGAGCACGGCCGGAATG-3" (sense) and
5-ACCACGGGCTCTGGGAGGTC-3’ (antisense)
for ARHGAP25, and 5-ACAACTTTGGTATCGTGG
AAGG-3’ (sense) and 5-GCCATCACGCCACAGTTT
C-3’ (antisense) for GAPDH.

Western blot analysis

Cells were lysed using RIPA buffer (Beyotime Insti-
tute of Biotechnology, Jiangsu, China) with protease
inhibitors. The proteins were separated by SDS-PAGE
and transferred to polyvinylidene difluoride (PVDF)
membranes (0.45 um, IPFL00010, Millipore Corpora-
tion, USA), which were blocked with non-fat milk and
probed with primary antibodies, followed by horserad-
ish peroxidase-conjugated IgG. Protein signals were
visualized using an enhanced chemiluminescence
detection kit (DW101; TransGen Biotech, Beijing,
China). GAPDH was used as a reference protein. Pri-
mary antibodies against TWIST1 (25465), anti-E-cad-
herin (20874), anti-vimentin (10366-1), and GAPDH
(60004-1) were purchased from Proteintech (NJ, USA).

Cell viability assay

Transfected MG63 or U20S cells were seeded in
96-well plates at a density of 0.3 x 10> cells/well and
cultured at 37 °C and 5% CO, for 24, 48, and 72 h with
diluted Cell Counting Kit 8 (CCK8; 1:10). One hundred
microliters of diluted CCK8 was added to each well at
each time point. Absorbance was detected using a Flu-
ostar Omega microplate reader (BMG Labtech, Orten-
berg, Germany) at a wavelength of 450 nm.
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Wound healing assay

Transfected cells were seeded in 6-well plates at a den-
sity of 8 x 10° cells/well and cultured until they reached
90% confluence. A sterile 200 pL tip was used to cre-
ate a gap in the cells. Each well was washed with phos-
phate-buffered saline three times and further cultured
in serum-free medium for 24 h. Finally, gap size was
photographed and measured with a microscope (Olym-
pus, Tokyo, Japan).

Colony formation assay

Transfected cells were trypsinized, and 0.5 x 10° cells
were plated in 24-well plates and incubated at 37 °C for
7 days. A dyeing solution containing 0.1% crystal violet
and 20% methanol was used. Colonies were counted and
analysed using the Image] software v1.52a (http://rsb.
info.nih.gov/ij/).

Transwell assays

Cell invasion was assessed using 24-well plates with
transwell chambers. The upper chambers were coated
with Matrigel (dilution 1:2; BD Biosciences, NJ, USA)
and incubated for 1 h at 37 °C before cell cultures. Cells
(5 x 10% in serum-free medium were plated in the upper
chambers. The lower chambers were filled with complete
medium containing 10% FBS. Following 24 h of incuba-
tion, invasive cells in the lower chamber were washed,
fixed, and stained with 0.1% crystal violet. Invasive cells
were counted under a microscope (Olympus).

Statistical analysis

All results are expressed as the mean =+ standard devia-
tion. Student’s t-test was used to compare groups. Statis-
tical significance: *P<0.05, **P<0.005, and ***P<0.001.
Analyses were performed using the GraphPad Prism
software v8.0.

Results

Weighted co-expression network construction and module
preservation analysis

We performed WGCNA on 15,040 genes after remov-
ing three outlier samples (GSM825681, GSM531298, and
GSM825697; Additional file 3: Fig. S1), with the most
appropriate soft threshold power of 5 (R2=0.87; Fig. 1a,
b). Finally, 18 co-expression modules were identified
(Fig. 1c).

By using summary preservation statistics, we evaluated
whether the co-expression modules were stable from the
training dataset (GSE33382 and GSE21257) to TCGA test
dataset. Thirteen modules with a Zsummary statistic < 10

Page 4 of 14

were defined as poor preservation. The pink, red, tur-
quoise, blue, and brown modules were consistently stable
and were selected for further analysis (Fig. 1d).

Identification of key modules and functional annotation
To identify the most significant modules, we analyzed the
relevance between each module and OS metastasis. In
the five preserved modules, three modules (brown, blue,
and red) were significantly correlated with OS metasta-
sis (Fig. 2). Therefore, the genes contained in the brown,
blue, and red modules were further analyzed.

Furthermore, GO and KEGG enrichment analyses
were conducted to explore the biological relevance of
the three modules. The results showed that genes in the
brown module were primarily enriched in immunity, reg-
ulation of osteoclast differentiation, NOD-like receptor
signaling pathway, and NF-kB pathway (Fig. 3a—d). Genes
in the blue module were predominantly enriched in the
regulation of RNA processing and cell adhesion molec-
ular binding (Fig. 3e—h). Genes in the red module were
mainly enriched in the regulation of DNA-associated
activity and cell cycle (Fig. 3i-1).

Identification of genes in key modules

Highly interacted genes in a module play a pivotal role
in biological processes. Therefore, we selected the top 50
genes with the greatest biological relevance in the brown,
blue, and red modules as hub genes. Furthermore, the
PPI network of genes in each of the three modules was
established in accordance with the STRING database. In
the brown, red, and blue modules, there were 40, 29, and
28 overlapping hub genes, respectively, in both WGCNA
and PPI analyses, which were selected as key genes. We
screened 4141 DEGs between metastatic and non-met-
astatic OS samples using the limma package (adjusted
P-value<0.05, and |log2 (fold change)|>0.2). The vol-
cano plot of the DEGs is shown in Fig. 4d. As shown in
Fig. 4a—c, the genes in the blue module does not show
a closely interactive network; thus, the blue module was
excluded from further analysis (Fig. 4b). We then over-
lapped the DEGs and hub genes in the brown and red
modules using a Venn diagram. As shown in Fig. 4e, 40
genes are present in both DEGs and the brown module,
and 25 genes are present in both DEGs and the red mod-
ule. These 65 genes were considered key genes relevant
to OS metastasis and were therefore selected for further
analysis (Fig. 4e).

Key genes play a prediction role in OS metastasis

To confirm the application of key genes in OS metasta-
sis prediction, we chose the SVM model to classify the
data set of metastatic and non-metastatic samples. We
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used the top 75% samples ranked randomly in GSE33382
and GSE21257 as the training set, and the
25% samples as the test set. The sensitivity, specificity,

remaining

and AUC of the key genes in the test set were obtained
(Table 1, Fig. 4f—g). Gene list of ROC curves in brown
module (Additional file 1: Table S1) and red module
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(Additional file 2: Table S2) were also provided as addi-
tional files. These results suggest that these genes can be
potential biomarkers for OS metastasis prediction, and
that this model is capable of discriminating patients with
or without OS metastasis.

Identification of featured genes with TCGA dataset

To evaluate the prognostic effect of the key genes in
OS patients, the relationship between gene expression
and survival time was determined using Kaplan—Meier
survival analysis with the log-rank test. Finally, 17 key
genes were found to be significantly correlated with sur-
vival time (overall survival time or relapse-free survival
time). The expression analysis of the 17 key genes in
TCGA dataset provides a unique insight into their func-
tion in OS metastasis. We measured the differences in
the expression of the 17 key genes between metastatic
and non-metastatic OS samples. As shown in Fig. 5, we
found five genes with significantly lower expression in

metastatic samples, namely ADAP2 (P=0.0094), LCP2
(P=0.013), ARHGAP25 (P=0.0049), CD53 (P=0.016),
and toll-like receptor 7 (TLR7; P=0.04). The association
of these five genes with overall survival time and relapse-
free survival time is shown in Fig. 6. The association of
the remaining 12 key genes with survival time is shown in
Additional file 4: Fig. S2.

ARHGAP25 inhibited MG63 cell growth, migration,

and epithelial-mesenchymal transition (EMT) progression
in vitro

ARHGAP25 was selected to verify whether this inte-
grated bioinformatics analysis works, as it was iden-
tified with a highly significant difference in all of the
bioinformatic analyses. Targeting ARHGAP25 expres-
sion has been shown to inhibit the growth and migra-
tion of other cancer cells [19-21]. We employed CCK8
to examine relative cell growth and found that ARH-
GAP25 overexpression (Fig. 7a) in MG63 and U20S
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cells was significantly lower than that in NC cells
(Fig. 7b). The wound healing assay further suggested
that MG63 and U20S cells overexpressing ARHGAP25
had reduced migration-related abilities (Fig. 7c—e). To
evaluate the effect of ARHGAP25 overexpression on
OS cell invasion, we performed a transwell cell invasion
assay. As shown in Fig. 7f-g, ARHGAP25 significantly
inhibits MG63 and U20S cell invasion. Moreover, the
colony formation assay further confirmed that ARH-
GAP25 overexpression inhibited MG63 and U20S
cell growth (Fig. 7h—i). At the molecular level, west-
ern blotting results revealed that ARHGAP25 overex-
pression increased the expression of E-cadherin, an

EMT-associated protein, and decreased the expression
of EMT proteins Twistl in MG63 and U20S cells, and
decreased vimentin expression in U20S but not MG63
cells (Fig. 7j, k). The above data indicates that target-
ing ARHGAP25 expression suppresses OS cell growth,
migration, and EMT progression.

Discussion

OS is the most common bone cancer in children and
adolescents and is characterized by a high propen-
sity for metastasis [1], however, knowledge of the
mechanism of OS metastasis is limited. Therefore, it
is necessary to identify sufficient gene signatures with
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Table 1 The accuracy, sensitivity, specificity, PPV, NPV and AUC of SVM analysis of brown and red modules

Modules Num of genes Correct rate Se Sp PPV NPV AUC

Brown
1-5 genes 5 0.692 0.882 0.333 0.714 0.600 0.810
1-10 genes 10 0.731 0.938 0.400 0.714 0.800 0.743
1-15 genes 15 0.808 0.944 0.500 0.810 0.800 0.800
1-20 genes 20 0.808 0.900 0.500 0.857 0.600 0.733
1-25 genes 25 0.846 0.905 0.600 0.905 0.600 0914
1-30 genes 30 0.885 1.000 0450 0.857 1.000 0.933
1-35 genes 35 0.885 0.950 0.667 0.905 0.800 0.895
1-40 genes 40 0.923 1.000 0.714 0.905 1.000 0.905

Red
1-5 genes 5 0.654 0.833 0.750 0.714 0.400 0.686
1-10 genes 10 0.808 0.900 0.500 0.857 0.600 0.743
1-15 genes 15 0.885 0.875 1.000 1.000 0400 0.943
1-20 genes 20 0.885 0.910 0.750 0.952 0.600 0.857
1-25 genes 25 0.885 0.950 0.667 0.905 0.800 0.800

Se, sensitivity; Sp, specificity; PPV, positive prediction value; NPV, negative prediction value; AUC, area under ROC curve

considerable efficacy in predicting metastasis status,
which may improve the early diagnosis and clinical prog-
nosis of OS. In this study, we employed WGCNA to
establish a co-expression network and identified three
modules that were most significantly associated with OS
metastasis. By overlapping hub genes in the PPI network,
corPvalueStudent analysis, and DEGs, we found that 40
and 25 key genes in brown and red modules, respectively,
were significantly associated with OS metastasis. Using
the SVM classifier, we precisely distinguished metastatic
OS samples from non-metastatic samples using these
key genes. However, none of the genes in the red mod-
ule were significant in the overall or relapse-free survival
analyses. TCGA database was used to further validate the
prediction value of key genes in brown modules. Through
a series of analyses of the clinical phenotypes and prog-
nosis of OS, we established that five featured genes
(ADAP2, LCP2, ARHGAP25, CD53, and TLR7) were
significantly associated with OS metastasis and survival
time.

ArfGAP with dual pleckstrin homology (PH) domain
2 (ADAP2), known as Centaurin-a2, is characterized by
a C4-type zinc finger and two PH domains [22]. ADAP2
acts as a microtubule-associated protein that increases
microtubule stability by interacting with [-tubulin.
Microtubule stability ensures and maintains cell struc-
ture and function, and is critical in important cellu-
lar processes, including cell movement, division, and
vesicular transport [23]. ADAP2 downregulation has
been reported to promote cervical cancer HeLa cell pro-
liferation [24]. Thus, a decrease in ADAP2 expression
may play an important role in the cell division cycle and

actin cytoskeleton to regulate OS cell proliferation and
metastasis.

The SH2 domain-containing leukocyte protein of
76 kDa (SLP76, also known as LCP2) is expressed in
most hematopoietic lineages. LCP2 plays a critical role in
T-cell development and activation [25]. It is well known
that T cells mediate anti-tumor activity in numerous
tumors [26]. To date, there have been bioinformatics
studies that showed that LCP2 may play a role in tumor
occurrence and metastasis, such as colon cancer [27, 28]
and glioblastoma multiforme [29]. To our knowledge,
this is the first study on the association of LCP2 with OS
metastasis, however, the mechanism requires further
investigation.

CD53 is a member of the tetraspanin family, which is a
group of cell surface proteins that participate in cell adhe-
sion, motility, signal transduction, immune cell activa-
tion, tumor growth, and metastasis [30]. CD53 network
genes were found to be poorly expressed in the high-
metastasis breast cancer transplantation model and pre-
dicted distant metastasis-free survival specifically in ER+
breast cancers [31]. It has also been reported that CD53
is linked to tumor necrosis factor-a (TNF-a) expression
by genome-wide association analysis [32], which may
change the tumor immunogenic microenvironment and
then affect the immune response [33]. In this study, we
found that the CD53 mRNA expression level was lower
in metastatic OS samples, which is in accordance with
the decreased CD53 expression in high-metastasis breast
cancer in a previous study [31]. Our results suggest a
potential role of CD53-mediated immune response in OS
metastasis.
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TLR7 is a member of the TLR family that acts as a pat-
tern recognition receptor and is expressed on the mem-
brane of endosomes. TLR7 activation by ssSRNA of virals
and nucleic acids can induce the expression of type I
interferon and inflammatory cytokines, and activate
other immune cells through several signaling pathways,
such as the NF-«B signaling pathway [34, 35]. Consider-
ing the powerful immune regulatory function of TLR7,
the agonists of TLR7 have been approved for topical
application in cancer treatment [36, 37]. Several studies

have reported that the agonists of TLR7 could prevent
tumor recurrence and eliminate metastasis [38, 39]. A
previous bioinformatics analysis study reported that
TLR?7 signaling is related to OS metastasis [40]. This sug-
gests that the TLR7 signaling pathway may be a potential
target for OS metastasis therapy.

The Rac GTPase-activating protein 25 (ARHGAP25)
has been confirmed to act as a negative regulator of
several tumor metastases. In colorectal cancer, ARH-
GAP25 inhibits tumor metastasis via the Wnt/f-catenin

(See figure on next page.)

Fig. 7 ARHGAP25 inhibited MG63 and U20S cells'growth, migration and invasion. a ARHGAP25 expression was determined in vector transfected
MG63 and U20S cells. b Overexpression of ARHGAP25 in MG63 and U20S cells inhibited cell growth. c Representative images of MG63 and U20S
cells wound healing assay at 0 and 24 h after scratching. Bars indicate: 100 um. d, e Quantification of the gap size in wound healing assay (n=3),
which showed that overexpression of ARHGAP25 suppressed wound healing. f Representative images of MG63 and U20S cells stained with crystal
violet in the transwell assay. Bars indicate: 100 um. g Counts of cells invaded through the chambers (n=3). h Representative images of colony
formation assay to analyze cell proliferation in ARHGAP25 overexpressed OS cells. i Quantification of the colony number (n=3). j Protein expression
of Twist1, Vimentin, and E-cadherin was measured in OS cells with ARHGAP25 overexpression. k Quantification of protein expression using ImageJ.
*Indicates P <0.05, **indicates P <0.01 and ***indicates P <0.001. Picture ¢, f are magnified 100 times and h is not magnified
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pathway [41, 42]. A putative molecular network study
showed that ARHGAP25 and LCP2 targeted more than
five DEGs to play more important roles in colon cancer

metastasis [27]. The RhoE/ROCK/ARHGAP25 pathway
was reported to control alveolar rhabdomyosarcoma cell
invasion [20]. Wnt signaling has been shown to promote
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tumor growth and metastasis in OS [5]. Considering that
ARHGAP25 could inhibit the Wnt pathway to limit colo-
rectal cancer, we assumed that ARHGAP25 could also
limit OS metastasis, therefore, resulting in a reasonable
decrease of ARHGAP25 expression in OS metastasis.

Conclusions

We identified a five-gene signature as a practical and
candidate biomarker for OS metastasis prediction
based on data mining and analysis. In vitro validation
demonstrated that ARHGAP25 overexpression reduced
MG63 cell growth, migration, and invasion, indicating
that ARHGAP25 can serve as a promising specific and
prognostic biomarker for OS metastasis. Our results
provide insights into the potential mechanisms of OS
metastasis and candidate genes for the prediction of OS
metastasis.
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