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Abstract 

Background:  Cervical cancer (CC) is the leading cause of cancer-related death in women. A limited number of stud‑
ies have investigated whether immune-prognostic features can be used to predict the prognosis of CC. This study 
aimed to develop an improved prognostic risk scoring model (PRSM) for CC based on immune-related genes (IRGs) to 
predict survival and determine the key prognostic IRGs.

Methods:  We downloaded the gene expression profiles and clinical data of CC patients from the TCGA and GEO 
databases. The ESTIMATE algorithm was used to calculate the score for both immune and stromal cells. Differentially 
expressed genes (DEGs) in different subpopulations were analyzed by “Limma”. A weighted gene co-expression 
network analysis (WGCNA) was used to establish a DEG co-expression module related to the immune score. Immune-
related gene pairs (IRGPs) were constructed, and univariate- and Lasso-Cox regression analyses were used to analyze 
prognosis and establish a PRSM. A log-rank test was used to verify the accuracy and consistency of the scoring model. 
Identification of the predicted key IRG was ensured by the application of functional enrichment, DisNor, protein–pro‑
tein interactions (PPIs) and heatmap. Finally, we extracted the key prognostic immune-related genes from the gene 
expression data, validated the key genes by immunohistochemistry and analyzed the correlation between their 
expression and drug sensitivity.

Results:  A new PRSM was developed based on 22 IRGPs. The prognosis of the low-risk group in the model group 
(P < 0.001) and validation group (P = 0.039) was significantly better than that in the high-risk group. Furthermore, M1 
and M2 macrophages were highly expressed in the low-risk group. Retinoic acid-inducible gene-I (RIG-I)-like recep‑
tors (RLRs) and the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway were 
significantly enriched in the low-risk group. Three representative genes (CD80, CD28, and LCP2) were markers of CC 
prognosis. CD80 and CD28 may more prominent represent important indicators to improve patient prognosis. These 
key genes was positively correlated with drug sensitivity. Finally, we found that differences in the sensitivity to JNK 
inhibitors could be distinguished based on the use and risk grouping of this PRSM.

Conclusions:  The prognostic model based on the IRGs and key genes have potential clinical significance for predict‑
ing the prognosis of CC patients, providing a foundation for clinical prognosis judgment and individualized treatment.
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Introduction
Cervical cancer (CC) is the second most frequently diag-
nosed cancer and the fourth cause of cancer mortality 
in women [1]. In 2020, there were an estimated 604,000 
new cases, and 342,000 deaths due to CC worldwide [1]. 
While most patients with early-stage CC can be cured 
with surgery, the main treatment for locally-advanced 
CC is concurrent radiotherapy and chemotherapy. How-
ever, no significant improvement has been observed for 
the treatment of persistent or recurrent CC, which can-
not be controlled by surgery or chemo-radiotherapy. The 
five-year overall survival (OS) of patients with III and 
IV stage CC was 52.0% and 29.8%, respectively, and the 
relapsed patients was only 15% [2]. At the same time, the 
clinical outcomes of the same-stage patients differed due 
to tumor heterogeneity [3]. Thus, the identification of 
prognostic biomarkers for CC has great significance for 
improving the survival rate of patients and promoting the 
development of precision therapy.

A large number of studies investigating cancer have 
shown that the main reason for tumor heterogeneity is 
the complex cellular composition of the tumor micro-
environment (TME). The composition and level of 
immune-related cells plays a key role in the development 
and prognosis of cancer, as well as the response to immu-
notherapy [4]. Over the past decade, surgery, chemo-
therapy, and/or radiotherapy have remained the primary 
treatment for CC. However, immunotherapy has become 
a novel strategy and is associated with many key advances 
[5]. Further evidence has preliminarily confirmed that 
immune-prognostic features can be used to predict the 
prognosis of CC [6, 7]. However, it remains necessary to 
further identify more accurate prognosis-related immune 
genes that can predict patient prognosis and increase the 
development of novel immunotherapy for CC.

In this study, we aimed to investigate the correlation 
between immune-related characteristics and genes asso-
ciated with CC prognosis. We constructed immune-
related gene pairs (IRGPs) by analyzing gene expression 
profiles in the TCGA database, which was used to estab-
lish and verify the prognostic risk scoring model (PRSM), 
and calculated the risk score (RS). Next, the patients were 
divided into high and low risk groups to study the bio-
logical functions and signaling pathways associated with 
the differentially enriched genes. Therapeutic sensitivity 
was also analyzed, which included chemotherapy agents 
and targeted inhibitors (TIs). Finally, we identified key 
immune-related genes (IRGs) for CC prognosis, and 

evaluated the value of the predictive model and the key 
prognostic immune-related genes for the clinical treat-
ment of CC.

Materials and methods
Data collection
In this study, transcriptome data from the TCGA 
(https://​portal.​gdc.​cancer.​gov/) and GEO (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/) high-throughput platforms were 
acquired 257 and 300 CC samples from TCGA and GEO, 
respectively. After screening, 515 CC samples with com-
plete clinical information were included in the analysis, 
which was comprised of 253 TCGA and 262 GEO sam-
ples. For each dataset, the Gene ID was converted to the 
corresponding gene symbol according to its correspond-
ing annotation package. The TCGA data was termed the 
model group, and the GEO data was termed the valida-
tion group. The analysis excluded RNA which was not 
detected in 10% of the samples.

Identification of differentially expressed IRGs
R package “ESTIMATE” was used to assess the extent 
of immune infiltration in the samples. Based on the 
SSGSEA algorithm, the tumor expression matrix of each 
sample was scored using stromal and immune gene sets 
[8]. We then used R package “maxstat” to calculate the 
optimal cut-off value of the immune and stromal scores, 
and divided all of the samples into high and low rating 
groups [9]. Using the Kaplan–Meier method for visuali-
zation, the difference between the survival curves in the 
high and low rating groups was calculated using the log-
arithmic rank test of R package “survcomp” [10]. The R 
package “Limma” [11] was used to analyze differentially 
expressed genes in different subsets of samples (DEGs) 
(|log2foldchange|> 0.5, P-adj < 0.05). Subsequently, the 
intersection of the two groups of up-regulated and down-
regulated DEGs were obtained to screen out the IRGs in 
CC and display them in a Venn diagram.

Identification of gene consensus modules
We used a weighted gene co-expression network analy-
sis (WGCNA) [12] to construct consensus gene mod-
ules for DEGs, and analyzed the correlation between 
the module and the “ESTIMATE” results. First, we used 
powers to build an adjacency matrix (AM). We selected 
the appropriate power index to increase the matrix simi-
larity to construct a scale-free co-expression network. 
The AM was then converted into a topological overlap 
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matrix (TOM). Based on the TOM dissimilarity meas-
urements, we conducted an average linkage hierarchical 
cluster analysis. Among them, a correlation coefficient 
was defined as the correlation between the characteris-
tic genes of each module and the associated scores. Gene 
significance (GS) was defined as the P-value in the lin-
ear regression of the expression and score for each gene 
(GS = lgP). Finally, we obtained the gene cluster tree, co-
expression module, and corresponding correlation.

Establishment of immune‑related gene pairs (IRGPs)
To further screen immune-related genes in order to 
establish immune gene pairs, we selected the mod-
ule with the highest correlation coefficient, and the GS 
and module membership (MM) were calculated. MM 
is an indicator that measures gene and module con-
nectivity. We defined the threshold for filtering as: cor. 
gene MM > 0.6 and cor. gene GS > 0.6. To eliminate the 
sequencing errors between the different platforms and 
samples, we constructed gene pairs from immune-related 
genes that were screened out. Specifically, the expres-
sion of two genes was compared in each sample; if the 
expression of the former is greater than the latter, it was 
denoted as 1, otherwise, it was 0. After removing the 
IRGPs with minimal expression and an uneven distribu-
tion (MAD = 0), a univariate Cox proportional hazards 
regression analysis was performed for the remaining 
IRGPs in the model group. Statistically significant IRGPs 
from the univariate Cox analysis were retained for a 
subsequent Lasso-Cox proportional hazards regression 
analysis with 1000 simulations using R package “glmnet” 
[13]. R package “survivalROC” [14] was used to draw 3-, 
5-, and 10-year time-dependent receiver operating char-
acteristics (timeROC) and determine the area under the 
curve (AUC). The optimal cut-off value was selected on 
the ROC curve with the maximum AUC. Finally, the pre-
dictive model was applied to the validation group and all 
patients were divided into low-risk groups using cut-off 
values.

Validation of the predictive model
A log-rank test was used to analyze the prognosis of 
patients in the model group and the validation group at 
high and low risk, to verify the accuracy and consistency 
of the scoring model. In the model group with complete 
clinical information, both the univariate and multivariate 
Cox regression analyses were performed with a risk score 
combined with other clinical factors, and the independ-
ent effect of the risk score was further verified.

Exploration of the differences in immune infiltration
Another algorithm was used to estimate the relative 
infiltration abundance of 22 immune cells in different 

samples with R package “CIBERSORT” [15], and differ-
ences in immune infiltration between the high- and low-
risk groups were analyzed. The samples with P < 0.05 in 
the calculation results were retained, and a difference 
analysis in the content of the various immune cells in the 
high- and low-risk groups was determined using a Wil-
coxon rank sum test.

Functional enrichment analysis
To investigate the differentially enriched biological func-
tions and signaling pathways in the high- and low-risk 
groups, we used bioconductor package “fgsea” [16] to 
conduct a gene ontology (GO)- and kyoto encyclopedia 
of genes and genomes (KEGG)-related gene set enrich-
ment analysis (GSEA) with 10,000 permutations. To com-
pare the genes between the high- and low-risk groups, 
the ratio of gene expression was sequenced by a log2 mul-
tiple conversion. The threshold values were P < 0.05.

Identification of key prognostic immune‑related genes
For further screen for key prognostic immune-related 
genes, we performed a protein interaction network analy-
sis on the module genes used to construct immune gene 
pairs using STRING (https://​www.​string-​db.​org). Genes 
with more than 10 nodes in the network were selected to 
create an intersection with the genes in the model, and 
the prognosis of the intersection genes was analyzed. 
After screening out key prognostic immune-related 
genes, we used the DisNor database (https://​disnor.​uniro​
ma2.​it/) to analyze and search for their upstream- and 
downstream-related genes, as well as the mode of action. 
DisNor is a disease-focused resource that uses the causal 
interaction information annotated in SIGNOR, and the 
protein interaction data in Mentha were used to generate 
and explore protein interaction networks that link disease 
genes. Heatmap was plotted using R package “pheatmap”.

Immunohistochemistry
Immunohistochemistry (IHC) was used to verify the 
expression of CD80 and CD28 in CC and adjacent nor-
mal tissues. Tissue microarrays were purchased from the 
Wuhan servicebio technology CO., LTD, which are pre-
dominantly intended  for  commercialization. The tissue 
microarrays include 11 samples of cervical cancer tissue 
and 11 samples of adjacent normal tissues (IWLT-N-
22CC81, CC-1801, servicebio) (Table 1). The pathological 
types of cervical cancer were squamous cell carcinoma. 
The tissue microarrays assay (TMA) can be used to vali-
date bioinformatics data. Immunohistochemical staining 
was performed with the antibody against CD80 (1:100, 
66406-1-lg, Proteintech) and antibody against CD28 
(1:100, 65099-1-lg, Proteintech). Tissue sections were 
dewaxed to water, and placed in a repair box filled with 
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EDTA (PH9.0) antigen repair solution (G1203, service-
bio) for antigen repair. Slides were incubated with pri-
mary antibody at 4  °C overnight, followed incubation 
with secondary antibody for 50  min at 37  °C, counter-
stained with 10% Mayer’s hematoxylin, dehydrated, and 
mounted. IHC staining was assessed by summing inten-
sity and quantity scores. Intensity score was graded as 0 
(negative), 1 (weakly positive, light brown), 2 (moderately 
positive, brown), or 3 (strongly positive, dark brown). 
Quantity score was graded as 0 (negative), 1 (≤ 25%), 2 
(26–50%), 3 (51–75%), or 4 (> 75%). IHC results were 
evaluated by two experienced pathologists indepen-
dently. In cases of disagreement, a third pathologist made 
the judgment.

Sensitivity analysis of different treatments
To evaluate the value of the predictive models and key 
prognostic immune-related genes in the clinical manage-
ment of CC, we analyzed the treatment sensitivity from 
two aspects: chemotherapy drugs and TIs. We used R 
package “pRRophetic” [17] to calculate the concentration 
of 50% reduction growth (IC50) caused by TIs, including 
vascular endothelial growth factor receptor (VEGFR), 
Hedgehog (HH), and Wnt inhibitors. A Wilcoxon rank 
sum test was used to compare the IC50 differences 
between the various risk groups.

In addition, we downloaded the gene expression and 
chemotherapeutic drug response data from CellMiner™ 
(https://​disco​ver.​nci.​nih.​gov/​cellm​iner/). These data were 
also from the same batch. We removed the drugs that 
were not approved by the (Food and Drug Administra-
tion) FDA or in clinical trials. We then extracted the key 
prognostic immune-related genes from the gene expres-
sion data, and analyzed the correlation between their 
expression and drug sensitivity.

Statistical analyses
All statistical analyses were managed by R software (Ver-
sion 3.6.3) and SPSS (Version 25). The unpaired t-test 
was used to compare the means of two groups, and a 
two-tailed p value of < 0.05 was considered statistically 
significant.

Results
Identification of DEGs based on the immune score 
and stromal score
After obtaining the expression profile data of 253 CC 
patients from the TCGA database, the ESTIMATE 
algorithm was used to calculate the immune score and 
stromal score (Additional file  1: Table  S1) to  execute 
a prognostic analysis. The results showed that there 
was a significant difference in the prognosis between 
the groups with high and low immune scores and stro-
mal score (P = 0.043) (Fig. 1A and B). To screen out the 
immune-related genes, we analyzed the differences in 
the genes from the high and low immune and stromal 
score groups and the results were presented in a heat-
map (Fig. 1C and D). The intersection of the two groups 
of up-regulated and down-regulated differential genes 
was selected respectively (Fig. 1E and F). In the end, 1052 
intersecting DEGs were screened, including 945 up-regu-
lated and 107 down-regulated DEGs.

Screening the most significant immune‑related genes 
by WGCNA
To further screen for the immune-related genes in CC, 
we used WGCNA to construct gene networks to iden-
tify important immune-related gene modules and further 
understand the genes that induce differences in immune 
infiltration in CC. We selected a power index = 6 as 
the appropriate soft threshold (Fig.  2A), and used the 
1052 intersection DEGs obtained above to construct a 

Table 1  Clinicopathological date on patients of tissue microarrays

No. Chip No. Category Histological type Differentiation degree TNM
(clinical, 9th edition)

Stage
(FIGO 2018)

1 A1, 2 1: Carcinoma, 2: Adjacent normal tissues Squamous cell carcinoma Medium—low T1b3N1M0 IIIC1

2 A3, 4 3: Carcinoma, 4: Adjacent normal tissues Squamous cell carcinoma Medium T1b3N0M0 IB3

3 A5, 6 5: Carcinoma, 6: Adjacent normal tissues Squamous cell carcinoma Medium T1b3N0M0 IB3

4 B1, 2 1: Carcinoma, 2: Adjacent normal tissues Squamous cell carcinoma Medium T1b3N0M0 IB3

5 B3, 4 3: Carcinoma, 4: Adjacent normal tissues Squamous cell carcinoma Low T1b2N0M0 IB2

6 B5, 6 5: Carcinoma, 6: Adjacent normal tissues Squamous cell carcinoma Medium–low T1b2N1M0 IIIC1

7 C1, 2 1: Carcinoma, 2: Adjacent normal tissues Squamous cell carcinoma Low T1b3N1M0 IIIC1

8 C3, 4 3: Carcinoma, 4: Adjacent normal tissues Squamous cell carcinoma Low T1b2N0M0 IB2

9 C5, 6 5: Carcinoma, 6: Adjacent normal tissues Squamous cell carcinoma Medium–high T1b2N0M0 IB2

10 D1, 2 1: Carcinoma, 2: Adjacent normal tissues Squamous cell carcinoma Low T1b3N0M0 IB3

11 D3, 4 3: Carcinoma, 4: Adjacent normal tissues Squamous cell carcinoma Medium T1b3N1M0 IIIC1

https://discover.nci.nih.gov/cellminer/
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scale-free co-expression network and obtained a gene 
cluster tree and different modules (Fig.  2B). The cor-
relation analysis of the modules and various types of 
fractions were used to obtain the correlation coefficient 
(CC) and P values (Fig.  2C). Both the blue modules 
(CC = 0.84, P < 0.001) (Fig.  2D) and turquoise modules 
(CC = 0.83, P < 0.001) (Fig.  2E) had a high correlation 
with the immune score. Therefore, we selected the genes 
in these two modules for subsequent analysis. To further 
screen for the key immune-related genes, we screened 
the genes in these two modules in accordance with the 
above threshold values for MM and GS, finally obtaining 
301 IRGs.

PRSM establishment and verification
A total of 301 IRGs were arranged and combined, and 
a total of 45,150 IRGPs were established. We removed 
IRGPS, which had less variation (0 or 1 < 20%) in all sam-
ples, and the rest of the IRGPS were used in the univari-
ate Cox proportional hazards regression analysis. The 
results showed that 35 IRGPs had significant prognostic 
differences (P < 0.05) (Additional file  1: Table  S2). Next, 
we performed a lasso-cox proportional hazards regres-
sion analysis on these IRGPs, and obtained 19 prog-
nostic IRGPs and their risk coefficients (Table 2). Using 

the PRSM, we obtained the risk score of all patients in 
TCGA and GEO databases. Moreover, we constructed a 
time-dependent ROC curve for the patients in the model 
group, and obtained the AUC values for 3, 5, and 10 years 
(Fig.  3A), respectively, suggesting that this prediction 
model exhibits good prognostic classification ability. We 
calculated the optimal cut-off value to be 0.235 based 
on the 5-year ROC curve and divided all patients into 
high- and low-risk groups. Survival curves were drawn 
for both the model group and validation group, and the 
results showed that the prognosis of patients in the low-
risk group significantly differed (Fig. 3B and E). This find-
ing supported the high accuracy and consistency of the 
PRSM. In addition, univariate and multivariate Cox anal-
yses of risk scores combined with clinical information 
were performed in the model group. The results showed 
that the risk score had an independent effect on patient 
prognosis (Fig. 3C and D).

Prognosis‑related immune infiltrating cells
To analyze the differences in immune infiltration among 
the high- and low-risk groups, we used CIBERSORT to 
estimate the relative infiltration abundance of 22 immune 
cells in the different samples. A difference analysis of 
the content of various immune cells in the high and low 

Fig. 1  Comparison of gene expression profile with immune and stromal scores of cervical cancer. A Survival curve for the high and low immune 
score groups of CC patients. B Survival curve for the high and low stromal score groups of CC patients. C Heatmap of differentially expressed genes 
from the high and low immune score groups. D Heatmap of differentially expressed genes from the high and low stromal score groups. E, F Venn 
diagram analysis of aberrantly expressed genes based on immune and stromal scores



Page 6 of 13Pi et al. Cancer Cell International          (2021) 21:639 

risk group revealed the high level of macrophage (M1 
and M2) infiltration in the low-risk group (Fig.  4A and 
B). This finding suggests that differences in macrophage 
infiltration may be an important factor affecting the 
prognosis of CC.

Functional enrichment analysis and identification of key 
genes
To investigate the differences in biological functions and 
signaling pathways in the high and low-risk group, we 
performed a GO (Fig.  5A) and KEGG (Fig.  5B)-related 
GSEA. The results showed that retinoic acid-induci-
ble gene-I (RIG-I)-like receptors (RLRs) and the Janus 
kinase-signal transducer and activator of transcrip-
tion (JAK-STAT) signaling pathway were significantly 
enriched in the low-risk group, and most of these path-
ways are involved in immune activation (Fig. 5A and B). 
These results provided molecular implications for differ-
ences in immune infiltration and prognosis in the high- 
and low-risk groups.

To facilitate the clinical application of novel prognos-
tic biomarkers, we further identified the key prognos-
tic immune genes in CC. By constructing the protein 
interaction network of 301 DEGs obtained above, we 
calculated the number of adjacent nodes for each gene 
(Fig. 6A). A greater number of nodes indicated a more 
important role in the network. We screened genes with 
a current node count of 30 and intersected them with 
the genes contained in the PRSM. Finally, we obtained 
three key immune-related genes: CD80, CD28, and 
LCP2. The prognostic curve of these three genes was 
plotted and it was found that the prognosis of the high 
expression group was more favorable compared to 
that of the low expression group (Fig.  6B). We identi-
fied the genes directly responsible for these key genes 
using the DisNor database. NFKB1, NFKB-p65 /p50, 
and RelA are located upstream of CD80. ITK and LCK 
are upstream, while PIK3CG and GRB2 are located 
downstream of CD28. MAP4K1, TXK, and ZAP70 are 
upstream of LCP2 (Fig.  6C). The expressions of the 

Fig. 2  Weighted cervical cancer gene co-expression network. A The scale-free fit index for soft-thresholding powers. We selected a power 
index = 6 as the appropriate soft threshold. B A dendrogram of the differentially expressed genes clustered based on different metrics. Each branch 
in the figure represents one gene, and every color below represents one co-expression module. C Correlation between the gene modules and 
tumor microenvironment related scores, including immune score, stromal score and estimate score. Each cell contains corresponding correlation 
coefficient and p-value. D Scatter plot of module eigengenes in the blue and turquoise modules



Page 7 of 13Pi et al. Cancer Cell International          (2021) 21:639 	

three key IRGs in the high and low risk score groups 
was shown using a heatmap (Fig.  6D). The genes with 
the significant prognosis were extracted for further 
analysis. To further verify the expression of CD80, 
CD28 at the tissue level. By testing 11 cervical cancer 
tissue and 11 adjacent normal tissues specimens using 
TMA, CD80 and CD28 expression are lower in cervical 
squamous cell carcinoma tissues (Fig. 7).

Sensitivity analysis of therapy
The chemotherapy drug sensitivity analysis of the three 
key genes revealed that the level of gene expression 
was positively correlated with drug sensitivity to Vori-
notat, Cyclophosphamide, Nilotinib, and Imatinib, etc. 
(Fig. 8). 

Next, we analyzed and predicted the sensitivity of 
multiple target drugs in different risk groups to screen 
out potential drugs for the treatment of cervical cancer. 
Finally, we found that differences in sensitivity to JNK 
inhibitors could be distinguished by the use and risk 
grouping of this PRSM (Fig. 9). These results indicate that 
the PRSM and key immune genes have great significance 
for clinical treatment, and can be used to identify tar-
geted drugs that can be affected by immune factors.

Discussion
Recently, immunotherapy has opened a new door as a 
novel treatment method for CC. However, the efficacy 
has not been impressive [18]. The tumor immune micro-
environment plays an important role in tumor progres-
sion. Substantial evidences show that IRGs are associated 
with the prognosis of patients with multiple solid tumors 
[19, 20]. Moreover, there is evidence that immune-related 
signals can predict the prognosis of CC [21]. Therefore, it 
is of great significance to identify immune-related models 
for the prognosis of patients with CC and improve their 
clinical benefits.

In this study, we use the ESTIMATION algorithm 
calculate the score of the immune cells or stromal cells 
and divide them into high and low scores. The results 
show a strong correlation between these scores and 
survival in patients with CC. Moreover, to eliminate 
measurement errors among different samples, we con-
structed the model using gene pairs. Prognostic mod-
els show a superior ability to classify patients into 
low- and high-risk groups. We identified that patients 
in the low-risk group showed favorable outcomes, and 
there is supporting evidence that our model can stratify 
risk. Moreover, we analyzed the immune cells in dif-
ferent risk groups, and found that there was obvious 

Table 2  The prognostic IRGPs and their risk coefficients involved in PRSM

IRG 1 Immune-related function IRG 2 Immune-related function Coef.

BTLA Negatively regulating antigen receptor signaling GPR174 Putative receptor for purines coupled to G-proteins 0.068936

CD244 Regulating innate and adaptive immune response GPR174 Putative receptor for purines coupled to G-proteins 0.311926

CD28 T cell activation FASLG Termination of immune responses 0.279403

CD80 T-lymphocyte activation RGS18 Inhibiting signal transduction − 0.32299

CERKL Regulate autophagy RHOH Negative regulator of hematopoietic progenitor cell − 0.14509

CLEC4A Regulating immune reactivity LILRB4 Down-regulation of the immune response and the 
development of tolerance

0.065819

CYTH4 Activation of ARF factors STAC3 – − 0.33071

EVI2B Hematopoietic progenitor cells differentiation SLAMF7 Regulating innate and adaptive immune response − 0.41131

FCRL3 B-cell proliferation LY9 Negative regulator of the immune response − 0.13661

FGR Regulation of immune responses (including neutro‑
phil, monocyte, macrophage and mast cell functions)

IL10RA Participating in IL10-mediated anti-inflammatory func‑
tions

0.386338

FOXP3 The development and inhibitory function of regula‑
tory T-cells (Treg)

RASAL3 Playing an important role in the expansion and functions 
of natural killer T (NKT) cells

− 0.42278

FUT7 Involved in cell and matrix adhesion during leukocyte 
trafficking and fertilization

TFEC Transcriptional regulator 0.190542

GPR34 Orphan receptor STAC3 – 0.345396

GYPC Regulating the stability of red cells LST1 Involved in dendritic cell maturation 0.097751

IGSF6 Regulating the function of CD8 + T effector cells TNFSF13B Involved in the stimulation of B- and T-cell function 0.058717

LCP2 Involved in T-cell antigen receptor mediated signaling SLAMF8 B-lineage commitment and/or modulation of signaling 0.241523

LY9 Negative regulator of the immune response ZC3H12D Degradation of interleukin IL-6 mRNA level in activated 
macrophages

0.250874

NLRC3 Negative regulator of the innate immune response SIGLEC1 Macrophage-restricted adhesion molecule 0.005176

SAMD9L Involved in endosome fusion TMEM140 Inhibition of viral proliferation − 0.18399
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macrophage infiltration in the low-risk group. Mac-
rophages are one of the most important immune cells. 
Monocytes can differentiate into two different types of 
macrophages: M1 (proinflammatory, classically acti-
vated macrophages) and M2 (anti-inflammatory, alter-
natively activated macrophages) phenotypes [22]. M2 
macrophages can be further refined into M2a, M2b, 
M2c, and M2d subsets [23]. The above evidence shows 
that differences in immune infiltration are related to the 
prognosis of CC patients. However, macrophage polari-
zation is a complex process in the immune microenvi-
ronment. The relationship between specific phenotypic 
differences in polarization and prognosis requires fur-
ther analysis.

In cancer immunotherapy, the activation of retinoic 
acid-inducible gene-I (RIG-I)-like receptors (RLRs) 
can induce anti-tumor effects in various cancers [24]. 
RIG-I agonist therapy can enhance the activity of anti-
cancer effector cells (e.g., cytotoxic T cells and NK 
cells) and block the activity of immunosuppressive cells 
(e.g., regulatory T cells and myeloid-derived suppressor 
cells [MDSCs]), successfully induce the killing of tumor 
cells, and regulate the TME [25]. JAK-STAT signaling 
can mediate the majority of the immune-modulatory 
processes, including tumor recognition and immune 
escape [26]. The JAK-STAT signaling pathway is a dou-
ble-edged sword in CIT, and both STAT1 and STAT2 
drive anti-tumor immune responses by inducing type 

Fig. 3  Establishment of immune-related gene pairs (IRGPs) and prognostic risk scoring model (PRSM). A TimeROC curves for 3, 5, 10 years were 
plotted in the model group. B KaplanMeier curve of overall survival in model group. C Forest plot for Univariate-Cox regression analyze in model 
group. D Forest plot for Multivariate-Cox regression analyze in model group. E Kaplan–Meier curve of overall survival in validation group



Page 9 of 13Pi et al. Cancer Cell International          (2021) 21:639 	

Fig. 4  Exploration of the differences in immune infiltration. A Summary of the 22 immune cells infiltration abundance in the different risk groups. B 
The difference analysis of the content of various immune cells in the high and low risk group. Macrophage M1 (p = 0.004) and M2 (p = 0.036) were 
significantly highly expressed in the low-risk group

Fig. 5  The biological functions and signaling pathways in the high and low-risk group. A Gene Ontology (GO) analysis of biological functions. B 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of signaling pathways
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I and type II interferon (IFN) [27]. In contrast, STAT3 
is widely associated with immunosuppression, can-
cer cell survival, and persistent inflammation in the 
tumor microenvironment [28, 29]. Studies have shown 
that the JAK-STAT signaling pathway can interact with 
Toll-like receptors (TLRs), co-regulate the M1 mac-
rophage polarization, and the inflammatory response 
of macrophages [30]. The JAK/STAT signaling pathway 
can also be used as a novel tumor marker and prognos-
tic factor for the diagnosis and prognosis of CC [31]. 
Our results provide evidence that RLRs and the JAK/

STAT signaling pathway are associated with patient 
prognosis.

We verified that three representative genes (CD80, 
CD28, and LCP2) were markers of CC prognosis. CD80 
and CD28 may more prominent represent important 
indicators to improve patient prognosis after validated by 
immunohistochemistry. CD80 is one of the most potent 
costimulatory molecules involved in tumor cell recogni-
tion and killing, is activated by CD28 or CTLA-4 binding, 
and can induce T cell proliferation and cytokine produc-
tion [32]. TLRs activate the adaptive immune response 

Fig. 6  Identification of Key IRGs. A The Top 30 hub genes in the protein–protein interaction (PPI) analyses. B Kaplan–Meier curves of overall survival 
in three prognostic key IRGs. C The network of intersects genes in DisNor. D The heatmap of 3 key IRGs expression patterns with risk group

Fig. 7  IHC of CD80 and CD28 in adjacent normal tissues and tumor tissues from patients with cervical cancer. A CD80 and CD28 expression is lower 
in cervical squamous cell carcinoma tissues compared with adjacent normal tissues. B Comparison of CD80 and CD28 protein expression in 11 pairs 
of matched tissue section samples by IHC
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by producing pro-inflammatory cytokines and inducing 
key surface molecules (e.g., CD80) [33]. In colon cancer, 
low CD80 expression is associated with immune escape 
and plays an important role in the immune surveillance 
of the lesion [34]. In breast cancer, CD80 may lead to the 
progression and metastasis of breast cancer by regulat-
ing the innate immune system [35]. CD28 represents one 
of many proteins, defining a subfamily of costimulatory 
receptors and ligands [36]. CD28 optimizes the T cell 
response during antigen recognition by enhancing TCR 
signaling or other unique signaling pathways [37, 38]. In 
addition, the majority of the proliferating CD8 + T cells 
in NSCLC patients receiving anti-PD-1 treatment were 
found to be CD28-positive [39]. In addition, our findings 
confirm that CD28 bispecific antibodies can enhance 
the anti-tumor efficacy of treatment with CD3 bispecific 
antibodies [40]. CD28 is also associated with the progno-
sis of patients with prostate cancer [41]. LCP2 encodes a 
protein containing 533 amino acids that is involved in T 
cell activation and can increase the IL-2 gene promoter 
activity following transient overexpression [42]. High 

LCP2 expression is associated with a better prognosis in 
patients with diffuse large B cell lymphoma [43]. There-
fore, the key prognostic IRGs have potential clinical sig-
nificance for predicting survival. We used the model to 
test the therapeutic sensitivity and screen for sensitive 
drugs based on the key genes. High-risk cervical cancer 
patients are more sensitive to treatment with JNK inhibi-
tors. Thus, the predictive model and key prognostic IRGs 
are also valuable for the clinical treatment of CC.

In conclusion, our study establishes a novel prognostic 
model by selecting DEGs in immune and stromal cells, 
and three IRGs were identified to evaluate patient prog-
nosis. Moreover, CD80 and CD28 may more prominent 
represent important indicators to improve patient prog-
nosis. In addition, the analysis of relevant pathways and 
sensitivity to molecular chemotherapy and molecular 
therapy can help select drugs with high clinical benefit 
and provide a basis for the precise treatment of CC. Of 
course, these immune-prognostic markers for the diag-
nosis, prognosis, and treatment of CC require further 
clinical confirmation.

Fig. 8  The chemotherapy drug sensitivity analysis of the three key genes. The level of the three key IRGs expression was positively correlated with 
drug sensitivity
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