
Xu et al. Cancer Cell International          (2021) 21:610  
https://doi.org/10.1186/s12935-021-02321-z

PRIMARY RESEARCH

Construction of a single nucleotide 
variant score‑related gene‑based prognostic 
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Abstract 

Background:  The accumulation of single nucleotide variants (SNVs) and the emergence of neoantigens can affect 
tumour proliferation and the immune microenvironment. However, the SNV-related immune microenvironment 
characteristics and key genes involved in hepatocellular carcinoma (HCC) are still unclear. We aimed to evaluate dif‑
ferences in the SNV-related immune microenvironment, construct a prognostic model and validate the key genes 
in vitro.

Methods:  The categories of samples were defined by the expression of SNV score-related genes to evaluate the 
differences in mutational features, immune environment and prognosis. The survival model was constructed with 
survival-associated genes and verified in two independent test datasets. RCAN2, the key gene screened out for bio‑
function, was validated in vitro.

Results:  IC2, among the three integrated clusters (IC1, IC2, IC3) classified by the 82 SNV score-related genes, was 
distinct from the rest in SNV score and immune cell infiltration, showing a better prognosis. Seven prognostic markers, 
HTRA3, GGT5, RCAN2, LGALS3, CXCL1, CLEC3B, and CTHRC1, were screened to construct a prognostic model. The sur‑
vival model distinguished high-risk patients with poor prognoses in three independent datasets (log-rank P < 0.0001, 
0.011, and 0.0068, respectively) with acceptable sensitivity and specificity. RCAN2 was inversely correlated with NK cell 
infiltration, and knockdown of RCAN2 promoted proliferation in HCC.

Conclusions:  This study revealed the characteristics of the HCC SNV-associated subgroup and screened seven latent 
markers for their accuracy of prognosis. Additionally, RCAN2 was preliminarily proven to influence proliferation in HCC 
and it had a close relationship with NK cell infiltration in vitro. With the capability to predict HCC outcomes, the model 
constructed with seven key differentially expressed genes offers new insights into individual therapy.
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Background
Hepatocellular carcinoma (HCC) is the sixth most com-
mon cancer, with mortality ranking third for malignan-
cies in 2020 [1, 2]. A large number of hepatocellular 
carcinomas are diagnosed in advanced stages and are 
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not suitable for surgical resection. However, insensitivity 
to systemic chemotherapy is a troubling problem in the 
treatment of advanced HCC [3–5]. With the develop-
ment of immunotherapy, the overall survival of patients 
with HCC has been prolonged, and tumour-specific neo-
antigens are gradually being recognized [6].

Rapid replication of DNA accompanied by mutations 
is considered one of the key features of the development 
of HCC. The generation and accumulation of somatic 
mutations is regarded as a driving factor for HCC and is 
related to tumour-specific neoantigens [7]. Interestingly, 
the accumulation of mutations is usually correlated 
with a poor survival in multiple cancers [8]. However, 
patients with high levels of mutations can achieve better 
survival in immunotherapy because of the better recog-
nition by their immune system of tumour-specific neo-
antigens [9, 10].

Single nucleotide variants (SNVs) is an important 
component of somatic mutations and some genes 
with SNVs can alter the HCC cells behaviours or clini-
cal characteristics [11, 12]. In addition, the SNVs level 
of circulating tumour DNA (ctDNA) provides a better 
evaluation of HCC patients’ prognostic and tumour 
occurrence detection in advance than traditional strat-
egies [13]. Therefore, focusing on SNVs could provide 
a new perspective for the diagnosis and treatment of 
HCC.

To date, there are few reports on the SNV-associated 
microenvironment and key genes. In this study, we 
screened SNV score-related genes whose expression 
was correlated with SNVs and classified the samples by 
their SNV score-related gene expression pattern. The 
mutation characteristics, immune microenvironment 
differences and overall survival among the subgroups 
were assessed. In addition, the biological functions of 
differentially expressed genes among the subgroups 
were further studied to explore the possible pathways 
and mechanisms by which SNV contributes to the prog-
nosis of HCC. Moreover, a survival prediction model 
was constructed from the key differentially expressed 
genes and then verified by two independent test data-
sets. Finally, we validated the biological function of 
RCAN2 in  vitro since it is considered one of the key 
genes.

Methods
Data collection and pre‑processing
We downloaded the latest clinical data, SNV (MuSE 
Variant Aggregation and Masking), and RNA-seq 
(HTSeq-FPKM) data from the Cancer Genome Atlas–
Liver hepatocellular carcinoma (https://​portal.​gdc.​
cancer.​gov, TCGA-LIHC) on March 10, 2021 [14]. 
Patients without complete clinical data were filtered 

out. In addition, only genes with nonzero expression 
in more than 80% of HCC patients were included 
for analysis. Before the analysis, RNA-seq (HTSeq-
FPKM) data was pre-processed by the formula as 
log2(fpkm + 1).

Identification of SNV score‑related genes and integrated 
clusters
Through the downloaded SNV data, the ‘SNVs-total’ 
was used as the SNV score of each patient for subse-
quent analysis. The Spearman correlation coefficients 
were calculated between the genes expressions and 
SNV scores of HCC patients. On this basis, related 
genes were screened out with a threshold of P < 0.05 
and R > 0.2 and called SNV score-related genes. Based 
on the expression profiles of the SNV score-related 
genes, the samples were classified into different inte-
grated clusters (ICs) by a clustering algorithm (R 
package: ConsensusClusterPlus, version: 1.52.0), with 
an appropriate K-means for the initial cluster [15].

Differences in integrated clusters were assessed 
in different dimensions, including SNVs and clinical 
characteristics
At the same time, clinical data and SNVs of the sam-
ples were included to evaluate the differences in clini-
cal characteristics, prognosis and SNV among the 
integrated clusters. On the basis of the above, we 
combined the original integrated clusters with no dif-
ference in SNV score and clinical characteristics into a 
new integrated cluster.

Difference analysis of the immune microenvironment, 
transcriptome and biological function among new 
integrated clusters after incorporation
The abundances of twenty-two kinds of immune cells, 
naive B lymphocytes, CD4 T cells and natural killer 
cells (NK cells), were calculated for the integrated 
clusters by an approach called CIBERSORT [16]. To 
evaluate the infiltration of immune cells accurately, 
P < 0.05 was used as a threshold to judge the result of 
deconvolution.

In the dimensions of transcriptome analysis among 
the new integrated clusters, we used the limma pack-
age (version: 3.44.3) to identify differentially expressed 
genes that met two criteria simultaneously (1. adjusted 
P value < 0.05; 2. Log foldchange > 1 or < −  1) [17]. The 
differentially expressed genes selected above were used 
for the analysis of biological function in the next step. 
Gene Ontology (GO) enrichment analysis and Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis were performed for the differentially expressed 
genes by the clusterProfiler package (version: 3.160) 
[18–20].

Identification of the key differentially expressed genes 
related to the prognosis and construction of the survival 
prediction model
To identify the key differentially expressed genes related 
to prognosis, Cox hazard analysis with P < 0.05 as a sig-
nificant standard was performed for the differentially 
expressed genes screened out above, and the TCGA-
LIHC dataset was used as the training dataset. We did 
not add other covariates into the workflow because of 
the lack of clinical characteristics in TCGA-LIHC data-
base that were recognized as the influence factors of 
the overall survival such as BCLC stage, microvascular 
invasion, AFP and so on. Then, we established a survival 
prediction model from the key differentially expressed 
genes and calculated each HCC patient’s risk score with 
the model. All patients were divided into high-risk and 
low-risk groups with a risk score cut-off of 1.0. Kaplan–
Meier (KM) survival curves and receiver operating 
characteristic (ROC) curves of the different risk groups 
were generated to evaluate the new survival model. The 
correlation between the model and SNV score was cal-
culated as well.

Verification of the survival model in two independent 
external test datasets
Two independent external test datasets were analysed 
to verify the rigor and accuracy of the new survival 
model as described above. The first external test dataset, 
mainly including HCC patients with surgical treatment, 
is available in NODE (https://​www.​biosi​no.​org/​node, 
ID: OEP000321) [21]. The second external test dataset 
with advanced HCC patients undergoing transcath-
eter arterial chemoembolization (TACE) treatment can 
be accessed in the Gene Expression Omnibus (https://​
www.​ncbi.​nlm.​nih.​gov/​geo, ID: GSE104580).

Screening out the most biofunction‑correlated gene 
and validating its biological function in vitro
The gene most closely associated with biological func-
tion was screened out for validation in  vitro. The pro-
tein expression level and the location of the protein in 
liver tissue were investigated by immunohistochemistry 
(IHC) and multicolour immunofluorescence (IF). All 
antibodies were obtained from the Proteintech Com-
pany, and every clinical tissue specimen was accessed 
after obtaining institutional review board approval.

In addition, the gene was overexpressed and 
knocked down in two human hepatocellular carci-
noma cell lines (MHCC97H and Hep3B). MHCC97H 
cell was obtained at Liver Cancer Institute, Fudan 
University and Hep3B cell was purchased from the 
National Collection of Authenticated Cell Cultures 
(https://​www.​cellb​ank.​org.​cn/). All cells were main-
tained in high glucose Dulbecco’s modified Eagle’s 
medium (DMEM, Gibco) supplemented with 10% 
foetal bovine serum (FBS, Gibco), and their growing 
environments were 37 °C with 5% CO2. Cell prolifera-
tion was detected at days 0, 1, 2, 3 and 4 with a cell 
counting kit-8 (CK04, DOJINDO).

Results
Three original integrated clusters were identified 
by eighty‑two SNV‑related genes, and IC2 was significantly 
different from IC1 and IC3 in the dimensions of the SNV 
score and clinical characteristics
The analysis workflow is shown in Fig.  1A. Eighty-
two SNV score-related genes were identified with two 
simultaneously met thresholds, including P < 0.05 and 
R > 0.2. According to the expression of the SNV score-
related genes, 304 patients with complete clinical data 
were divided into three integrated clusters by a clus-
tering algorithm. To optimize the results of the clus-
ter analysis, we set the max groups as six and repeated 
them 1000 times. The results showed that the opti-
mal cluster was three, including IC1 (n = 161), IC2 
(n = 128) and IC3 (n = 15) (Fig. 1B, C).

There were significant differences in SNV scores 
among IC1, IC2 and IC3 (Kruskal–Wallis P < 0.05). 
The SNV scores of IC1 and IC3 were higher than that 
of IC2 (P < 0.0001 and P < 0.05, respectively), while 
there was no significant difference between IC1 and 
IC3 (Fig.  1D). The overall survival evaluated by KM 
survival curves among the three subgroups was signif-
icantly different (P = 0.027, Fig.  1E). Moreover, there 
were no significant differences among the three sub-
groups for clinical characteristics, including patho-
logic stage, pathological T stage, sex and body mass 
index (BMI) (Additional file 1: Table S1).

Differences between IC2 and IC1/IC3 in overall survival, 
SNV score and immune microenvironment
To further optimize the integrated clusters, we com-
bined IC1 and IC3 into a new subgroup, called IC1/
IC3, with similar SNV scores and clinical characteris-
tics. The SNV score of IC1/IC3 was higher than that of 
IC2 (P < 0.0001, Fig. 2A), and their prognosis was worse 
than that of IC2 (P = 0.017, Fig.  2B). There were no 
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significant differences in clinical features between IC1/
IC3 and IC2 (Table 1).

We evaluated the infiltration of immune cells between 
IC1/IC3 and IC2 using the algorithm called cibersoft. 
The resting CD4 T cells and resting dendritic cells 
of IC2 were higher than those of IC1/IC3, while the 

follicular helper T cells and activated NK cells were 
lower than those of IC1/IC3 (Fig. 2C).

Fig. 1  A The workflow of the study. B and C Results of the clustering algorithm and the integrated clusters with K = 3. D Differences in SNV scores 
among three original integrated clusters (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns means no statistical significance, according to two 
independent samples with a Wilcox test). E, KM curve analysis of the three original integrated clusters
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Fig. 2  Differences between IC2 and IC1/IC3 (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns means no statistical significance, according to two 
independent samples with a Wilcox test): A Dimensions of the SNV score. B KM curve analysis in two subgroups after optimization. C, Abundances 
of twenty-two kinds of immune cells in IC1/IC3 and IC2

Table 1  Pathological and clinical features of the integrated clusters after optimization

IC1/IC3 (n = 176) IC 2 (n = 128) P

Pathologic stage 1 + 2 126 101 χ2 = 2.097 0.1476

3 + 4 50 27

Pathologic T 1 + 2 127 102 χ2 = 2.260 0.3230

3 + 4 44 21

Gender Female 52 43 χ2 = 0.5653 0.4521

Male 124 85

BMI 25.40 ± 5.762 26.95 ± 11.39 t = 1.557 0.1206
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Differentially expressed genes between IC1/IC3 and IC2 
mainly play a role in the extracellular matrix by GO analysis 
and can be mapped to the PI3K‑Akt signalling pathway 
by KEGG
According to the optimized integrated clusters, we 
screened 182 differentially expressed genes between 

IC1/IC3 and IC2. The results of GO analysis showed 
that these genes were significantly concentrated in 
the extracellular matrix organization and extracel-
lular structure organization in the biological pro-
cess (BP) dimension. In the cellular component (CC) 
dimension, they were mainly concentrated in the 

Fig. 3  GO and KEGG analyses of differentially expressed genes between IC1/IC3 and IC2: A Differential expressed genes between IC1/IC3 and IC2 
were performed into GO analysis including BP, CC and MF dimensions.(the larger size of the cycles represents the more count of genes mapped 
into the pathway or biological process, the color of the cycles from blue to red represents the adjust P value from high to low); B KEGG analyses of 
differentially expressed genes between IC1/IC3 and IC2 (the larger size of the cycles represents the more count of genes mapped into the signalling 
pathway, the color of the cycles from blue to red represents the adjust P value from high to low)
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collagen-containing extracellular matrix, while in the 
molecular function (MF) dimension, they were mainly 
concentrated in the structural flow of the extracellular 
matrix (Fig.  3A). In KEGG analysis, the PI3K-Akt sig-
nalling pathway was identified as the top pathway with 
the richest differential expressed genes and the lowest 
adjusted P value (Fig. 3B).

Survival model construction based on seven key 
differentially expressed genes
The differentially expressed genes were imported into 
the univariate and multivariate analysis workflow of 
the Cox proportional hazard model. In the section 
of univariate analysis, we calculated the log-rank P 
between each gene and overall survival one by one 
and finally accessed 27 genes with log-rank P < 0.05 
as the significant standard (Fig.  4A). Subsequently, 
27 genes we accessed from univariate analysis were 
imported together into the workflow of multivariate 
analysis (P < 0.05 was set as the threshold). Finally, 
seven genes were identified as independent factors of 
overall survival and were used to constructed a sur-
vival model (Fig. 4B). The correlation coefficients and 
P value of these seven key differentially expressed 
genes were shown in Additional file 1: Table S2. Most 
of them have the P < 0.05 while only GGT5 meets the 
criterion of SNV score-related genes.

Based on the survival model, each patient’s risk 
score was calculated by the following formula: 
risk score = (coef_HTRA3 × HTRA3_low) + (coef_
GGT5 ×  GGT5_low) +  (coef_RCAN2 ×  RCAN2_
low)  +  (coef_LGAL S3 ×  LGAL S3_low)  +  (coef_
CXCL1 × CXCL1_low) + (coef_CLEC3B × CLEC3B_
low) + (coef_CTHRC1 × CTHRC1_low). Gene_low 
represents the gene expression in the low expression 
group and was assigned a value of 1.0; otherwise, it 
was assigned a value of 0. The coefficient of each gene 
in the risk prediction formula of the survival model is 
shown in Table 2.

With a risk score cut-off of 1.0, the patients were 
divided into high-risk and low-risk groups. The KM 
survival curves were used to evaluate this new sur-
vival model and they showed that the survival in the 
high-risk group was worse than that in the low-risk 
group (log-rank P < 0.0001, Fig.  4C). As shown in 
Fig.  4D, the AUC values were 0.812, 0.806 and 0.766 

in ROC curve analysis at 24, 36 and 60  months, 
respectively, suggesting that the model has good 
specificity and sensitivity for prognostication. Com-
pared with the TNM stage, the AUC value of sur-
vival model was higher than that of the TMN stage 
(the AUC values of TNM stage were 0.652, 0.686 and 
0.654, Fig. 4E). It seemed that the survival model can 
provide the more acceptable specificity and sensitiv-
ity in prognosis prediction than TNM stage. In addi-
tion, the SNV score of the high-risk group was higher 
than that of the low-risk group (P = 0.003, Fig. 4F).

Two independent external test datasets verified the SNV 
score‑related genes‑based model to be an effective 
method to predict the outcomes of the HCC patients
In the first test dataset (OEP000321), we identified 76 
patients in the high-risk group and 82 patients in the 
low-risk group using the same risk score risk cut-off as 
the training dataset. The overall survival of the high-
risk group was worse than that of the low-risk group, 
with an acceptable specificity and sensitivity (log-rank 
P = 0.011, AUC = 0.66, 0.647, and 0.698 at 24, 36, and 
60 months, respectively, Fig. 5A).

To increase the reliability of the model, we used 
another external test dataset (GSE104580) to conduct a 
second validation. All patients in GSE104580 were diag-
nosed with unresectable HCC in an advanced stage and 
were treated with TACE therapy instead. The baseline 
clinical features in GSE104580 and the results of the 
Cox univariate analysis are shown in Additional file  1: 
Table S3.

The median survival time in GSE104580 was 
7.23  months. The results of the KM survival curves 
showed that the overall survival of the 73 patients in the 
low-risk group was better than that of the 72 patients 
in the high-risk group (log-rank P = 0.0068, Fig.  5B). 
The AUC values were 0.699 and 0.666 when 7.5 and 
9.5  months were taken as checkpoints for the ROC 
curve analysis. The risk score of the model, together 
with age, tumour size, vascular invasion and metastasis, 
was one of the independent risk factors affecting prog-
nosis (Table 3).

(See figure on next page.)
Fig. 4  Construction of the survival model in the TCGA-LIHC dataset: A 182 differentially expressed genes between IC1/IC3 and IC2 were imported 
into the univariate analysis workflow of the Cox proportional hazard model and finally twenty-seven genes with P < 0.05 were accessed. B 
Twenty-seven genes with log-rank P < 0.05 in Cox univariate hazard analysis shown in Fig. 4A were selected out for cox multivariate hazard analysis 
and finally we got seven genes with P < 0.05 in Cox multivariate hazard analysis. C The KM curve in high-risk and low-risk groups. D ROC curve 
analysis at 24, 36, and 60 months. E The KM curve and ROC curve analysis of TNM stage in TCGA-LIHC database. F, The SNV score in different risk 
groups (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns means no statistical significance, with a Wilcox test)
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Fig. 4  (See legend on previous page.)
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The regulator of calcineurin 2 (RCAN2) was inversely 
correlated with NK cell infiltration, and knockdown 
of RCAN2 promoted proliferation in HCC
RCAN2, encoding a member of the regulator of cal-
cineurin protein family, regulates the level of phos-
phorylation by binding to the catalytic domain 
of calcineurin A. In KEGG analysis, differentially 

expressed genes were mapped to the PI3K-Akt signal-
ling pathway, and phosphorylation plays an important 
role in this process. On this basis, RCAN2 was screened 
out as a key gene for validation in vitro.

The RCAN2 protein was located in the cytoplasm in 
HCC and in adjacent tissue. As shown in Fig.  6A, the 
expression level of RCAN2 in HCC was lower than 
that in adjacent tissue. CD16 and CD56 were stained 
to detect NK cells in HCC by multicolour immunoflu-
orescence, and it seemed that RCAN2 expression was 
inversely correlated with NK cell infiltration (Fig. 6B).

We overexpressed and knocked down RCAN2 in 
MHCC97H and Hep3B cells (Fig.  7A). To examine 
whether the proliferation of HCC is associated with 
RCAN2, we measured cell proliferation by examin-
ing the optical density at 450  nm with a CCK8 assay. 
Obviously increased cell proliferation was revealed 
in MHCC97H and Hep3B cells after knocking down 
RCAN2, while the proliferation rate was decreased 
when RCAN2 was overexpressed (Fig. 7B).

Table 2  The coefficient of each gene in COX proportional 
hazard model

Gene Coefficient

HTRA3 − 1.223

GGT5 1.278

RCAN2 1.016

LGALS3 − 0.744

CXCL1 − 0.598

CLEC3B 0.682

CTHRC1 − 0.538

Fig. 5  Validation in two external test datasets: A The KM and ROC curve analyses in OEP000321. B The KM and ROC curve analyses in GSE104580
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Discussion
With the accumulation of gene mutations in HCC, its 
malignant degree and invasion risk are also increasing 
[7]. Within the same period, mutations also lead to the 
emergence of tumour-specific neoantigens, which may 
improve the efficacy of immunotherapy by enhancing 
the immune recognition of tumours [22]. Therefore, 
gene mutations have a complex and multidimensional 
influence on the prognosis of HCC. Considered one of 
the important gene mutations, SNVs play an important 
role in the development and prognosis of HCC.

To further explore the mechanism through which 
SNV influences HCC, the differentially expressed 
genes between IC1/IC3 and IC2 were analysed by GO 
and KEGG analyses. These results showed that the dif-
ferentially expressed genes were mainly located in the 
extracellular matrix and might play a biological func-
tion through signal transmission between tumour cells 
and the tumour microenvironment. In addition, the 
KEGG results suggested that the accumulation of SNVs 
affected cellular functions through the PI3K-Akt signal-
ling pathway, leading to an ultimate difference in the 
survival of patients with HCC.

Although the importance of SNVs has been gradu-
ally revealed, their value in clinical transformation has 
rarely been assessed. We screened seven key genes, 
including HTRA3, GGT5, RCAN2, LGALS3, CXCL1, 
CLEC3B and CTHRC1, from among the differentially 
expressed genes by Cox hazard analysis. We further 
established a survival prediction model of HCC with 
the seven screened-out key genes. Our results indi-
cated that GGT5, RCAN2 and CLEC3B were positively 
related to patient prognosis, while the others were nega-
tive indicators. This is consistent with previous studies 
showing that all of these genes were closely related to 
tumour proliferation and the immune microenviron-
ment in various cancer types [23–29]. The specificity 
and sensitivity of this model were examined with two 
independent datasets. ROC curve analysis showed an 
acceptable AUC value in the two external test datasets.

Interestingly, there was a higher SNV score in IC1/
IC3 than in IC2. Meanwhile, NK cells were significantly 
higher in IC1/IC3 than in IC2. Our study of RCAN2, 
the key gene selected from among the differentially 
expressed genes, also obtained similar results in  vitro: 
knockdown of RCAN2 could increase the growth rate 
of HCC cells, and the protein expression of RCAN2 was 
negatively correlated with the infiltration of NK cells. 
Although the use of tumour mutation load to predict 
the overall survival of patients with cancer remains con-
troversial, patients with a high tumour mutation load 
can benefit from immunotherapy and have a better 
objective response rate in melanoma, lung, and bladder 
cancers [30, 31]. In TCGA-LIHC, the predictive model 
results were closely related to the tumour mutation 
load. It seemed that for patients in the high-risk group 
identified by the model, combined immunotherapy may 
be one of the valuable research directions. However, 
further confirmation by corresponding clinical studies 
is still needed. For the above reasons, a clinical study 
on the effect and safety of HAIC combined with PD1 
in patients with advanced HCC was designed and pro-
moted by our team (NCT04135690).

The shortcomings of this study lie in the lack of whole 
genome or exon sequencing data in the test datasets, 
which makes it impossible to further evaluate whether 
high-risk patients identified by the model are associated 
with SNVs or gene mutations. In the future, the model 
can be modified by adding other external validation 
datasets. Although there are some limitations at pre-
sent, these key genes related to SNVs and survival can 
be used as biomarkers for HCC reclassification. More 
importantly, the survival model provides a new perspec-
tive and strategy for personalized therapy of HCC.

Conclusions
We identified HTRA3, GGT5, RCAN2, LGALS3, 
CXCL1, CLEC3B and CTHRC1 as key genes that were 
expressed in parallel with SNVs and predicted overall 
survival. It was preliminarily proven in  vitro that the 
expression of RCAN2 could influence proliferation in 
HCC and had a close relationship with NK cell infiltra-
tion. The survival model constructed with seven key 
genes had acceptable accuracy, sensitivity and specific-
ity, as verified in two independent external test data-
bases, and its results were closely related to the tumour 
mutation load. This study provides a new perspective 
and basis for HCC immunotherapy.

Table 3  Cox multivariate analysis in GSE104580

HR (95%CI) P

Risk 1.59 (1.07–2.38) 0.023

Age 1.67 (1.10–2.55) 0.016

Size 0.58 (0.36–0.91) 0.019

Vascular invasion 1.69 (1.13–2.52) 0.011

Metastasis 2.29 (1.19–4.41) 0.013
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Fig. 6  IHC and multicolour IF in clinical tissue of HCC: A Characteristics of RCAN2 protein expression. B NK cell infiltration in HCC tissues with 
different RCAN2 protein expression levels
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