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Abstract 

Background: Aging and senescence can alter immune cell fitness and influence the efficacy of lung cancer treat-
ments, especially immunotherapy. However, the correlations between cellular senescence and tumor microenviron-
ment are still not clearly clarified and the value of cellular senescence-related genes in evaluating the immune infiltra-
tion and clinical outcomes of lung adenocarcinoma (LUAD) need further investigated.

Methods: We identified three cellular senescence clusters by NMF algorithm and correlated the cellular senescence 
clusters with the immune landscape in LUAD patients. A prognostic scoring system was established using random 
survival forest algorithm and validated in 4 external cohorts. Multivariate Cox regression analysis was performed to 
evaluate the prognostic value of the scoring system. Expression of LYPD3 was evaluated by immunohistochemistry in 
LUAD samples.

Results: Based on the mRNA expression profiles of 278 cellular senescence-related genes, three cellular senescence 
clusters with distinct prognosis were identified. We characterized three cellular senescence clusters by differences in 
biological processes, EMT score, expression of immunomodulatory genes, extent of intratumor heterogeneity and 
response to immunotherapy. Meanwhile, a cellular senescence-related scoring system (CSS) was established and 
validated as an independent prognostic factor and immunotherapy predictor of LUAD. Patients with low CSS was 
characterized by prolonged survival time. In response to anti-cancer drugs, patients with low CSS exhibited higher 
sensitivities to molecular drugs, such as Roscovitine (CDKs inhibitor), Lenaidornide (TNF-α inhibitor), MK2206 (Akt 
1/2/3 inhibitor), and especially increased response to anti-PD-1/L1 immunotherapy.

Conclusions: This study demonstrated the correlations between cellular senescence patterns and tumor immune 
landscape in LUAD, which enhanced our understanding of the tumor immune microenvironment and provided new 
insights for improving the outcome of immunotherapy for LUAD patients.

Keywords: Cellular senescence, Lung adenocarcinoma, Prognosis, Tumor microenvironment, Immunotherapy

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
The morbidity of lung cancer has already ranked the top 
1 worldwide with an estimated 1.8 million deaths (18%) 
in 2020 [1]. According to the GLOBOCAN, 2020, cancer 
incidence increased with age and more than two thirds 
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of patients with lung cancer are ≥ 65 years of age at the 
time of diagnosis [1, 2]. Accompanied with the trends 
of aging globally [3], aging lung cancer patients is grow-
ing over time. Moreover, the huge heterogeneity in aged 
patients was driven by a high variability of physiological 
age reflecting organ function deteriorations, immune 
function decline and cellular senescense [4], so that the 
treatment of elderly patients with non-small-cell lung 
cancer (NSCLC) represents still a challenge. Therefore, in 
the era of personalized cancer treatment [5], it is crucial 
to determine the cellular senescence factors associated 
with increasing age for the risk stratification of individu-
alized treatments.

Emerging evidence suggests that aging is accompa-
nied by cellular senescence, and manipulating cellular 
senescence biological processes can moderate or delay 
many aging-related diseases, such as cancer [6, 7]. Cel-
lular senescence is a complex stress response that can 
be grouped into different categories including genome-
based failures and signaling dysfunction [6, 8, 9], accom-
panied by numerous variations in gene expressions [10]. 
Recent studies clarified that aging and cellular senescence 
deeply modify the TME by facilitating the accumula-
tion of many types of immunosuppressive cells [11], and 
the activation of a variety of danger-associated signaling 
molecules and cytokines [11–13], that will lead to exten-
sive effects on the tumor microenvironment (TME) and 
tumor growth [14, 15]. In particular, aging and cellular 
senescence can alter immune cell fitness and, ultimately, 
have an impact on the efficacy of cancer treatments, 
especially immunotherapy [16, 17]. However, the corre-
lations between cellular senescence and TME is still not 
clear clarified and the value of cellular senescence-related 
genes in evaluating the immune infiltrate of tumors and 
clinical outcomes need further investigated.

In our study, we comprehensively investigated the asso-
ciation between cellular senescence clusters and TME 
cell-infiltrating characteristics by analyzing the tran-
scriptomic data of LUAD samples. We also constructed 
and validated a scoring system based on DEGs among 
the distinct clusters to predict overall survival (OS) and 
immune checkpoint blockade (ICB) therapy response 
for individual LUAD patients. Our findings pictured the 
linkage between cellular senescence patterns and TME in 
LUAD, and yielded insights into how cellular senescence 
might affect patient survival and immunotherapy, which 
may provide assistance to individualized therapeutic 
strategies.

Methods
Public cohorts and clinical specimens
A total of 1069 patients with both available transcrip-
tomics data and corresponding clinical information were 

included in our study. Data of 500 patients obtained from 
The Cancer Genome Atlas (TCGA, https:// portal. gdc. 
cancer. gov) was used as the training cohort. Fragments 
per kilobase million (FPKM) value of the TCGA cohort 
were then transformed into transcripts per million 
(TPM) value before further analysis. Datasets GSE30219 
[18] (n = 83), GSE31210 [19] (n = 226), GSE37745 [20] 
(n = 106) and GSE50081 [21] (n = 127) were downloaded 
the Gene Expression Omnibus (GEO, https:// www. ncbi. 
nlm. nih. gov/ geo) database via the R package ‘GEOquery’ 
and the mean expression values were used when genes 
matched with multiple probes for these microarray data. 
We also collected one dataset of NSCLC patients treated 
with anti-PD-1/PD-L1 immunotherapy (GSE135222 [22], 
n = 27) from GEO database. The clinicopathological data 
of the enrolled patients in public cohorts were shown in 
Additional file 8: Table S1.

Moreover, we also retrospectively collected 74 surgi-
cally resected, formalin-fixed, paraffin-embedded lung 
adenocarcinoma tissues and 74 adjacent normal tissues 
from the biobank of National Cancer Center/National 
Clinical Research Center for Cancer/Cancer Hospital in 
Chinese Academy of Medical Sciences and Peking Union 
Medical College (Beijing, China) and constructed a tis-
sue microarray (TMA). Patients enrolled were informed 
consent and this study was approved by the Ethics Com-
mittee of the National Cancer Center/Cancer Hospital, 
Chinese Academy of Medical Sciences, and Peking Union 
Medical College. The clinicopathological data of the 
enrolled patients in our cohort were shown in Additional 
file 9: Table S2.

Identification of cellular senescence clusters by NMF
A non-negative matrix factorization (NMF) [23] cluster-
ing algorithm was implemented to identify distinct cellu-
lar senescence clusters based on the expression profiles 
of 74 prognostic cellular senescence-related genes. The 
“brunet” option was chosen and 100 iterations were per-
formed for NMF. The optimal clustering number was 
determined according to the cophenetic, dispersion, and 
silhouette coefficients. The NMF clustering was carried 
out using the R package ‘NMF’.

Construction of cellular senescence score (CSS)
To construct a cellular senescence-related scoring sys-
tem, we first determined the differentially expressed 
genes (DEGs) among distinct cellular senescence clus-
ters using the R package ‘limma’, with the threshold set 
at adjusted P < 0.001. A total of 366 DEGs were screened 
out. Subsequently, DEGs related to prognosis were 
identified through univariate Cox regression analysis, 
with the threshold set at P < 0.01. Random survival for-
est analysis with the R package ‘randomForestSRC [24]’ 
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was performed to further narrow the candidate genes. 
The top 10 genes sorted by importance were chosen to 
perform combinations analysis. For each combination 
among the 1023 combinations generated by the 10 genes, 
a multivariate Cox regression model was constructed and 
risk scores were calculated based on the expression val-
ues of each gene and its corresponding multivariate Cox 
regression coefficient. Patients were stratified into high- 
and low-risk group according to the median value of risk 
score and next Kaplan Meier analysis was conducted. 
Finally, the combination with the smallest P value were 
considered as the cellular senescence-related scoring 
system.

Enrichment analysis
Gene Ontology (GO) [25] annotation for cellular senes-
cence-related DEGs was performed using the R pack-
age ‘clusterProfiler [26]’. Gene Set Enrichment Analysis 
(GSEA) was conducted to identified the differences in 
biological processes between CSS-high and CSS-low 
groups using the javaGSEA desktop application (GSEA 
4.1.0 [27]). Moreover, Gene set variation analysis (GSVA) 
was also carried out with the R package ‘GSVA [28]’. The 
gene sets of “h.all.v7.2.symbols” downloaded in MSigDB 
and the known gene sets constructed by Mariathasan 
et al. [29] were used for GSVA enrichment analysis.

Evaluation of immune infiltration, key immune 
characteristics and EMT score
Single sample gene set enrichment analysis (ssGSEA) 
was implemented to estimate immune cell abundance 
of each sample in TCGA cohort based on a gene panel 
[30] marking 28 immune cell types. Besides, key immune 
characteristics [31], including leukocyte fraction, stromal 
fraction, SNV neoantigen, Indel neoantigen, intratumor 
heterogeneity (ITH), TCR Shannon and BCR Shannon 
were downloaded from the following website: https:// 
gdc. cancer. gov/ about- data/ publi catio ns/ panim mune and 
were compared among distinct cellular senescence clus-
ters or between CSS-high or CSS-low group. The EMT 
score was calculated based on the epithelial-to-mesen-
chymal transition gene signature, which included 25 epi-
thelial and 52 mesenchymal marker genes. The formula 
of the EMT score was described in previous studies [32, 
33].

Prediction of immunotherapeutic response and drug 
sensitivity
The Tumor Immune Dysfunction and Exclusion (TIDE, 
http:// tide. dfci. harva rd. edu/) [34, 35] and immunophe-
noscore (IPS, https:// tcia. at) [30], which were consid-
ered as superior predictor of immunotherapy response, 
were used to predict responses to immunotherapy 

among distinct cellular senescence clusters and between 
CSS-low and CSS-high groups. Patients’ half-maximal 
inhibitory concentration (IC50) to 138 drugs were also 
quantified based on the Genomics of Drug Sensitivity 
in Cancer (GDSC, https:// www. cance rrxge ne. org) [36] 
database using the R package ‘pRRophetic [37]’.

Immunohistochemistry (IHC) staining and evaluation
The tissue microarray slide was immunostained with 
a rabbit antibody against human LYPD3 (abcam; 
ab151709). The immunohistochemical staining was eval-
uated based on the percentage of positive cells and the 
staining intensity. The expression ratio was scored as 1 
(0–25%), 2 (26–50%), 3 (51–75%) or 4 (76–100%), while 
signal intensity was scored as 0 (negative), 1 (weak), 2 
(moderate) or 3 (strong). The final score of each sample 
was obtained by multiplying the expression ratio and 
the signal intensity. All the immunostained tissues were 
blindly reviewed by two pathologists.

Statistical analysis
R software (version 3.6.1), GraphPad Prism 8.0 and Stats 
16.0 were used to analysis data and plot graphs. Wilcoxon 
test and Kruskal–Wallis test were applied for compari-
sons of two and three groups, respectively. The overall 
survival probability of patients was analyzed by Kaplan–
Meier method and log-rank test. Multivariate survival 
analysis was carried out using the Cox regression model. 
Meta-analysis was performed to assess the prognos-
tic value in the pooled cohort. The R package ‘rms’ and 
‘nomogramEx’ were applied to construct the nomogram 
adopting variables including age, gender, T stage, N stage, 
TNM stage as well as CSS. Calibration curves were uti-
lized to assess the consistency between actual and pre-
dicted survival time. Time-dependent receiver operating 
characteristic (ROC) curves were generated to compare 
the predictive accuracy of different survival factors. Sig-
nificantly mutated genes between CSS-high and CSS-low 
groups and the interaction effect of mutated genes were 
analyzed by R package ‘maftools [38]’. Two-sided P < 0.05 
was considered statistically significant.

Result
Identification of distinct cellular senescence molecular 
patterns in LUAD
To characterize cellular senescence molecular pat-
terns and screen out potential targets, we developed a 
workflow as shown in Additional file 1: Fig. S1. A man-
ually-curated gene list including 278 cellular senescence-
related genes was extracted from the CellAge database 
(Additional file 10: Table S3). To comprehensively explore 
the expression patterns of the cellular senescence-
related genes (SRGs) in LUAD, a total of 1069 patients 

https://gdc.cancer.gov/about-data/publications/panimmune
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https://tcia.at
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from 6 cohorts (TCGA cohort, GSE30219, GSE31210, 
GSE37745, GSE50081 and GSE135222) with correspond-
ing clinical information were enrolled. Univariate Cox 
regression analysis showed that 74 of 278 cellular senes-
cence-related genes were correlated with LUAD progno-
sis (P < 0.05, Additional file 10: Table S4) in TCGA cohort. 
Based on the expression profiles of the prognostic genes, 
we stratified patients into three distinct clusters through 
a nonnegative matrix factorization (NMF) algorithm 
(156 cases in Cluster 1 (C1), 239 cases in Cluster 2 (C2) 
and 105 cases in Cluster 3 (C3), Fig. 1A and Additional 
file 2: Fig. S2). The clinical information and gene expres-
sion of three cellular senescence clusters were displayed 
in Fig.  1B, and we found that patients with  advanced 

clinical stage and lymph node metastasis (N1–3) were 
mainly concentrated in C3 subgroup (Fig. 1B), suggesting 
the prognostic differences among distinct cellular senes-
cence clusters in LUAD. As expected, patients in C3 did 
exsert a significant worst survival (Fig. 1C, Log-rank test, 
P < 0.0001) compared with C1 and C2.

To further investigate the biological processes under-
lying three distinct cellular senescence clusters, GSVA 
enrichment analysis was performed. As shown in Fig. 1D, 
Cluster 1 and Cluster 3 was significantly enriched in 
carcinogenic activation and tumor proliferation related 
pathways, including E2F_target, G2M_checkpoint and 
MYC_target. Intriguingly, Cluster 3 also presented 
enrichment pathways prominently associated with 
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Fig. 1 Cellular senescence-related molecular patterns with distinct prognosis and biological characteristics in LUAD. A Cophenetic correlation 
from NMF analysis of LUAD tumors. B Heatmap of the 74 cellular senescence-related prognostic genes in TCGA cohort. The age, gender, TNM stage, 
and survival status of TCGA LUAD cohorts were used as patient annotations. C Kaplan–Meier survival curves of LUAD patients in the three distinct 
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stromal activation, such as TGF-β signaling, angiogen-
esis, hypoxia and EMT pathways, suggesting an immu-
nosuppressive tumor microenvironment in samples of 
Cluster 3. Additionally, based on the gene expression of 
epithelial markers and mesenchymal markers, we calcu-
lated the EMT score of each sample and found a signifi-
cantly higher EMT score in Cluster 3 (Fig.  1E), further 
confirmed the activation of EMT in samples of Cluster 3.

Characterization of immune landscape in distinct cellular 
senescence clusters
Previous studies have revealed the association between 
cellular senescence and immune infiltration in multiple 
cancer types [14, 15, 39]. Thus, we applied ssGSEA algo-
rithm to determine the relative abundance of 28 immune 
infiltrating cells in each sample and compared the com-
ponent difference of immune cells among distinct cellu-
lar senescence clusters (Fig.  2A). Particularly, we found 
that regulatory T cells (Tregs) and Myeloid-derived sup-
pressor cells (MDSCs) were markedly elevated in Clus-
ter 3 (Fig.  2B, C), which was concordant with previous 
observations linking Cluster 3 to an immunosuppressive 
phenotype. In addition, we explored the immune charac-
teristics in distinct cellular senescence clusters. As shown 
in Fig.  2D, both leukocyte and stromal fractions were 
increased in Cluster 3. Cluster 1 had the highest SNV 
neoantigens, Indel neoantigens and ITH, while Cluster 2 
was defined by the lowest neoantigens and ITH.

Immunomodulators play a critical role in shaping the 
tumor microenvironment (TME) and cancer immuno-
therapy. Therefore, to further investigate the complex 
crosstalk of immunomodulators, immune infiltration 
and cellular senescence, we explored the expression of 
immunomodulators in different clusters. As depicted 
in Fig.  2E, many inhibitory immune checkpoint genes, 
including PD-L1, PD-1 and TIM3 were markedly upregu-
lated in C3, whereas most major histocompatibility com-
plex (MHC) class II genes were highly expressed in C2. 
Moreover, we observed significantly loss of both MHC 
I and MHC II machinery in C1 samples, suggesting that 
the disruption of productive tumor neoantigens presen-
tation could facilitate immune evasion in LUAD patients 
of Cluster 1 [40]. Next, we analyzed the TCR and BCR 
Shannon among different clusters. Our results show that 

TCR Shannon was significantly higher in C2, while no 
difference in BCR Shannon was observed among differ-
ent clusters (Fig. 2F). Finally, we used TIDE and IPS score 
to evaluate the clinical efficacy of immunotherapy among 
three clusters. In our results, Cluster 2 had the lowest 
TIDE score, and the highest IPS, implying that patients in 
Cluster 2 could benefit more from immunotherapy than 
Cluster 1 and 3 (Fig. 2G).

Recently, a large-scale transcriptomic analysis [41] 
identified four distinct tumor microenvironment (TME) 
subtypes, including immune-enriched, fibrotic (IE/F), 
immune-enriched, non-fibrotic (IE), fibrotic (F), and 
immune-depleted (D), which were conserved across 20 
different cancers. In lung cancer, immunotherapy-treated 
patients with immune-enriched TME subtypes IE/F and 
IE demonstrated longer OS than those with subtypes F 
and D. We focused on the distribution of TME subtypes 
in cellular senescence clusters. In our study, both Cluster 
1 and Cluster 3 comprised over 65% of F and D samples, 
whereas Cluster 2 comprised over 50% of IE/F and IE 
samples (Fig. 2H), which were in line with our hypothesis 
that patients in Cluster 2 might response better to immu-
notherapy compared to those in Cluster 1 and Cluster 3.

Taken together, our comprehensive analysis revealed 
that cellular senescence clusters were significantly cor-
related with patients’ prognosis and TME characteristics, 
which might provide new insights on LUAD classification 
system.

Construction of the cellular senescence score for overall 
survival in LUAD patients
To further reveal the underlying biological role of cellular 
senescence clusters, we identified 336 overlapping cel-
lular senescence molecular pattern-related DEGs under 
a threshold of adj. P < 0.001 (Fig.  3A; Additional file  10: 
Table  S5). GO enrichment analysis for DEGs revealed 
that enrichment of biological processes notably related 
to cell cycle, DNA replication and DNA damage repair, 
which confirmed the important role of cellular senes-
cence in tumor progression (Fig. 3B).

Given the heterogeneity and complexity of cellu-
lar senescence in LUAD individuals [10], we sought to 
establish a cellular senescence-related scoring system 
for clinical prognosis prediction. We first evaluated the 

Fig. 2 The immune landscape in distinct cellular senescence-related molecular patterns in LUAD. A Single-sample gene set enrichment (ssGSEA) 
analysis identifying the relative infiltration level of immune cell populations in three cellular senescence clusters of LUAD samples in TCGA 
cohort. (B-C) Differences in regulatory T cell (B) and MDSC (C) proportion among distinct cellular senescence patterns in TCGA cohorts. D The 
relative distributions of leukocyte fraction, stromal fraction, SNV neoantigens, Indel neoantigens, and ITH score were compared among three 
cellular senescence clusters. E Heatmap depicting the mean values of mRNA expressions of immune-related genes among distinct clusters. F–G 
Comparisons of TCR Shannon, BCR Shannon (F), IPS and TIDE score (G) among three cellular senescence clusters. The statistical difference of three 
clusters were compared through the Kruskal–Wallis test. G Alluvial diagram showing the relations of cellular senescence clusters (upper) and TME 
subtype (lower) across LUAD patients. The statistical difference of three clusters were compared through the Kruskal–Wallis test. ns not significant; 
*P < 0.05; **P < 0.01; ***P < 0.001

(See figure on next page.)
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prognostic value of the 336 DEGs using univariate Cox 
regression analysis. With a threshold of P < 0.01, a total 
194 genes (Additional file 3: Fig. S3A, Additional file 10: 
Table  S6) were screened out as promising candidates. 
Random survival forest analysis was then implemented 
to further shrink the scope of candidate genes. The top 

10 genes sorted by importance (Additional file  3: Fig. 
S3B) were subsequently submitted to the Kaplan–Meier 
analysis of combination. Among the 1023 combinations, 
a combination of 4 genes (C1QTNF6, SQOR, LYPD3 and 
FAM83B) obtained the minimum P value (Additional 
file  3: Fig. S3C), which was integrated to build cellular 
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senescence scoring system. Finally, based on the mul-
tivariate Cox regression, the cellular senescence score 
(CSS) was constructed and the risk score of each patient 
were calculated as follows: CSS = (0.2921 × expres-
sion value of C1QTNF6) + (0.1810 × expression 
value of SQOR) + (0.0524 × expression value of 
LYPD3) + (0.1285 × expression value of FAM83B). LUAD 
samples were stratified into CSS-high and CSS-low 
groups according to the optimal cutoff value of the risk 
score. Kaplan–Meier analysis demonstrated that patients 
with high CSS exhibited worse prognosis than those 
with low CSS (HR = 2.775, 95% CI 2.073–3.714, log-rank 
P < 0.0001, Fig.  3E). The area under the ROC curves for 
2-, 3-, 5-year survival time were 0.690, 0.696 and 0.638, 
respectively, implying that CSS was a reliable predictive 
model (Additional file 3: Fig. S3D).

Relationship of attributes including cellular senescence 
clusters, risk groups and survival status of patients was 
illustrated in an alluvial diagram (Fig.  3D). Consistent 
with the above findings, 87.5% of patients in cluster 3, 
which was relevant to the worse survival outcome, were 
classified into high-risk group, while the CSS-low sub-
group comprised 63.8% of C2 patients and only 5.8% of 
C3 patients (Fig.  3D). Therefore, it was not surprising 
that cluster 3 had the highest risk score (Fig. 3E). In addi-
tion, the risk score was also significantly increased in the 
dead patients compared with living patients (Fig. 3F).

CSS serves as an independent prognostic factor for LUAD
To investigate the independent prognostic value of CSS, 
we performed multivariate Cox regression analysis con-
sidering clinical features including patients’ age, gen-
der, T stage, N stage, TNM stage), which demonstrated 
that CSS (HR = 2.220, 95% CI 1.639–3.008, P < 0.001) 
could serve as an independent prognostic risk factor 
for overall survival of LUAD patients in TCGA cohort. 
(Fig. 3G). To further explore the clinical relevance of CSS 
in depth, we compared the distribution of several clin-
icopathological features between CSS-high and CSS-low 
groups. Significantly distribution differences of survival 
status (P = 2.5e−07), TNM stage (P = 0.0007), T stage 
(P = 0.0029) and N stage (P = 0.0003) were observed 
between distinct subgroups in TCGA cohort (Fig.  4A). 
Patients with different stages of lung adenocarcinoma 
have different prognosis and treatment strategies [42], 
thus, we applied CSS in patients with different stage in 

the training cohort. As depicted in Additional file  4: 
Fig. S4A, high CSS was associated with poor prognosis 
despite of patients’ stage. CSS also discriminated high 
risk patients with worse prognosis in different subgroups 
with different clinicopathological features, including T 
stage (Additional file  4: Fig. S4B), N stage (Additional 
file 4: Fig. S4C), age (Additional file 4: Fig. S4D), and gen-
der (Additional file 4: Fig. S4E).

To confirm the prognostic robustness of the cellu-
lar senescence score, CSS was further validated in four 
independent cohorts described previously. Consistent 
and significant differences were observed in all valida-
tion cohorts (Fig.  4B–E), including Validation cohort I 
(HR = 2.398, 95% CI 1.252–4.592, log-rank P = 0.0029), 
Validation cohort II (HR = 2.578, 95% CI 1.264–5.258, 
log-rank P = 0.0037), Validation cohort III (HR = 1.846, 
95% CI 1.145–2.977, log-rank P = 0.0061) and Valida-
tion cohort IV (HR = 3.198, 95% CI 1.619–6.317, log-rank 
P < 0.0001). Meta-analysis was also performed to com-
prehensively assess the prognostic value of CSS in the 
pooled cohort which integrated the training cohort and 
four validation cohorts (Fig. 4F). Our result revealed that 
patients in the CSS-high group showed unfavorable OS 
compared to those in CSS-low group (pooled HR = 2.54, 
95% CI 2.06–3.14, P < 0.0001). Collectively, CSS exhibited 
as a reliable and accurate prognostic factor for evaluating 
LUAD patient outcomes.

Consistently, overexpression of C1QTNF6, SQOR, 
LYPD3 and FAM83B were associated with worsened 
prognosis in patients with LUAD in terms of OS (Addi-
tional file  5: Fig. S5A–D). However, only LYPD3 was 
dramatically overexpressed in tumor tissues compared 
with normal tissues (Additional file 5: Fig. S5E, P < 0.05) 
in GEPIA2 [43], which combined TCGA and GTEx 
data together to assess the gene expression between 
normal and tumor tissues more accurately. Therefore, 
we gave our attention to LYPD3. We analyzed the pro-
tein expression of LYPD3 on a tissue microarray using 
immunohistochemical (IHC) staining. As shown in 
Fig.  4G, the protein expression level of LYPD3 was 
remarkedly elevated in tumor samples compared to 
that in adjacent normal tissues. We also performed sur-
vival analysis on Kaplan–Meier plotter database [44], 
which integrated multiple cohorts. The result showed 
that LUAD patients with high LYPD3 level had a sig-
nificantly worse prognosis than those with low LYPD3 

Fig. 4 Evaluation of CSS performance in independent datasets and construction of a CSS-based nomogram. A Comparisons of clinical features 
between CSS-low and CSS-high subgroups. B–E Kaplan–Meier curves for patients with high and low CCS in validation I(B), II(C), III(D), IV(E) cohorts. 
F Meta-analysis. G Representative images (left) and score comparison (right) of IHC staining for LYPD3 in adjacent non-tumor tissues and LUAD 
tissues. H Survival analysis comparing low and high expression levels of LYPD3 in the Kaplan–Meier plotter database. I Construction of a nomogram 
combining the CCS and clinical features for prediction of OS. J Calibration analysis indicated a high accuracy of OS prediction. K AUC plotted for 
different durations of OS for nomogram-based signature, CSS, Age, T stage, N stage and TNM stage in LUAD patients in TCGA cohort

(See figure on next page.)
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(Fig.  4H), suggesting that LYPD3 might serve as a 
potential prognostic marker in LUAD.

Construction of integrated models to optimize risk 
stratification and survival prediction in LUAD patients
To better predict the survival probability for LUAD 
patients, a predictive nomogram was built based on the 
integration of CSS and other clinicopathological fea-
tures, including age, gender, T stage, N stage and TNM 
stage (Fig. 4I). The calibration curves of the nomogram 
for 3-years and 5-years survival probability showed 
outstanding consistency with the ideal performance, 
suggesting a high accuracy of our nomogram (Fig. 4J). 
Additionally, compared with other clinicopathological 
features (age, gender, T stage, N stage and TNM stage), 
the CSS-based nomogram exhibited the best ability 
at predicting the OS, with an average AUC above 0.7 
(Fig. 4K).

Comprehensive analyses of tumor mutations and enriched 
biological pathways between different risk groups
To investigate the potential mechanisms leading 
the distinct outcomes between CSS-high and CSS-
low groups, we first compared the mutant frequency 
between the two groups. As illustrated in Fig.  5A, the 
top 15 differentially mutated genes, including TP53, 
TEX15, SMARCA4, RP1L1, GRIN2B, CDH10, HYDIN, 
SLITRK4, OTOGL, PAPPA2, THSD7A, CSMD3, UBR4, 
CNTNAP4 and SYNE1, were all mutated more fre-
quently in the CSS-high group. Moreover, significant 
co-occurrences were also observed among mutations of 
the 15 genes (Fig. 5B). Next, we performed GSEA with 
annotation of HALLMARK gene sets and found signifi-
cant enrichment of epithelial mesenchymal transition 
(EMT) pathway in CSS-high group (Fig.  5C). Consist-
ently, higher EMT score and gene expression of EMT 
markers including SNAI1, SNAI2, TWIST1, ZEB1, 
ZEB2, FN1, and VIM were also observed in high-risk 
group (Fig.  5D, E). To further confirm the results, we 
also carried out correlation analysis between CSS and 
the known signatures. Intriguingly, CSS were negatively 
correlated with CD8 T effector pathway, while posi-
tively correlated with EMT and pan-fibroblast TGF-β 
response signature (Pan-F-TBRS) pathway, which 
served as the measurement of TGF-β pathway activ-
ity specifically in fibroblasts (Fig. 5F). EMT and TGF-β 
pathway, which were considered as T cell suppression, 
was shown to strongly connected with CSS, prompting 
us to further investigate the connection between CSS 
and the tumor immune microenvironment.

CSS was associated with tumor immune infiltration 
and predicted therapeutic benefits
To drive deeper in relationship between CSS and tumor 
immunity, we first compared the abundance of infiltrated 
immune cells between high- and low risk groups. Inter-
estingly, our data showed that CSS-high group had sig-
nificantly higher infiltration level of immunosuppressive 
cells, including MDSCs and Tregs (Fig.  6A), which was 
in accordance with our hypothesis that patients in high-
risk group might be under an immunosuppressive state. 
Subsequently, we explored the expressions of immune 
checkpoint genes in different groups. Increasing expres-
sion of PD-L1, PD-1, CTLA4 was observed in high-risk 
group (Fig. 6B), meanwhile, co-inhibitory immune check-
point molecules, including TIM3, LAG3, etc. which drive 
T-cell exhaustion, were also significantly upregulated 
in CSS-high group (Additional file  6: Fig. S6A). Taken 
together, these results indicated that patients in high-risk 
group exhibited inertia in antitumor immunity, which 
might contribute to their unfavorable outcomes.

We hypothesized that combination of CSS with 
immune checkpoint genes or TMB would further 
improve the ability to predict prognosis of LUAD. Thus, 
to explore the effect of CSS in concert with immune 
checkpoint genes (PD-L1, PD-1, CTLA4) on LUAD 
patients’ outcomes, survival analysis of four patient 
groups stratified by CSS and expression of immune 
checkpoint genes were conducted. As expected, patients 
with low CSS and low PD-L1 exhibited significantly pro-
longed survival than those with high CSS and low PD-L1, 
and patients with low CSS and high PD-L1 were also 
linked with favorable OS compared to those with high 
CSS and high PD-L1 (Fig. 6C). Similarly, patients in CSS-
low group tended to have significantly favorable survival 
prospects relative to those in CSS-high group regardless 
of whether the expression of PD-1 or CTLA4 was high 
or low (Fig.  6D, E). Given that the critical role of TMB 
in clinical practice, we also compared the distribution of 
TMB between subgroups. Patients with high CSS showed 
a higher TMB than those with low CSS (Additional file 6: 
Fig. S6B). Noticeable survival differences were found 
between high- and low- risk groups in patients with low 
TMB (Additional file  6: Fig. S6C). These observed con-
nections between CSS and immune checkpoint genes/
TMB indicated that the combination of CSS with 
immune checkpoints or TMB showed better prognosis 
stratifications and CSS might serve as a potential predic-
tor of treatment response in immunotherapy.

Newly identified predictors, including IPS and TIDE, 
were widely applied and considered as superior biomark-
ers to evaluate immunotherapy response. Thus, to eluci-
date the effects of CSS in immunotherapy, we extended 
our analysis to compare the distribution of the known 
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markers in low- and high- risk groups. Our results 
revealed that IPS was significantly elevated in CSS-
low group, while TIDE and T cell exclusion score were 
decreased in CSS-low group (Fig. 6F–H). We also com-
pared the time-dependent AUC value of CSS with those 
of TIDE and IPS, which showed that CSS performed 
better than TIDE and IPS in predicting OS of LUAD 
patients (Fig.  6I). The practicability of CSS for predicting 

the therapeutic benefit was further analyzed using inde-
pendent cohort of anti-PD-L1 or -PD1-treated patients 
with lung cancer [22]. Patients with low CSS distinctly 
exhibited longer survival time compared to those with 
high CSS (P = 0.0617, Fig. 6J). These results implied that 
CSS could function as an indicator of immunotherapy 
and low CSS may correlate with a favorable response to 
immune checkpoint inhibitors (ICIs) therapy.
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To further discover the potential therapy targets, 
we screened the IC50 values of 138 compounds from 
GDSC in LUAD patients, and a total of 16 drugs were 
screened out (P < 0.05). We found that patients in 
low-risk group were more sensitive to all the 16 drugs 

including CCT007093 (protein phosphatase 1D inhibi-
tor), VX.702 (p38 MAP kinase inhibitor), Roscovitine 
(CDKs inhibitor), Lenaidornide (TNF-α inhibitor), 
MK2206 (Akt 1/2/3 inhibitor) etc., providing new per-
spective for drug development (Additional file  7: Fig. 
S7).

*** *** *** * *** **** *** *** ** * ** *** ***
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Discussion
To date, since the immune checkpoint inhibitors (ICIs) 
targeting programmed cell death-1/ligand-1 (PD-1/
PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) 
have led to a paradigm shift in lung cancers [45, 46], the 
efficacy of ICIs on older patients remains controversial 
as old persons inclusion is lacking in current clinical tri-
als [47]. Additionally, the immunotherapy of LUAD has 
proven a challenge for the era of personalized therapy 
due to inter- and intra-tumoral heterogeneity. Therefore, 
studies on the biological mechanisms and prognostic bio-
markers of LUAD concerning cellular senescence-related 
genes may offer an opportunity to identify lung cancer 
subtypes, improving the future application of precision-
focused treatments for LUAD. In the present study, we 
comprehensively analyzed the role of distinct cellular 
senescence clusters in clinical implication and immune 
landscape in LUAD. Moreover, we constructed an inde-
pendent prognostic model based on cellular senescence 
cluster-related DEGs, which might contribute to make 
personalized immunotherapy strategies for oncologists.

Transcriptomic analyses pave a way to discriminate the 
heterogeneity and complexity of tumors and to discover 
novel prognostic and predictive biomarkers for novel 
therapeutic strategies [48]. Intriguingly, we first identi-
fied three different cellular senescence clusters with dis-
tinct clinical outcomes and TME characteristics in LUAD 
patients. The findings indicated that cellular senescence-
related genes may play crucial roles in the generation of 
different biological process and immune phenotypes, 
which were correlated with diverse tumorigenesis and 
anticancer immunity in individual tumors. For example, 
cellular senescence cluster 3 was significantly enriched 
in carcinogenic activation pathways, meanwhile also 
associated with stromal activation pathways, including 
TGF-β signaling, angiogenesis, hypoxia and EMT path-
ways, indicating that patients in cluster 3 might have an 
immunosuppressive tumor microenvironment, which 
facilitated tumor cell invasion into the stroma, angio-
genesis and tumor development [29, 49, 50]. Intriguingly, 
patients in cluster 3 had the highest proportion of Tregs 
and MDSCs characterized by the suppressive immunity 
[51, 52]. On the contrary, cluster 2 had the lowest ITH 
and TIDE score, as well as the highest IPS and TCR Shan-
non, indicating the most beneficial from immunotherapy 
for patients in cluster 2 [30, 34, 35, 53–55]. Moreover, the 
identified cellular senescence clusters presented consist-
ency with the published TME subtypes that patients with 
immune-enriched TME subtypes IE/F and IE demon-
strated better survival than those with subtypes F and D 
[41]. Taken together, the newly identified cellular senes-
cence clusters might provide novel insights on classifica-
tion system of LUAD.

Through random survival forest algorithm, we con-
structed a novel survival prediction model (CSS) based 
on the expression of four cellular senescence cluster-
related DEGs (C1QTNF6, SQOR, FAM83B and LYPD3), 
which performed well in four external validation cohorts 
across different platforms. Furthermore, a nomogram 
combined CSS and clinicopathological factors was gener-
ated to quantify risk evaluation and survival probability. 
Compared to other traditional features, the CSS-based 
nomogram presented the best accuracy and discrimina-
tion in survival prediction. Notably, our results implied 
that the CSS was an independent prognostic factor for 
LUAD patients, additionally functioned as a predictor of 
immunotherapy. It is suggested that low CSS may cor-
relate with a favorable response to ICI therapy and CSS 
coupled with specific immune checkpoint factors or TMB 
might serve as predictive biomarkers of ICIs response 
and prognosis. To investigate the possible mechanisms 
underlying the predictive role of CSS, we uncovered 
that CSS-high group had significantly higher infiltra-
tion level of immunosuppressive cells, including MDSCs 
and Tregs. Furthermore, CSS were also negatively cor-
related with CD8 + T effector pathway, meanwhile posi-
tively correlated with EMT and Pan-F-TBRS pathway, 
delineating the immunosuppressive microenvironment 
and the dysfunctional immune reaction [31]. Thus, fur-
ther studies will be important to decipher whether cel-
lular senescence molecular determinants reshape tumor 
microenvironments and affect the prognosis and immu-
notherapy response of LUAD patients.

Among the four signature genes, only expression of 
LYPD3 was abnormally elevated in tumor samples com-
pared with normal tissues in GEPIA2, which was further 
confirmed by IHC in our TMA. Consistently, previ-
ous studies also showed that LYPD3 (C4.4A) was over-
expressed in lung cancer and played as a tumorigenesis 
and metastasis-associated cell surface protein [56, 57]. 
Recently a phrase I clinical trial has reported C4.4A-ADC 
(BAY 1129980), a C4.4A-targeting human immunoglobu-
lin G1 antibody (hIgG1-Ab, C4.4A-Ab), as a promising 
therapeutic candidate for the treatment of NSCLC and 
other cancers with expression of C4.4A [58], suggesting 
that LYPD3 may serve as a therapeutic target in tumors 
and LYPD3-ADC combined with ICIs may provide new 
strategies for NSCLC patients. Future functional stud-
ies of LYPD3 in vivo and in vitro should be carried out to 
elucidate its precise role in the development and immu-
notherapy of LUAD.

Collectively, our findings presented significant clinical 
implications. Firstly, we explored and discovered a novel 
scoring system to classify patient with different treat-
ment strategies based on the different risk subgroups. 
We found that the low-risk group showed higher IPS 
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and lower TIDE score, correlated with a better response 
to ICB therapy. And compared with existing biomark-
ers, this signature exhibited better prediction ability. 
These findings suggest that cellular senescence score can 
further stratify patient responses to immunotherapy in 
LUAD. Moreover, our investigation of the effects of cel-
lular senescence on the TME could enhance understand-
ing of the heterogeneity of responses to immunotherapy. 
On the other hand, uncovering how cellular senescence 
affects the TME can provide an opportunity for discov-
eries of how we can effectively remodel the immunosup-
pressive milieu by suppressing the process of senescence 
or destroying senescent cells, defined as senolytic thera-
pies. What’s more, the GDSC database was utilized 
to identify multiple small-molecule drugs for LUAD. 
According to the estimated IC50 values, patients in low-
risk subgroup showed sensitive to Roscovitine (CDKs 
inhibitor), Lenaidornide (TNF-α inhibitor), MK2206 
(Akt 1/2/3 inhibitor) etc., helping medical staff to choose 
a suitable treatment method for the patient more accu-
rately. Synergistic effects of ICIs combined with the 
previous drugs have been reported in cancers [59–61]. 
Hence, these candidate molecular drugs might possess 
potential efficacy for LUAD, which demonstrated prom-
ising approaches to improve immunotherapy response, 
especially in aged cancer patients.

Some limitations still remained in our study. Firstly, 
as for the CSS was constructed and validated with ret-
rospective data, these findings need to be confirmed in 
a multi-center prospective study based on a larger popu-
lation. Secondly, further experiments in vivo and in vitro 
are needed to elucidate the deeper regulatory mecha-
nisms of cellular senescence-related genes in the develop-
ment of LUAD.

Conclusion
Our study established a novel classification for LUAD 
based on the mRNA expression profiles of cellular senes-
cence-related genes. In addition, a robust cellular senes-
cence scoring system was also developed and validated. 
These results might facilitate prognostic biomarker selec-
tion and provide novel insights toward personalized 
immunotherapy for LUAD patients in the future.
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