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Abstract 

MYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of 
cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, there-
fore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been 
given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. 
However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression 
by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular 
RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and 
translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulat-
ing MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a 
pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resist-
ance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence 
and development of cancer.
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Introduction
The MYB gene was discovered from virus MYB (V-MYB), 
which is the oncogene of avian myeloblastosis virus 
(AMV) and E26 (another avian virus), and is considered 
a causative the oncogene of avian myeloma and lym-
phoma in birds. This has led, to the hypothesis that aber-
rant activation of vertebrate MYB could also cause cancer 
[1]. Moreover, the nucleotide sequence of the promoter 
region of the MYB proto-oncogene was detected in mice, 

humans, lizards, frogs, and carp, indicating that this evo-
lutionarily conserved element is involved in the regula-
tion of MYB proto-oncogene expression in vertebrates 
[2]. The MYB protein contains a DNA-binding domain 
(DBD) at the N-terminal, which consists of three tandem 
repeat domains of approximately 50 amino acids con-
taining tryptophan, named R1, R2 and R3; a conserved 
C-terminal negative regulatory domain (NRD); and a 
transactivation domain (TAD) located in the central part 
of the protein (Fig. 1) [3]. Evidence suggests that deletion 
of MYB regulatory C-terminal domain may be a driv-
ing mutation leading to tumorigenesis [1]. In leukemia 
samples, enhanced alternative RNA splicing produces 
mutated MYB gene transcripts [4]. Moreover, recur-
rent t (6;9) (q22-23; p23-24) translocation in adenoid 
cystic carcinoma fuse MYB gene on chromosome 6 to 
NFIB gene on chromosome 9 [5]. Cellular MYB (c-MYB) 
is a homolog of v-MYB, which paved the way for the 
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discovery of two closely related family members, MYBL1 
(A-MYB) and MYBL2 (B-MYB) [6, 7]. Although their 
structures are similar, they may have unique biological 
functions. Different MYB proteins interact with distinct 
cofactors, and their expression is usually nonoverlap-
ping [8–10]. A-MYB expression is limited to developing 
mammary glands, spermatogenic tissues, central nerv-
ous system, and T and B cells [11]. B-MYB seems to be 
ubiquitously expressed in normal tissues and is overex-
pressed in many cancers, especially leukemia, colorectal 
cancer, esophageal squamous cancer, bladder carcinoma 
and breast cancer [12–16]. The conditional inactivation 
of B-MYB in vivo will lead to depletion of hematopoietic 
stem cell (HSC) bank and a massive reduction in mature 
lymphocytes, erythrocytes and myelocytes [17]. C-MYB 

encodes a transcriptional activator that is critical for the 
development of the hematopoietic system [18]. A study of 
MYB knockout mice showed that the precise expression 
of MYB gene had differential effects on the development 
of T and B cells, bone marrow production, erythropoie-
sis and HSC self-renewal [7]. Numerous studies have 
shown that MYB overexpression can promote the growth 
of tumor cells [19–21]. Previous studies have shown that 
MYB inhibition can impair the growth, migration and 
invasion of cancer cells, suggesting that inhibition of 
MYB may be a potential cancer treatment strategy [19, 
22, 23].

MYB acts as a transcriptional activator by binding to 
a specific sequence, called MYB binding site (MBS) [24]. 
Interestingly, MYB encodes one or more proteins that 

Fig. 1  The diagram shows the schematic structure of the gene and protein of A-MYB, B-MYB and c-MYB. A The domain structures of A-MYB, B-MYB, 
and c-MYB. The MYB protein is diagrammed, with N-terminal on the left and C-terminal on the right. The labels at the bottom of the diagram 
indicate conserved domains. The MYB gene is located on chromosome 6q23.3 and encodes a transcription factor with an N-terminal DNA binding 
domain (DBD), a central transactivation domain (TAD), and a negative regulatory domain (NRD). Oncogenic activity requires the FAETL domain, the 
TPTPF domain conserved in the other MYB proteins, and the EVES domain that is involved in intra-molecular interactions and negative regulation. B 
MYB transcriptional elongation regulation model, and the effect of the interaction between ncRNAs and MYB on the occurrence and development 
of tumor cells
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can interact with other transcription factors such as ETS-
2, NFM, and CEBP [25]. Evidence suggests that there are 
systematic changes in the processing of RNA in cancer. 
These changes can be observed in the form of noncoding 
RNAs (ncRNAs) [26]. In the past decade, booming bioin-
formatics and deep sequencing technology have enabled 
the identification and annotation of tens of thousands of 
ncRNAs [27, 28]. These ncRNAs mainly include long-
non-coding RNAs (lncRNAs), microRNAs (miRNAs), 
and cyclic RNAs (circRNAs) [29].

Over the past few years, these ncRNAs have proven 
to have a wide range of potential for controlling gene 
expression [30, 31]. LncRNAs are transcripts with a 
length of more than 200 nucleotides and are rapidly 
becoming a new type of transcript related to a variety of 
cellular and biological processes. The role of lncRNAs in 
cancer is mainly reflected in two aspects, as RNA mol-
ecules and by encoding peptides or proteins [32]. Fur-
thermore, their abnormal expression and mutation are 
closely related to tumorigenesis, metastasis and tumor 
stage in leukemia, prostate cancer, and breast cancer [33–
35]. Furthermore, miRNAs disturb expression of genes or 
degrade messenger RNA (mRNA) translation by binding 
to complementary target genes [36]. MiRNAs are aber-
rantly expressed in a variety of tumors. The first example 
is miR-15a and miR-16, which provide further clues to 

their role in the pathogenesis of B-lymphocytic leukemia 
(B-CLL) [37]. CircRNAs are a class of single-stranded 
RNAs with closed circular structures that play signifi-
cant roles in the initiation and progression of cancer [38]. 
Interestingly, Lee et al. found that the transcription factor 
(TF) c-MYB participates in the regulation of 48 miRNAs 
[39]. In 2009, Zhao et al. found that the c-MYB-miR-15a 
autoregulation feedback loop plays an important role in 
human hematopoiesis and confirmed that MYB plays a 
regulatory role in ncRNA expression [40]. In this review, 
we focus on the complex crosstalk between ncRNAs and 
MYB in the pathogenesis and development of cancers.

MYB interacts with miRNAs
In recent years, the relationship between MYB and miR-
NAs has been studied extensively [41]. MYB can be used 
as a transcriptional activator to induce up-regulation of 
miRNA expression. Conversely, miRNAs play a crucial 
role in transcriptional regulation of MYB gene expres-
sion by binding to complementary sequences in its 
3′-untranslated region (UTR) (Fig. 2).

Regulation of miRNAs by MYB
Many studies have shown that MYB participates in the 
regulation of miRNA expression and is involved in the 
pathogenesis and development of various forms of cancer 

Fig. 2  Schematic of the biogenesis of miRNA and the functional mechanism of miRNA. MiRNAs directly bind to the 3′UTR of MYB to regulate MYB 
expression. If miRNA and MYB are completely complementary, then the combination of these miRNAs causes the degradation of MYB
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(Table 1). For example, MYB binds to MBS-C in the miR-
143 promoter, thereby transactivating miR-143 to affect 
the proliferation and differentiation of nasopharyngeal 
carcinoma cells [42]. MYB physically binds to  the pro-
moter of miR-155HG and activates its transcription in 
chronic B-CLL [43]. The proapoptotic effects of miR-
148a have been demonstrated in previous study [44]. 
MYB can transactivate BCL-2 by identifying transcrip-
tion factor binding sites (TFBs) and indirectly regulate 
BCL-2 by inhibiting miR-148a [45, 46].

Notably, many MYB-regulated miRNAs affect the 
development of cancer by targeting certain transcrip-
tion factors and tumor suppressors [47, 48]. MiR-1258 
is a key target gene of MYB, and its oncogenic effect is 
achieved by targeting transcription factor SP-1. There 
is evidence that upregulated SP-1 plays a crucial role in 
cell proliferation and metastasis of various tumors; thus, 
it is considered to be a negative factor in cancer prog-
nosis [49, 50]. In tumor cells with high MYB expression, 
MYB induces miR-130a expression, which inhibits the 
expression of tumor suppressor NDRG2 by targeting its 
3’-UTR [47]. Studies have shown that MYB promotes 
the transcriptional activity of miR-520-h, and upregu-
lated miR-520-h can directly downregulate membrane-
associated guanylate kinase and reverse repeat member 
1 (MAGI1) expression [48]. Moreover, in acute myeloid 
leukemia (AML), MYB expression activates miR-155 

and inhibits transcription factor PU.1. The highly acti-
vated MYB/miR-155/PU.1 pathway may be involved in 
the pathogenesis and invasiveness of AML [51]. Interest-
ingly, transcriptional regulators exert an enormous effect 
in modulating the expression of miRNA by targeting 
MYB. Y-box binding protein 1 (YB-1), a DNA and RNA-
binding protein family member, is a multifunctional 
oncoprotein that plays a critical role in cell processes [52, 
53]. In laryngeal squamous cell carcinoma (LSCC), YB-1 
induces miR-155 expression through MYB and promotes 
cancer development [54].

In addition to the above unidirectional regulation of 
MYB and miRNA, there is also a feedback loop between 
MYB and miRNA. MYB transcription factors directly 
bind to the upstream promoter region of miR-15a, and 
the expression of miR-15a is caused by this binding [40]. 
Conversely, miR-15a can repress MYB expression. The 
destruction of this feedback loop may lead to abnormal 
MYB activity and malignant transformation [40]. The 
role of the miR-200 family in the treatment of breast 
cancer has been demonstrated [55–57]. In recent years, 
some studies have shown that miR-200 regulates the 
development of breast cancer by directly negatively reg-
ulating the expression of MYB [58]. Interestingly, MYB 
positively controls the expression of miR-200, but this 
expression depends on potent repressors and miR-200 
promoter methylation [59].

Table 1  The role of miRNAs targeted by MYB in cancer development

AML, acute myeloid leukemia; EOC, epithelial ovarian cancer; HUVEC, human umbilical vein endothelial cell; NSCLC, non-small cell lung cancer; NPC, nasopharyngeal 
carcinoma; OSCC, oral squamous cell carcinoma; RCC, renal cell carcinoma; SACC, salivary adenoid cystic carcinoma

MYB-
targeted 
miRNAs 

Expression Targeting Cellular processes Tumor types In vitro model In vivo model Refs.

miR-520-h Upregulated Smad7, MAGI1 Metastasis RCC, EOC RCC cell lines (786-O, 
A-498, OS-RC-2, 
ACHN, CAKI-1, 
SKRC39 and HK-2)

BALB/C nude mice [48]

miR-130a Upregulated NDRG2 Cell proliferation, 
metastasis

SACC​ SACC-83, SACCLM 
cells

Female BALB/C-nu/
nu nude mice 

[47]

miR-155 Upregulated PU.1 Cell proliferation, 
metastasis, cell cycle

AML PU.1/p53 double-
mutant mice

[51]

miR-17-92 Upregulated FRZB, p21, E2F1 Senescence Ph-positive leukemia BV173, SUP-B15 and 
K562

NOD/SCID gamma 
mice

[131]

miR-143 Upregulated Ras Cell proliferation, 
apoptosis, DNA 
repair, metastasis.

Nasopharyngeal 
carcinoma

Human NPC cell 
lines, c666-1, 5-8F, 
CNE1 and CNE2

[42]

miR-1258 Downregulated SP-1, GRB2 Metastasis, cell cycle, 
senescence

OSCC, NSCLC OSCC cell lines 
(SCC-9, SCC-15); 
Human NSCLC cell 
lines (A549, SPCA1, 
H1299, H358, PC9, 
95D,16HBE); HUVEC 
and HEK293 cells

NOD/SCID mice [49, 129]

miR-148a Downregulated BCL2 Apoptosis Colorectal cancer RKO, LOVO, W480 
cells

[111]
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MiRNAs affecting MYB expression
Dozens of miRNAs have been described to regulate MYB 
expression by inhibiting its translation or degradation 
of its mRNA (Table  2). For example, both miR-143-3p 
and miR-29 negatively regulate the expression of MYB 
by directly binding to the 3′UTR of MYB [60, 61]. Many 
miRNAs show reduced levels in cancer, the inhibition 
of MYB by these miRNAs is removed, and the expres-
sion of MYB is upregulated. Therefore, the ordinarily 
high MYB level may be due to the decreased expression 
of tumor suppressor miRNAs, such as miR-96, miR-34a, 
miR-15a/16, miR-193b-3p, miR-548c-3p and miR-155 
[62–69].

MYB enhances erythropoiesis and miR-150 affects 
both MYB mRNA stability and translation efficiency [70]. 
MYB, a top predicted target of miR-150, has been fully 
proved. MiR-150 can induce EBV-positive BL differen-
tiation by targeting MYB [71]. Moreover, miR-150 also 
plays a vital  role in B cell development and differentia-
tion of other hematopoietic cell lines. In chronic myeloid 
leukemia (CML), miR-150 can target MYB and inhibit 
the expression of a series of oncogenes, thus suppressing 
the proliferation of CML cells [72]. In human colorectal 

cancer, miR-150 also plays a tumor-suppressive role by 
targeting MYB [73]. By further focusing on the role of 
miRNA, new treatment strategies could be found to 
overcome cancers associated with elevated MYB.

MYB interacts with lncRNAs
Abnormal expression of lncRNAs may contribute to the 
occurrence and development of a variety of cancers, and 
is partly regulated by the transcription factor MYB [74]. 
The expression of MYB in cancer is regulated at the level 
of alternative splicing, transcription, translation. Some 
lncRNAs can function during MYB regulation [75, 76].

Regulation of lncRNAs by MYB
In eukaryotic cells, it is known that multifunctional MYB 
transcription factors regulate the expression of targeted 
genes by binding to specific DNA sequences [77]. The 
‘-231 ~ -222’ bp region in the promoter of UCA1 is the 
main binding site of MYB transcription factor in hepa-
tocellular carcinoma cells (HCC). The link between TFBs 
and MYB in HCC was reduced by downregulating the 
expression of the coactivator staphylococcal nuclease and 
1-containing Tudor domain (SND1) [74]. Therefore, it is 

Table 2  The role of miRNAs targeting MYB in a variety of cancers

CML, chronic myeloid leukemia; GC, gastric cancer; HEK, human embryonic kidney; HUVECs, human umbilical vein endothelial cells; MDA, malonaldehyde; NSCLC, 
non-small cell lung cancer; T-ALL, T cell acute lymphoblastic leukemia; PHFG, primary human fetal glial

Targeting MYB Cellular processes Tumor types In vitro model In vivo model Refs.

miR-200 Cell proliferation, resistance Breast cancer MCF-7, T47D cells [58]

miR-143-3p Cell proliferation, apoptosis Breast cancer Normal breast cell line MCF-
10A, breast cancer cell line 
MDA-MB-435

[60]

miR-195 Cell proliferation, apoptosis, 
metastasis

NSCLC A549, H129 Female athymic nude mice [100]

miR-424 Cell proliferation angiogenesis, 
metastasis

Ovarian cancer The normal human ovarian epi-
thelial cell line HOSEpiC, human 
ovarian cancer cell lines (SKOV-
3, HO8910, A2780), HUVECs

Immunodeficient female nude 
mice

[121]

miR-548c-3p Cell proliferation, metastasis Glioma The human glioma T98G, U87, 
U251, HEK-293 cells (CRL-1573)

[68]

hsa-miR-495 Cell proliferation, metastasis Glioma Human glioma cell lines (A172, 
U87, U251, U373) 

[69]

miR-150 Cell proliferation, apoptosis, 
cell cycle

Colorectal cancer, 
liver cancer, CML

K562, Meg-01, KCL-22, HL-60, 
KG-1; colorectal cancer cell line

Nude mice [72, 73, 113]

miR-130a Angiogenesis GC The human gastric cell line 
SGC7901, the human gastric 
mucosal epithelial cell line 
GES-1

Female nude mice (BALB/C-nu, 
6–8 weeks)

[118]

miR-155 Angiogenesis GC Human SGC-7901 cells, 
HEK293T cells, HUVEC cell

Male nude mice (BALB/C-nu) [120]

miR-29 Cell cycle Breast cancer T-47D, MDA-MB-453, MCF-7, 
MCF-10A cells

[61]

miR-193b-3p Cell proliferation T-ALL T-ALL cell lines T-ALL patient samples [67]

miR-103a Cell proliferation, metastasis GC MKN-45, HGC-27, MGC-803, 
SGC-7901, GES

[30]
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possible that regulatory effect of SND1-MYB complex 
can upregulate expression of lncRNA UCA1, thereby 
curbing the apoptosis levels of HCC cells [74].

lncRNAs affecting MYB expression
MYB deregulation has been associated with aggres-
sive behavior in human malignancies [6]. Four lncRNAs 
promote the expression of MYB by acting as sponges of 
miRNAs (Table 3). The expression of LINC01287 in HCC 
cell lines and tissues was elevated [78]. LINC01287 plays 
a role as a competitive endogenous RNA (ceRNA) and 
negatively regulates the expression of miR-298 thus pro-
moting the expression of MYB. High expression of MYB 
may affect cell cycle progression and promote an epi-
thelial-mesenchymal transition (EMT) phenotype [78]. 
LncRNA zinc finger antisense 1 (ZFAS1) and lncRNA 
MAF BZIP transcription factor G antisense RNA 1 
(MAFG-AS1) have been reported to be oncogenic fac-
tors in some malignancies [79, 80]. ZFAS1 and MAFG-
AS1 act as molecular sponges for miR-150, resulting in 
downregulation of miR-150 and upregulation of MYB in 
cancers [75, 81]. High expression of lncRNA AK023391, 
is positively correlated with poor survival of patients with 
gastric cancer (GC) [82]. A study showed that cytoplas-
mic  AK023391 is a key mediator of signal transduction 
in GC. lncRNA AK023391 upregulates MYB by activat-
ing the PI3K/Akt pathway, promoting GC tumorigenesis 
and progression [82]. Furthermore, lncRNA MALAT1 
actively regulates the expression of oncogenic transcrip-
tion factor MYB (Fig. 3). During the cell cycle, dynamic 
changes in MALAT1 levels may titrate the intracellular 
SR protein pool and its association with pre-mRNAs, 
thereby affecting the alternative splicing, stability and 
expression of MYB [76]. Interestingly, lncRNA DRHC 
inhibits cell proliferation, migration and invasion by 
binding to MYBBP1A and inhibiting MYB, which con-
trols MAPK signal transduction by directly regulating the 
transcription of genes encoding the negative regulator 
SPRY2 [83]. LOC102724169 suppresses the expression 
of MYB in ovarian cancer with chronic stress (OCCS) by 
weakening PI3K/Akt signal transduction, which enhances 
the chemosensitivity to cisplatin and plays an antitumor 
role in OCCS [84]. A new study shows the carcinogenic 
activity of LncRNA NTT is attributed to the activation of 
MYB by interacting with activated complexes. The results 
suggest that NTT may be a new therapeutic target for the 
treatment of liver cancer [85].

In addition, to the more direct regulation of MYB by 
lncRNAs as described above, a more complex feedback 
loop between MYB and lncRNAs has been identified. 
SNHG10 eliminated the inhibitory effect of miR-150-5p 
on MYB, resulting in increased MYB expression [86]. 
Moreover, SNHG10 promotes the expression of RPL4, 

based on the direct interaction between RPL4 and 
MYB, which leads to an increase in MYB functional 
activity [86]. Reciprocally, overexpression and overac-
tivation of MYB enhance the expression of SNHG10 
and SCARNA13 by binding to the promoter region 
of SNHG10 [86]. Collectively, SNHG10 regulates the 
expression of SCARNA13 through the miR-150-5p/
RPL4-MYB positive feedback loop to facilitate the devel-
opment and progression of HCC [86].

MYB interacts with circRNAs
CircRNAs are a class of ncRNA molecules without a 
5’-end cap and a 3′-end poly (A) tail [87], and they are 
formed by covalent bonds with a circular structure [38]. 
They are widely diverse endogenous RNA molecules that 
regulate gene expression in eukaryotic cells [88]. Func-
tionally, circRNAs act as transcriptional regulators to 
control the expression of host genes [89, 90]. CircRNAs 
are closely associated with human diseases, especially 
cancers, and may be better biomarkers due to their abun-
dance and stability [91–94]. Recent studies have shown 
that circRNAs are rich in miRNA binding sites and act 
as miRNA sponges in cells, thereby relieving the inhibi-
tory effect of miRNAs on their target genes and thus 
increasing their expression [95] (Fig. 3). Interestingly, the 
differential expression circRNA back-spliced from MYB 
gene can act as a sponge of miRNA and play a vital role 
in diseases [96]. Among patients with colorectal cancer, 
the overexpression of MYB promotes the transcription 
of circHIPK3 and circHIPK3 has oncogenic functions 
by sponging miR-7 [97]. Moreover, hsa_circ_0015326 
sponges miR-127-3p to regulate MYB signaling, which 
is closely related to the occurrence and development 
of ovarian cancer [98]. In summary, hsa_circ_0015326 
positively regulates MYB signaling and acts as a tumor-
promoting factor; thus, its downregulation could be a 
potential therapeutic approach [98].

Role of non‑coding RNAs and MYB in cancers
Multiple ncRNAs play a crucial role in cell processes and 
tumorigenesis. The interaction between ncRNAs and 
MYB is involved in tumor cell proliferation, apoptosis, 
angiogenesis, metastasis, senescence, and drug resistance 
(Fig. 1).

Proliferation
The unlimited proliferation of cancer cells contributes 
to their malignant phenotype and affects the prognosis 
of patients. Increasing evidence suggests that MYB has 
survival-promoting functions. Some miRNAs impede the 
function of MYB, thereby inhibiting cancer cell prolifera-
tion (Fig.  4). Matrix metalloproteinases (MMPs) belong 
to the protease family and have been shown to play a key 
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role in tissue remodeling and supporting cancer develop-
ment [99]. In non-small-cell lung cancer (NSCLC), miR-
195 directly targets MYB 3’UTR and negatively regulates 
its expression, thereby regulating the proliferation and 
metastasis of tumor cells [100]. In addition, MYB gene 
deletion can inhibit the expression of BCL2 and MMP-9 
[101]. Meanwhile, MMP-1 and MMP-9 were downregu-
lated along with BCL2 and CCNE1 in A549 and H1299 
cells transfected with miR-195. In general, this suggests 
that miR-195 at least partially reduces the expression of 
BCL2 and MMP-9 through MYB [100]. Recent studies 
indicate that MYB plays an essential role in the develop-
ment and progression of GC [102]. MYB was identified 
as the functional downstream target of miR-103a, and 
its ectopic expression partially reversed the inhibition of 
cell proliferation and invasion. Therefore, miR-103a regu-
lates the development of tumors by regulating MYB [30, 
103]. Many studies have confirmed that miR-150 regu-
lates MYB and affects the proliferation of various types 
of tumor cells [71, 104, 105]. Mitogen-activated protein 
kinase (MAPK) signal transduction is a highly conserved 
signaling pathway involved in a variety of biological 
events, including metabolic reprogramming, cell prolif-
eration, survival, and differentiation. Mutations in key 

molecules involved in MAPK/ERK signaling and mal-
adjustment of this pathway are common events in many 
human malignancies [106]. MAPKs in mammals include 
JNK, p38 and ERK. MAPK/ERK signaling pathway plays 
a key role in tumorigenesis and development by promot-
ing cell proliferation and metastasis. In hepatocellular 
carcinoma, lncRNA DRHC interacts with MYBBP1A and 
regulates the proliferation of hepatoma cells by regulat-
ing MEK/ERK signaling through MYB. However, the 
exact mechanism of lncRNA DRHC/MYBBP1a/ MYB is 
not clear [83].

Apoptosis
Apoptosis plays a vital role in maintaining tissue homeo-
stasis, and imbalance of the apoptosis pathway is consid-
ered a critical step in tumorigenesis [107]. Many studies 
have found that the interaction between MYB and ncR-
NAs can regulate tumor cell apoptosis (Fig.  4). MYB 
is involved in cancer progression and has become an 
important target of various miRNAs, such as miR-423-5p 
and miR-143-3p [60, 108]. In colorectal cancer, knocking 
down MYB can promote the expression of miR-148a, and 
knockout of MYB can also partially induce apoptosis of 
cancer cell lines [46]. More interestingly, the expression 

Fig. 3  LncRNAs and circRNAs promote the expression of MYB through multiple signaling pathways. Some lncRNAs and circRNAs act as molecular 
sponges and bind to miRNAs, thereby upregulating the level of miRNA target genes. MALAT1 modulates the expression of cell cycle genes by 
regulating pre-mRNA alternative splicing
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of miR-30b-5p is significantly downregulated in medul-
loblastoma (MB) cells. miR-30b-5p inhibits MB progres-
sion by targeting the expression of MYB [109]. A study 
showed that melatonin inhibits the expression of miR-
155, thus inhibiting the proliferation, migration and inva-
sion of glioma cells. It has been suggested that melatonin 
may be a therapeutic strategy for MYB-miRNA-induced 
glioma [110]. A negative correlation between MYB and 
miR-143-3p expression was found in breast cancer tis-
sues and cells. More importantly, MYB is involved in 
regulating the proliferation and apoptosis of breast can-
cer cells [60]. Antisense miR-148a inhibitors can restore 
down-regulated MYB-induced apoptosis [46]. To sum 
up, MYB seems to be the key regulator of miR-148a pro-
moting apoptosis in colorectal cancer cells [111]. In the 
case of glioblastoma, some studies have illustrated that 
miR-148a acts as a negative risk factor. Upregulated miR-
148a could accelerate malignant process and is negatively 
correlated with the survival rate [111]. Some studies 
have proved that isomorphic diffuse gliomas have MYB/
MYBL1 changes, thus MYB plays an important role in 
the development of glioblastoma [112]. We speculate that 
there may be a close relationship between miR-148a and 
MYB in gliomas. A negative correlation between MYB 

and miR-143-3p expression was found in breast cancer 
tissues and cells. More importantly, MYB is involved in 
regulating the proliferation and apoptosis of breast can-
cer cells [60]. The overexpression of miR-150 increases 
the apoptosis of CD133+ hepatoma cells. MiR-150 inhib-
its the expression of MYB, leading to changes in several 
key proteins related to the cell cycle and cell survival, 
including cyclin D1 and BCL-2 [113]. SND1 are evolu-
tionarily conserved proteins that exist in eukaryotic cells 
from protozoa to mammals. SND1 is becoming increas-
ingly important because it is overexpressed in invasive 
cancer cells and a variety of primary tumors. Currently, 
it is considered to be a sign of malignancy [114]. Studies 
have shown that MYB protein, which binds SND1 pro-
tein, may act as a transcription factor of lncRNA UCA1 
in  vitro. In addition, SND1 may upregulate the expres-
sion of lncRNA UCA1 by acting as a coactivator of MYB, 
thus affecting the apoptosis of HCCs [74].

Angiogenesis
Angiogenesis plays an important role in the development 
and metastasis of tumors, and inhibition of this process 
will prevent the development and diffusion of tumor tis-
sues [115, 116]. Given the critical position of angiogenesis 

Fig. 4  The interaction between miRNAs and MYB is involved in tumor cell proliferation, apoptosis, angiogenesis, metastasis, senescence and drug 
resistance. LncRNAs promote the expression of MYB through multiple signaling pathways. A Some lncRNAs act as molecular sponges and bind 
to miRNAs, thereby upregulating the level of miRNA target genes. B LncRNAAK023391 plays its role by activating signaling pathways. C MALAT1 
promotes cell proliferation by regulating pre-mRNA alternative splicing
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in tumor formation and development, it is of great signif-
icance to find new anti-vascular targets. A great deal of 
evidence indicates that the interaction between ncRNAs 
and MYB can affect angiogenesis in numerous tumors. 
As a transcription factor, MYB is related to various intra-
cellular biological behaviors and is closely related to the 
process of angiogenesis (Fig. 4) [117]. MYB is the direct 
target of miR-130a. Cancer-derived exosomes carry miR-
130a from GC cells to vascular cells by targeting MYB to 
promote angiogenesis and tumor growth [118]. Vascu-
lar endothelial growth factor A (VEGF) is the primary 
mediator of angiogenesis, and VEGF directly contributes 
to targeting tumor cell growth and metastasis [119]. In 
addition, other studies have found a negative correlation 
between the expression of miR-155 and MYB in gastric 
cancer [120]. More importantly, experiments have shown 
that MSCs can transport miR-424 to ovarian cancer cells 
to target MYB to further inhibit the expression of VEGF 
and the proliferation, migration and tube formation of 
endothelial cells, to block angiogenesis [121].

Metastasis
Metastasis is known to be the leading cause of cancer-
related deaths and is a considerable challenge in cancer 
treatment [122, 123]. In addition to cooperating with 
protein-coding promoters, MYB also enhances the activ-
ity of ncRNA promoters to facilitate cancer initiation and 
metastasis [48]. MAGI1 is a member of a protein family, 
that plays an important role in coupling the extracellular 
environment with intracellular signaling pathways and 
the cytoskeleton at synapses and tight junctions. One 
piece of evidence confirmed the key role of MAGI1 in 
regulating cell–cell contact, which is always destroyed 
in tumor progression and related to invasiveness and 
metastasis [124]. In recent years, studies have shown that 
MAGI1 can be directly targeted by miR-520-h in renal 
cell carcinoma (RCC) cells [48]. At the same time, MYB 
promotes the transcriptional activity of miR-520-h by 
binding to the RCC promoter to regulate MAGI1 expres-
sion, and the overexpression or knockout of MAGI1 reg-
ulates PETN/MAGI1/β-Catenin and significantly affects 
the invasion and migration of human renal cell carcinoma 
cells [48]. In epithelial ovarian cancer (EOC), miR-520-h 
promotes EOC progression by activating TGF-β1/Smad7 
signal transduction pathway. Overexpression of Smad7 
attenuated the oncogenic effect of miR-520-h [125]. More 
importantly, in EOC, TGF-β1 increases the expression of 
miR-520-h by upregulating its upstream transcription 
factor MYB [48, 125]. NDRG2 is a critical anticancer 
gene in salivary adenoid cystic carcinoma (SACC), which 
contributes to inhibiting cell proliferation and metastasis 
of SACC. A study has confirmed that MYB is a crucial 
driver by which SACC overexpresses miR-130a, thereby 

inducing downregulation of NDRG2 [47]. In addition, 
miR-1258 has been found to have an inhibitory effect 
on a variety of cancers. In oral squamous cell carcinoma 
(OSCC), MYB inhibits miR-1258 by directly binding to 
the miR-1258 promoter [49]. Dysregulated miR-1258 
promotes the expression of SP-1 protein, which con-
tributes to the development of OSCC [49]. Importantly, 
there is evidence that SP-1 plays a role in cancer pro-
gression, invasion and metastasis. SP-1 can promote cell 
proliferation by accelerating the cell cycle from G1 to S 
phase [126, 127]. In human LSCC, YB-1 transcription 
factors promote the invasion and migration of cancer 
cells through MYB-induced miR-155 expression [54]. In 
addition, the abnormal expression of YB-1/MYB/miR-
155 promotes the progression of laryngeal carcinoma 
and is related to poor prognosis [54]. Therefore, YB-1 can 
be considered as a potential prognostic and therapeutic 
target for patients with laryngeal cancer. Moreover, MYB 
upregulates circRNAs at the transcriptional level, such as 
circHIPK3, which acts as a novel oncogenic circRNA by 
sponging miR-7. MYB inhibits the expression of circH-
IPK3, and the metastasis of cancer cells can be controlled 
[97]. In summary, the above studies show that it is urgent 
to deeply understand the complex relationship between 
MYB and ncRNAs. This is very important for the metas-
tasis of cancer cells in vivo and an important strategy to 
control the development of cancer cells.

Senescence
Growing evidence suggests that MYB is a potential can-
didate for the regulation of senescence, and inhibition 
of MYB expression plays an essential role in the growth 
arrest of senescence (Fig.  4) [128]. MYB inhibits the 
expression of miR-1258. When MYB is suppressed, the 
overexpression of miR-1258 inhibits the expression of 
GRB2 and then inactivates the carcinogenic pathway of 
Ras/ERK, which then induces senescence and apoptosis 
of tumor cells [49, 129]. Moreover, miR-17-92 promotes 
tumorigenesis by antagonizing oncogene-induced senes-
cence [130]. MYB significantly adjust the expression of 
miR-17-92 targets such as p21, a key effector of senes-
cence. When MYB is silenced, the survival of cells can be 
suppressed [131].

Drug‑resistance
Drug resistance is another major clinical challenge in 
cancer treatment. In breast cancer, MYB induces EMT 
and significantly increases tamoxifen resistance. Given 
the ability of miR-200 to control gene expression, it has 
emerged as an important role in response to antican-
cer therapies, particularly in the development of drug 
resistance (Fig.  4). Experiments have shown that miR-
200 inhibits the expression of MYB, reversing the drug 
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resistance of cancer cells to tamoxifen. This might be 
the result of miR-200-MYB regulating EMT [58]. Inter-
estingly, MYB can activate the expression of miR-200 
through a transcriptional, binding-dependent mecha-
nism. It may also be related to drug resistance [59]. More-
over, in ovarian cancer, high MYB expression can cause 
tumor cells to resist cisplatin. Silencing MYB reduced the 
miR-21 level and EMT, which reverses cisplatin resist-
ance [132].

Potential clinical application of MYB and noncoding RNAs 
in cancer
Due to the increasing knowledge about the biology and 
function of MYB and ncRNAs and the emergence of new 
treatment opportunities, some drugs can make use of a 
variety of mechanisms, directly and indirectly, and affect 
the relationship between MYB and ncRNAs in different 
ways, to inhibit the growth and metastasis of tumor cells 
[110, 133].

Targeting MYB
In recent years, several approaches have been attempted 
to inhibit abnormal MYB expression in cancer cells. 
The initial attempt was to use RNA interference (RNAi) 
to inhibit MYB. In a mouse model of MLL-AF9 leuke-
mia, MYB specific shRNA effectively silenced MYB and 
showed that its inhibition could eradicate invasive leuke-
mia in vivo without affecting normal myelopoiesis [134]. 
Another study found that a MYB DNA vaccine in com-
bination with an anti-PD-1 antibody or low dose cyclo-
phosphamide effectively extended survival of colorectal 
cancer (CRC) bearing mice [135]. Moreover, important 
coactivators and degradation regulators of MYB have 
been investigated as therapeutic targets. Recently, 
mebendazole has been shown to effectively inhibit in vivo 
progression of AML by interfering with the heat shock 
protein 70 (HSP70) chaperone system and inducing MYB 
degradation by proteasome [136]. Many studies have 
shown that melatonin has significant apoptotic, angio-
genesis, antitumor and antiproliferation effects on many 
kinds of tumor cells [137]. In gliomas, melatonin may 
affect the expression of MYB to inhibit miR-155, thus 
inhibiting the proliferation, migration and invasion of gli-
oma cells. Therefore, correlation between melatonin and 
MYB/miR-155 may provide a new strategy for the treat-
ment of human gliomas [110].

Targeting ncRNAs
In fact, in addition to our above treatment strategies for 
MYB, ncRNAs mentioned in this review can also be used 
as a target for cancer treatment. For example, antisense 
miR-155 molecule cobomarsen (MRG-106) uses LNA-
modified antisense oligodeoxynucleotides to inhibit 

miR-155 in the treatment of T-cell lymphoma, which 
means that oligonucleotides composed of LNA may be 
a valuable ncRNAs detection tool in cancer diagnosis 
and prognosis. A Phase I clinical trial of cobomarsen 
was launched in 2016 [138]. A study showed that tar-
geted delivery of miR-34a mimics using lipid emulsions 
significantly inhibited cancer progression in a xenograft 
mouse model of colon cancer [139]. Therefore, MRX34, 
a miR-34a liposome injection, entered a phase I clinical 
trial in 2013. Although the experiment was ultimately 
terminated, the development of MRX34 showed feasi-
bility [140]. Moreover, ginkgetin is a natural nontoxic 
biflavone, that has been proven to have anti-cancer, anti-
inflammatory, anti-microbial, anti-adipogenesis and 
neuroprotective activities [141]. Ginkgetin can combat 
cancer progression by blocking cell cycle, inducing apop-
tosis, stimulating autophagy and targeting many dysfunc-
tional signaling pathways [141]. In colon cancer, ginkgo 
flavonoids regulate the expression of miR-34a to regu-
late the expression of MYB, which can induce G2 phase 
arrest and apoptosis of colorectal cancer cells [133]. In 
summary, ncRNAs targeting MYB show great hope in 
preliminary studies. A better understanding of MYB and 
its regulation of ncRNA activity and expression to select 
effective inhibitors should help to improve the survival 
rate of patients with MYB-related tumors.

Conclusion
There are several mechanisms to activate MYB in human 
cancer. In general, these mechanisms will lead to higher 
levels or more transcriptionally active MYB, and to 
persistent expression. The ability of MYB to block dif-
ferentiation seems to be responsible for this sustained 
expression. Moreover, tumor cells are “addicted” to the 
higher level of MYB. Therefore, MYB transcription fac-
tor is a suitable target for tumor therapy. However, the 
lack of effective MYB-specific inhibitors has been a sig-
nificant problem in clinical studies. The development of 
MYB-targeted regulation will help improve survival in 
patients with MYB-related tumors. MYB is also regu-
lated by multilayered network of ncRNAs with multiple 
ncRNAs. NcRNAs act as modulators of MYB, and they 
regulate MYB at the transcription, translation, protein 
stability, and functional levels through various mecha-
nisms. Reciprocally, ncRNAs can also act as effectors 
of MYB and even form feedback loops with MYB. Fur-
thermore, given the known tissue specificity of ncRNAs 
expression, the involvement of ncRNAs as MYB cofac-
tors may become a new potential target to control MYB 
expression. This method of identifying the addiction 
of oncogenes to cancer and aiming to control the regu-
latory mechanisms driving oncogene expression may 
be a new approach of anticancer drugs. Moreover, the 
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ncRNA-MYB coregulatory network brings a system-
atic and enlightening point of view for the regulation of 
gene expression in cancer prognosis. Evidence suggests 
that treatment for miRNA and TFs has a broader effect 
compared with treatment for a single gene. The combi-
nation of miRNA mimics and inhibitors targeting the 
same oncogene can produce synergy, prolong the effec-
tive treatment window and may bring better therapeutic 
effects. Importantly, synergy can produce similar or bet-
ter efficacy at lower inhibitor dosages, help to improve 
the specificity of combination therapy and reduce the 
toxicity and side effects at higher doses [142]. Therefore, 
further research is needed to develop effective therapeu-
tic interventions aimed at inhibiting MYB-related onco-
gene signaling in tumors while minimizing the risk to 
patients.
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