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Identification of key genes as predictive 
biomarkers for osteosarcoma metastasis using 
translational bioinformatics
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Abstract 

Background:  Osteosarcoma (OS) metastasis is the most common cause of cancer-related mortality, however, no 
sufficient clinical biomarkers have been identified. In this study, we identified five genes to help predict metastasis at 
diagnosis.

Methods:  We performed weighted gene co-expression network analysis (WGCNA) to identify the most relevant 
gene modules associated with OS metastasis. An important machine learning algorithm, the support vector machine 
(SVM), was employed to predict key genes for classifying the OS metastasis phenotype. Finally, we investigated the 
clinical significance of key genes and their enriched pathways.

Results:  Eighteen modules were identified in WGCNA, among which the pink, red, brown, blue, and turquoise 
modules demonstrated good preservation. In the five modules, the brown and red modules were highly correlated 
with OS metastasis. Genes in the two modules closely interacted in protein–protein interaction networks and were 
therefore chosen for further analysis. Genes in the two modules were primarily enriched in the biological processes 
associated with tumorigenesis and development. Furthermore, 65 differentially expressed genes were identified as 
common hub genes in both WGCNA and protein–protein interaction networks. SVM classifiers with the maximum 
area under the curve were based on 30 and 15 genes in the brown and red modules, respectively. The clinical signifi‑
cance of the 45 hub genes was analyzed. Of the 45 genes, 17 were found to be significantly correlated with survival 
time. Finally, 5/17 genes, including ADAP2 (P = 0.0094), LCP2 (P = 0.013), ARHGAP25 (P = 0.0049), CD53 (P = 0.016), 
and TLR7 (P = 0.04) were significantly correlated with the metastatic phenotype. In vitro verification, western blotting, 
wound healing analyses, transwell invasion assays, proliferation assays, and colony formation assays indicated that 
ARHGAP25 promoted OS cell migration, invasion, proliferation, and epithelial–mesenchymal transition.

Conclusion:  We identified five genes, namely ADAP2, LCP2, ARHGAP25, CD53, and TLR7, as candidate biomarkers for 
the prediction of OS metastasis; ARHGAP25 inhibits MG63 OS cell growth, migration, and invasion in vitro, indicating 
that ARHGAP25 can serve as a promising specific and prognostic biomarker for OS metastasis.
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Background
Osteosarcoma (OS) is a prevalent malignant and highly 
invasive cancer that is primarily observed in children 
and adolescents [1]. OS metastasis is the most com-
mon cause of cancer-related mortality. Despite advances 
in combined therapy (surgery, radiotherapy, systemic 
multi-agent chemotherapy, and immunotherapy), the 
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5-year survival rate of OS patients with localized tumors 
remains at 60–70%, while that for metastatic and recur-
rent patients is < 20% [2, 3]. Several molecular mecha-
nisms have been identified to play a role in the OS 
metastasis cascade, such as the Wnt/β-catenin pathway 
[4, 5], PI3K/Akt/mTOR [6] and Notch signaling [7]. Many 
genes have been identified as potential biomarkers for the 
prediction and treatment of OS metastasis [8–10]. How-
ever, the mechanism underlying OS metastasis remains 
unclear. Thus, a better understanding of the mechanism 
of OS metastasis is urgently required to identify more 
effective and specific biomarkers for early prediction, 
survival assessment, and treatment.

Data-driven approaches, such as gene microarrays, 
have been employed to identify the driver genes of OS 
genesis and metastasis [11, 12]. Several studies screened 
genes based on their expression patterns and analyzed 
their function using Gene Ontology (GO) or Kyoto Ency-
clopedia of Genes and Genomes (KEGG). However, with 
this method, a number of potential interconnections 
among genes are missed. Weighted gene co-expression 
network analysis (WGCNA) is a systematic biology 
method to cluster highly correlated genes into one mod-
ule and to relate the module to clinical traits. Therefore, 
WGCNA is more beneficial for identifying driver genes 
in prognosis and therapy [13].

The support vector machine (SVM) classifier is a spe-
cific method of machine-learning. It has been widely 
applied in selecting biomarker genes for disease classi-
fication and prediction because of its high accuracy and 
the ability to identify the multivariate statistical proper-
ties of data between two different groups [14]. Receiver 
operating characteristic curve analysis was used to eval-
uate the performance of the SVM classifier. It is widely 
used as a valid statistical method to determine the clini-
cal utility of biomarkers [15].

In this study, we aimed to provide a bioinformatics 
method to identify the most relevant genes as potential 
biomarkers in OS metastasis and to employ biological 
methods to verify its effectiveness.

Materials
Data information
We obtained the gene expression profiles of GSE33382 
and GSE21257 from the NCBI Gene Expression Omnibus 
(GEO; https://​www.​ncbi.​nlm.​nih.​gov/​geo/). GSE33382 
and GSE21257 consist of 84 and 53 OS samples, respec-
tively, based on the GPL10295 Illumina Human-6 v2.0 
Expression BeadChip Platform (Illumina Inc., CA, USA). 
The Cancer Genome Atlas (TCGA) and TARGET-OS 
(Children’s Oncology Group and the Hospital for Sick 
Children in Toronto, Canada) data matrix (https://​ocg.​
cancer.​gov/​progr​ams/​target/​data-​matrix) were used to 

validate the SVM classifier. The R packages illuminaio 
and lumi were used to process and analyze the raw data.

In silico analysis
WGCNA was performed on the genes that appeared in 
TCGA and GEO, and GO and KEGG enrichment analy-
ses were conducted to explore the biological relevance of 
the key modules in WGCNA. CytoHubba on Cytoscape 
v3.6.0 (http://​www.​cytos​cape.​org/) was used to con-
struct a protein–protein interaction (PPI) analysis of key 
WGCNA modules. An SVM classifier was employed for 
the prediction and evaluation of key genes involved in OS 
metastasis. The relationship between the key genes and 
OS prognosis was analyzed using Kaplan–Meier survival 
curve analysis. To evaluate the prognostic effect of the 
key genes in OS patients, data from TCGA were used to 
verify their expression levels in OS.

Modules identification and preservation analysis
As a training set, the raw data of GSE33382 and 
GSE21257 were used to construct co-expression net-
works and to screen hub genes. Distance in Pearson’s 
correlation matrices and average linkage between dif-
ferent samples were used to cluster samples and assess 
the microarray quality. As a result, three samples 
(GSM825681, GSM531298, and GSM825697) were 
excluded in subsequent analyses (Additional file  3: Fig. 
S1). The radiometric multiresolution analysis algorithm 
was used for background correction. To evaluate the 
impact of power value on the mean connectivity and 
scale independence, the function “softConnectivity” in 
WGCNA package was used, and the “randomly selected 
genes” parameter was set at 16,000. The “pick SoftThresh-
old” function of WGCNA was used to evaluate the best 
soft thresholding power for constructing networks. Then, 
we calculated the dissimilarity of module eigengenes to 
provide a cutline for module merging.

The stability of the identified modules was tested using 
fragments per million expression data of 86 samples 
from TCGA dataset. We conducted preservation analysis 
using 9081 common genes in both the training and test 
datasets with the “nPermutations” parameter set at 200.

Identification of key modules and functional annotations
We correlated module eigengenes with clinical traits to 
identify the relevant modules. In the present study, clini-
cal traits refer to metastatic conditions. A linear regres-
sion model was used to evaluate the correlation between 
gene expression and clinical traits. We performed the 
functional enrichment analysis of key modules using 
“clusterProfile” package in R.

https://www.ncbi.nlm.nih.gov/geo/
https://ocg.cancer.gov/programs/target/data-matrix
https://ocg.cancer.gov/programs/target/data-matrix
http://www.cytoscape.org/
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Identification of hub genes in key modules
In the present study, the relationship between module 
connectivity and metastasis traits was evaluated to iden-
tify hub genes in the key modules. We also constructed 
a PPI network of genes in key modules. CytoHubba, 
a Cytoscape plugin app, sorts the genes by analyzing 
12 parameters, namely DEGREE, EcCentricity, MCC, 
RADIALITY, STRESS, CLOSENESS, DMNC, MNC, 
BETWEENNESS, EPC, BOTTLENECK, and Cluster-
ingCoefficient. The top 50 genes, ranked by each param-
eter, were recorded. We explored the genes in the top 50 
sorting by 8 or more parameters to identify the essential 
hub genes in the functional network as the hub genes 
with more essential in the functional network [16]. Fur-
thermore, we screened the differentially expressed genes 
(DEGs) using the “limma” R package. The common hub 
genes identified in the co-expression network, PPI net-
work, and DEGs were considered as key genes for further 
analysis and validation [17, 18].

Prediction and evaluation of key genes for OS metastasis 
by SVM classifier
The samples GSE33382 and GSE21257 were ranked ran-
domly, and 75% of the samples were selected to train the 
SVM classifier. In each key module, an increment of five 
genes was added to the classifier to separate metastatic 
OS from non-metastatic OS. The remaining 25% of sam-
ples were used as validation sets. Sensitivity, specificity, 
area under the curve (AUC), positive predictive value, 
and the negative predictive value were calculated to eval-
uate the SVM classifier.

Survival analysis and efficacy evaluation
TCGA database was used to perform the survival anal-
yses. We performed survival and relapse-free survival 
analyses for all key genes from the brown and red mod-
ules using the survival package in R. The relationship 
between the key genes and OS prognosis was analyzed 
using Kaplan‑Meier survival curve analysis. Genes with a 
value of P < 0.05 were considered to be statistically signifi-
cant and used for further validation.

Cell lines
The OS cell lines MG-63 (BNCC338584)  and 
U2OS(BNCC352039) used here were purchased from 
Beina Cell Bank (Beijing, China). Cells were cultured 
in Dulbecco’s Modified Eagle Medium (HyClone, UT, 
USA) containing 10% fetal bovine serum (FBS; Gibco, 
TX, USA) at 37  °C and 5% CO2. pcDNA-ARHGAP25 

plasmids were designed and synthesized by Sangon Bio-
tech (Shanghai, China).

Cell transfection
MG63 and U2OS cells were seeded at a density of 
3 × 105 cells/well in 6-well plates. For ARHGAP25 
overexpression, the cells were transfected with an 
expression vector containing the ARHGAP25 coding 
sequence or pcDNA3.1 vector control (NC; 1.5  μg/
well). Transient transfection was performed using 
Lipofectamine 2000 (11668030, Invitrogen, CA, USA).

Quantitative real‑time polymerase chain reaction
Real-time polymerase chain reaction (RT-PCR) was 
performed to quantitatively identify ARHGAP25 
expression levels. Briefly, total RNA was extracted, and 
cDNA was synthesized from RNA by reverse transcrip-
tion, quantitative real-time PCR was undertaken using 
qPCR SYBR Green Master Mix for (11201ES03, Yeasen, 
China). The primer sequences used for RT-qPCR were 
5ʹ-CCT​GGA​GCA​CGG​CCG​GAA​TG-3ʹ (sense) and 
5ʹ-ACC​ACG​GGC​TCT​GGG​AGG​TC-3ʹ (antisense) 
for ARHGAP25, and 5ʹ-ACA​ACT​TTG​GTA​TCG​TGG​
AAGG-3ʹ (sense) and 5ʹ-GCC​ATC​ACG​CCA​CAG​TTT​
C-3ʹ (antisense) for GAPDH.

Western blot analysis
Cells were lysed using RIPA buffer (Beyotime Insti-
tute of Biotechnology, Jiangsu, China) with protease 
inhibitors. The proteins were separated by SDS-PAGE 
and transferred to polyvinylidene difluoride (PVDF) 
membranes (0.45  µm, IPFL00010, Millipore Corpora-
tion, USA), which were blocked with non-fat milk and 
probed with primary antibodies, followed by horserad-
ish peroxidase-conjugated IgG. Protein signals were 
visualized using an enhanced chemiluminescence 
detection kit (DW101; TransGen Biotech, Beijing, 
China). GAPDH was used as a reference protein. Pri-
mary antibodies against TWIST1 (25465), anti-E-cad-
herin (20874), anti-vimentin (10366-1), and GAPDH 
(60004-1) were purchased from Proteintech (NJ, USA).

Cell viability assay
Transfected MG63 or U2OS cells were seeded in 
96-well plates at a density of 0.3 × 103  cells/well and 
cultured at 37 °C and 5% CO2 for 24, 48, and 72 h with 
diluted Cell Counting Kit 8 (CCK8; 1:10). One hundred 
microliters of diluted CCK8 was added to each well at 
each time point. Absorbance was detected using a Flu-
ostar Omega microplate reader (BMG Labtech, Orten-
berg, Germany) at a wavelength of 450 nm.
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Wound healing assay
Transfected cells were seeded in 6-well plates at a den-
sity of 8 × 105 cells/well and cultured until they reached 
90% confluence. A sterile 200  μL tip was used to cre-
ate a gap in the cells. Each well was washed with phos-
phate-buffered saline three times and further cultured 
in serum-free medium for 24  h. Finally, gap size was 
photographed and measured with a microscope (Olym-
pus, Tokyo, Japan).

Colony formation assay
Transfected cells were trypsinized, and 0.5 × 103 cells 
were plated in 24-well plates and incubated at 37  °C for 
7  days. A dyeing solution containing 0.1% crystal violet 
and 20% methanol was used. Colonies were counted and 
analysed using the ImageJ software v1.52a (http://​rsb.​
info.​nih.​gov/​ij/).

Transwell assays
Cell invasion was assessed using 24-well plates with 
transwell chambers. The upper chambers were coated 
with Matrigel (dilution 1:2; BD Biosciences, NJ, USA) 
and incubated for 1 h at 37 °C before cell cultures. Cells 
(5 × 104) in serum-free medium were plated in the upper 
chambers. The lower chambers were filled with complete 
medium containing 10% FBS. Following 24 h of incuba-
tion, invasive cells in the lower chamber were washed, 
fixed, and stained with 0.1% crystal violet. Invasive cells 
were counted under a microscope (Olympus).

Statistical analysis
All results are expressed as the mean ± standard devia-
tion. Student’s t-test was used to compare groups. Statis-
tical significance: *P < 0.05, **P < 0.005, and ***P < 0.001. 
Analyses were performed using the GraphPad Prism 
software v8.0.

Results
Weighted co‑expression network construction and module 
preservation analysis
We performed WGCNA on 15,040 genes after remov-
ing three outlier samples (GSM825681, GSM531298, and 
GSM825697; Additional file  3: Fig. S1), with the most 
appropriate soft threshold power of 5 (R2 = 0.87; Fig. 1a, 
b). Finally, 18 co-expression modules were identified 
(Fig. 1c).

By using summary preservation statistics, we evaluated 
whether the co-expression modules were stable from the 
training dataset (GSE33382 and GSE21257) to TCGA test 
dataset. Thirteen modules with a Zsummary statistic < 10 

were defined as poor preservation. The pink, red, tur-
quoise, blue, and brown modules were consistently stable 
and were selected for further analysis (Fig. 1d).

Identification of key modules and functional annotation
To identify the most significant modules, we analyzed the 
relevance between each module and OS metastasis. In 
the five preserved modules, three modules (brown, blue, 
and red) were significantly correlated with OS metasta-
sis (Fig. 2). Therefore, the genes contained in the brown, 
blue, and red modules were further analyzed.

Furthermore, GO and KEGG enrichment analyses 
were conducted to explore the biological relevance of 
the three modules. The results showed that genes in the 
brown module were primarily enriched in immunity, reg-
ulation of osteoclast differentiation, NOD-like receptor 
signaling pathway, and NF-κB pathway (Fig. 3a–d). Genes 
in the blue module were predominantly enriched in the 
regulation of RNA processing and cell adhesion molec-
ular binding (Fig.  3e–h). Genes in the red module were 
mainly enriched in the regulation of DNA-associated 
activity and cell cycle (Fig. 3i–l).

Identification of genes in key modules
Highly interacted genes in a module play a pivotal role 
in biological processes. Therefore, we selected the top 50 
genes with the greatest biological relevance in the brown, 
blue, and red modules as hub genes. Furthermore, the 
PPI network of genes in each of the three modules was 
established in accordance with the STRING database. In 
the brown, red, and blue modules, there were 40, 29, and 
28 overlapping hub genes, respectively, in both WGCNA 
and PPI analyses, which were selected as key genes. We 
screened 4141 DEGs between metastatic and non-met-
astatic OS samples using the limma package (adjusted 
P-value < 0.05, and |log2 (fold change)|> 0.2). The vol-
cano plot of the DEGs is shown in Fig. 4d. As shown in 
Fig.  4a–c, the genes in the blue module does not show 
a closely interactive network; thus, the blue module was 
excluded from further analysis (Fig.  4b). We then over-
lapped the DEGs and hub genes in the brown and red 
modules using a Venn diagram. As shown in Fig. 4e, 40 
genes are present in both DEGs and the brown module, 
and 25 genes are present in both DEGs and the red mod-
ule. These 65 genes were considered key genes relevant 
to OS metastasis and were therefore selected for further 
analysis (Fig. 4e).

Key genes play a prediction role in OS metastasis
To confirm the application of key genes in OS metasta-
sis prediction, we chose the SVM model to classify the 
data set of metastatic and non-metastatic samples. We 

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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Fig. 1  Co-expression modules construction and module preservation analysis. a Analysis of scale-free fit index for various soft-thresholding powers. 
b Analysis of mean connectivity for various soft-thresholding powers. c Color coding of co-expression network modules for mRNAs. d MedianRank 
(left) and Zsummary (right) statistics of the most variant gene modules in module preservation
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used the top 75% samples ranked randomly in GSE33382 
and GSE21257 as the training set, and the remaining 
25% samples as the test set. The sensitivity, specificity, 

and AUC of the key genes in the test set were obtained 
(Table  1, Fig.  4f–g). Gene list of ROC curves in brown 
module (Additional file  1: Table  S1) and red module 

Fig. 2  Heat map of correlation between eigengene modules and OS metastasis. a Three modules (brown, blue and red) had significant correlation 
with OS metastasis (P < 0.05). Scatter plot of eigengene modules in the brown (b), red (c) and blue (d) modules
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(Additional file 2: Table S2) were also provided as addi-
tional files. These results suggest that these genes can be 
potential biomarkers for OS metastasis prediction, and 
that this model is capable of discriminating patients with 
or without OS metastasis.

Identification of featured genes with TCGA dataset
To evaluate the prognostic effect of the key genes in 
OS patients, the relationship between gene expression 
and survival time was determined using Kaplan–Meier 
survival analysis with the log-rank test. Finally, 17 key 
genes were found to be significantly correlated with sur-
vival time (overall survival time or relapse-free survival 
time). The expression analysis of the 17 key genes in 
TCGA dataset provides a unique insight into their func-
tion in OS metastasis. We measured the differences in 
the expression of the 17 key genes between metastatic 
and non-metastatic OS samples. As shown in Fig. 5, we 
found five genes with significantly lower expression in 

metastatic samples, namely ADAP2 (P = 0.0094), LCP2 
(P = 0.013), ARHGAP25 (P = 0.0049), CD53 (P = 0.016), 
and toll-like receptor 7 (TLR7; P = 0.04). The association 
of these five genes with overall survival time and relapse-
free survival time is shown in Fig.  6. The association of 
the remaining 12 key genes with survival time is shown in 
Additional file 4: Fig. S2.

ARHGAP25 inhibited MG63 cell growth, migration, 
and epithelial–mesenchymal transition (EMT) progression 
in vitro
ARHGAP25 was selected to verify whether this inte-
grated bioinformatics analysis works, as it was iden-
tified with a highly significant difference in all of the 
bioinformatic analyses. Targeting ARHGAP25 expres-
sion has been shown to inhibit the growth and migra-
tion of other cancer cells [19–21]. We employed CCK8 
to examine relative cell growth and found that ARH-
GAP25 overexpression (Fig.  7a) in MG63 and U2OS 

Fig. 3  GO functional and significant KEGG pathways enrichment in the key modules. a–c GO functional enrichment of genes in the brown module. 
d Significant KEGG pathways enrichment in the brown module. e–g GO functional enrichment of genes in the blue module. h Significant KEGG 
pathways enrichment in the blue module. i–k GO functional enrichment of genes in the red module. l Significant KEGG pathways enrichment in 
the red module
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cells was significantly lower than that in NC cells 
(Fig.  7b). The wound healing assay further suggested 
that MG63 and U2OS cells overexpressing ARHGAP25 
had reduced migration-related abilities (Fig. 7c–e). To 
evaluate the effect of ARHGAP25 overexpression on 
OS cell invasion, we performed a transwell cell invasion 
assay. As shown in Fig. 7f–g, ARHGAP25 significantly 
inhibits MG63 and U2OS cell invasion. Moreover, the 
colony formation assay further confirmed that ARH-
GAP25 overexpression inhibited MG63 and U2OS 
cell growth (Fig.  7h–i). At the molecular level, west-
ern blotting results revealed that ARHGAP25 overex-
pression increased the expression of E-cadherin, an 

EMT-associated protein, and decreased the expression 
of EMT proteins Twist1 in MG63 and U2OS cells, and 
decreased vimentin expression in U2OS but not MG63 
cells (Fig.  7j, k). The above data indicates that target-
ing ARHGAP25 expression suppresses OS cell growth, 
migration, and EMT progression.

Discussion
OS is the most common bone cancer in children and 
adolescents and is characterized by a high propen-
sity for metastasis [1], however, knowledge of the 
mechanism of OS metastasis is limited. Therefore, it 
is necessary to identify sufficient gene signatures with 

Fig. 4  The identification of key genes in key modules. PPI network of the genes in brown (a), blue (b), and red (c) modules. d Volcano plot 
visualizing DEGs between metastasis and non-metastasis OS samples. e Identification of common genes between DEGs and the key modules by 
overlapping them. Receiver operating characteristic curve of support vector machine classification and showed the diagnostic efficiency of genes 
in brown (f) and red (g) module. AUC, area under the curve
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considerable efficacy in predicting metastasis status, 
which may improve the early diagnosis and clinical prog-
nosis of OS. In this study, we employed WGCNA to 
establish a co-expression network and identified three 
modules that were most significantly associated with OS 
metastasis. By overlapping hub genes in the PPI network, 
corPvalueStudent analysis, and DEGs, we found that 40 
and 25 key genes in brown and red modules, respectively, 
were significantly associated with OS metastasis. Using 
the SVM classifier, we precisely distinguished metastatic 
OS samples from non-metastatic samples using these 
key genes. However, none of the genes in the red mod-
ule were significant in the overall or relapse-free survival 
analyses. TCGA database was used to further validate the 
prediction value of key genes in brown modules. Through 
a series of analyses of the clinical phenotypes and prog-
nosis of OS, we established that five featured genes 
(ADAP2, LCP2, ARHGAP25, CD53, and TLR7) were 
significantly associated with OS metastasis and survival 
time.

ArfGAP with dual pleckstrin homology (PH) domain 
2 (ADAP2), known as Centaurin-a2, is characterized by 
a C4-type zinc finger and two PH domains [22]. ADAP2 
acts as a microtubule-associated protein that increases 
microtubule stability by interacting with β-tubulin. 
Microtubule stability ensures and maintains cell struc-
ture and function, and is critical in important cellu-
lar processes, including cell movement, division, and 
vesicular transport [23]. ADAP2 downregulation has 
been reported to promote cervical cancer HeLa cell pro-
liferation [24]. Thus, a decrease in ADAP2 expression 
may play an important role in the cell division cycle and 

actin cytoskeleton to regulate OS cell proliferation and 
metastasis.

The SH2 domain-containing leukocyte protein of 
76  kDa (SLP76, also known as LCP2) is expressed in 
most hematopoietic lineages. LCP2 plays a critical role in 
T-cell development and activation [25]. It is well known 
that T cells mediate anti-tumor activity in numerous 
tumors [26]. To date, there have been bioinformatics 
studies that showed that LCP2 may play a role in tumor 
occurrence and metastasis, such as colon cancer [27, 28] 
and glioblastoma multiforme [29]. To our knowledge, 
this is the first study on the association of LCP2 with OS 
metastasis, however, the mechanism requires further 
investigation.

CD53 is a member of the tetraspanin family, which is a 
group of cell surface proteins that participate in cell adhe-
sion, motility, signal transduction, immune cell activa-
tion, tumor growth, and metastasis [30]. CD53 network 
genes were found to be poorly expressed in the high-
metastasis breast cancer transplantation model and pre-
dicted distant metastasis-free survival specifically in ER+ 
breast cancers [31]. It has also been reported that CD53 
is linked to tumor necrosis factor-α (TNF-α) expression 
by genome-wide association analysis [32], which may 
change the tumor immunogenic microenvironment and 
then affect the immune response [33]. In this study, we 
found that the CD53 mRNA expression level was lower 
in metastatic OS samples, which is in accordance with 
the decreased CD53 expression in high-metastasis breast 
cancer in a previous study [31]. Our results suggest a 
potential role of CD53-mediated immune response in OS 
metastasis.

Table 1  The accuracy, sensitivity, specificity, PPV, NPV and AUC of SVM analysis of brown and red modules

Se, sensitivity; Sp, specificity; PPV, positive prediction value; NPV, negative prediction value; AUC, area under ROC curve

Modules Num of genes Correct rate Se Sp PPV NPV AUC​

Brown

 1–5 genes 5 0.692 0.882 0.333 0.714 0.600 0.810

 1–10 genes 10 0.731 0.938 0.400 0.714 0.800 0.743

 1–15 genes 15 0.808 0.944 0.500 0.810 0.800 0.800

 1–20 genes 20 0.808 0.900 0.500 0.857 0.600 0.733

 1–25 genes 25 0.846 0.905 0.600 0.905 0.600 0.914

 1–30 genes 30 0.885 1.000 0.450 0.857 1.000 0.933

 1–35 genes 35 0.885 0.950 0.667 0.905 0.800 0.895

 1–40 genes 40 0.923 1.000 0.714 0.905 1.000 0.905

Red

 1–5 genes 5 0.654 0.833 0.750 0.714 0.400 0.686

 1–10 genes 10 0.808 0.900 0.500 0.857 0.600 0.743

 1–15 genes 15 0.885 0.875 1.000 1.000 0.400 0.943

 1–20 genes 20 0.885 0.910 0.750 0.952 0.600 0.857

 1–25 genes 25 0.885 0.950 0.667 0.905 0.800 0.800
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Fig. 5  Key genes validation. ADAP2 (a), LCP2 (b), ARHGAP25 (c), CD53 (d) and TLR7 (e) expression levels were all downregulated in the metastatic 
OS compared with no-metastatic OS groups according to the Cancer Genome Atlas (TCGA) database
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TLR7 is a member of the TLR family that acts as a pat-
tern recognition receptor and is expressed on the mem-
brane of endosomes. TLR7 activation by ssRNA of virals 
and nucleic acids can induce the expression of type I 
interferon and inflammatory cytokines, and activate 
other immune cells through several signaling pathways, 
such as the NF-κB signaling pathway [34, 35]. Consider-
ing the powerful immune regulatory function of TLR7, 
the agonists of TLR7 have been approved for topical 
application in cancer treatment [36, 37]. Several studies 

have reported that the agonists of TLR7 could prevent 
tumor recurrence and eliminate metastasis [38, 39]. A 
previous bioinformatics analysis study reported that 
TLR7 signaling is related to OS metastasis [40]. This sug-
gests that the TLR7 signaling pathway may be a potential 
target for OS metastasis therapy.

The Rac GTPase-activating protein 25 (ARHGAP25) 
has been confirmed to act as a negative regulator of 
several tumor metastases. In colorectal cancer, ARH-
GAP25 inhibits tumor metastasis via the Wnt/β-catenin 

Fig. 6  Survival analysis of association between ADAP2, LCP2, ARHGAP25, CD53 and TLR7 expression levels and survival rates in OS. a–e Overall 
survival analysis with ADAP2, LCP2, ARHGAP25, CD53 and TLR7 expression levels. f–j Relapse-free survival analysis with ADAP2, LCP2, ARHGAP25, 
CD53 and TLR7 expression levels

Fig. 7  ARHGAP25 inhibited MG63 and U2OS cells’ growth, migration and invasion. a ARHGAP25 expression was determined in vector transfected 
MG63 and U2OS cells. b Overexpression of ARHGAP25 in MG63 and U2OS cells inhibited cell growth. c Representative images of MG63 and U2OS 
cells wound healing assay at 0 and 24 h after scratching. Bars indicate: 100 µm. d, e Quantification of the gap size in wound healing assay (n = 3), 
which showed that overexpression of ARHGAP25 suppressed wound healing. f Representative images of MG63 and U2OS cells stained with crystal 
violet in the transwell assay. Bars indicate: 100 µm. g Counts of cells invaded through the chambers (n = 3). h Representative images of colony 
formation assay to analyze cell proliferation in ARHGAP25 overexpressed OS cells. i Quantification of the colony number (n = 3). j Protein expression 
of Twist1, Vimentin, and E-cadherin was measured in OS cells with ARHGAP25 overexpression. k Quantification of protein expression using ImageJ. 
*Indicates P < 0.05, **indicates P < 0.01 and ***indicates P < 0.001. Picture c, f are magnified 100 times and h is not magnified

(See figure on next page.)
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pathway [41, 42]. A putative molecular network study 
showed that ARHGAP25 and LCP2 targeted more than 
five DEGs to play more important roles in colon cancer 

metastasis [27]. The RhoE/ROCK/ARHGAP25 pathway 
was reported to control alveolar rhabdomyosarcoma cell 
invasion [20]. Wnt signaling has been shown to promote 

Fig. 7  (See legend on previous page.)
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tumor growth and metastasis in OS [5]. Considering that 
ARHGAP25 could inhibit the Wnt pathway to limit colo-
rectal cancer, we assumed that ARHGAP25 could also 
limit OS metastasis, therefore, resulting in a reasonable 
decrease of ARHGAP25 expression in OS metastasis.

Conclusions
We identified a five-gene signature as a practical and 
candidate biomarker for OS metastasis prediction 
based on data mining and analysis. In  vitro validation 
demonstrated that ARHGAP25 overexpression reduced 
MG63 cell growth, migration, and invasion, indicating 
that ARHGAP25 can serve as a promising specific and 
prognostic biomarker for OS metastasis. Our results 
provide insights into the potential mechanisms of OS 
metastasis and candidate genes for the prediction of OS 
metastasis.
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