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The B7H4‑PDL1 classifier stratifies 
immuno‑phenotype in cervical cancer
Lingyan Chen1†, Jianfeng Dong2†, Zeying Li3†, Yu Chen1* and Yan Zhang1*   

Abstract 

Background:  It has been revealed that B7H4 is negatively correlated with PDL1 and identifies immuno-cold tumors 
in glioma. However, the application of the B7H4-PDL1 classifier in cancers has not been well testified.

Methods:  A pan-cancer analysis was conducted to evaluate the immunological role of B7H4 using the RNA-
sequencing data downloaded from the Cancer Genome Atlas (TCGA). Immunohistochemistry (IHC) and multiplexed 
quantitative immunofluorescence (QIF) were performed to validate the primary results revealed by bioinformatics 
analysis.

Results:  The pan-cancer analysis revealed that B7H4 was negatively correlated with PDL1 expression and immune 
cell infiltration in CeCa. In addition, patients with high B7H4 exhibited the shortest overall survival (OS) and relapse-
free survival (RFS) while those with high PDL1 exhibited a better prognosis. Multiplexed QIF showed that B7H4 was 
mutually exclusive with PDL1 expression and the B7H4-high group exhibited the lowest CD8 + T cell infiltration. 
Besides, B7H4-high predicted highly proliferative subtypes, which expressed the highest Ki67 antigen. Moreover, 
B7H4-high also indicated a lower response to multiple therapies.

Conclusions:  Totally, the B7H4-PDL1 classifier identifies the immunogenicity and predicts proliferative subtypes and 
limited therapeutic options in CeCa, which may be a convenient and feasible biomarker in clinical practice.
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Background
With the development of treatment strategies for malig-
nant cancers, immune checkpoint blockade (ICB) is 
emerging as inspiring immunotherapy transforming the 
standard of treatment [1]. Representative immune check-
point inhibitors are monoclonal antibodies that interfere 
with the interaction between programmed cell death 1 
(PD1) and programmed death-ligand 1 (PDL1) inhibitory 
proteins expressed on the surface of T cells and tumor 
cells, respectively [2, 3]. High infiltrating levels of effector 

immune cells are essential for the response to immuno-
therapy. Typically, tumors with a high effector immune 
cells infiltration are defined as “hot” tumors, in which 
PDL1 is adaptively upregulated [4]. In clinical practice, 
the detection of PDL1 is considered a predictive bio-
marker for anti-PD1/PDL1 therapies [5]. Patients with 
high PDL1 expression tended to be highly responsive to 
PD1/PDL1 blockade [6].

In addition to PDL1, B7H4 is highly expressed in tumor 
tissues, making them attractive candidate immunothera-
peutic targets and biomarkers [7, 8]. B7H4 was first dis-
covered in 2003 due to its sequence similarities with 
other B7 family members [9, 10]. B7H4 encodes a heav-
ily glycosylated membrane protein, and negatively regu-
lates T cell activation by limiting proliferation, cytokine 
production, and cytotoxicity [9, 10]. According to previ-
ous research, co-expression of PDL1 and B7H4 is rare in 
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several cancers, including lung cancer and breast cancer 
[11, 12]. Moreover, B7H4 is negatively correlated with 
PDL1 and identifies immuno-cold tumors in glioma [13]. 
However, as we all know, the blood–brain barrier blocks 
the entry of the immune cells and therapeutic drugs to 
tumor tissues and brain parenchyma to a great extent 
[14]. Thus, the application of the B7H4-PDL1 classifier in 
glioma might not be a good option.

In the current research, we conducted a pan-cancer 
analysis of the correlation between B7H4 and immuno-
logical features. We found that B7H4 was negatively cor-
related with immunological features in several cancers, 
including cervical cancer (CeCa), glioma and melanoma. 
We selected CeCa for further analysis and found that 
B7H4 was negatively correlated with PDL1 and immune 
cells infiltration. Briefly, B7H4 high expression identifies 
immuno-cold subtype in CeCa. It was also suggested that 
B7H4 predicted the hyperproliferative subtype in CeCa. 
Overall, the application of the B7H4-PDL1 classifier in 
CeCa may be a better choice.

Methods
Public data acquisition and Bioinformatics analysis
The pan-cancer normalized RNA-sequencing (RNA-seq) 
datasets and corresponding clinical information from 
the Cancer Genome Atlas (TCGA) dataset were down-
loaded from Xena (https://​xenab​rowser.​net/​datap​ages/). 
The abbreviations for various cancer types were given in 
Additional file 1: Table S1. Besides, the data of RNA-seq 
and clinical information in the Chinese Glioma Genome 
Atlas (CGGA) database (mRNA-array_301) were also 
obtained from the official website (http://​www.​cgga.​org.​
cn/​index.​jsp).

The bioinformatics analysis in this research contained 
public data acquisition, pan-cancer analysis of the corre-
lation between B7H4 and immunological features, evalu-
ation of the immunological features of the TME in CeCa, 
calculation of the enrichment scores of immunother-
apy-related gene signatures and prediction of therapeu-
tic response. The detailed description of bioinformatics 
analysis was exhibited in Additional file  1: Additional 
Methods.

Clinical samples
The CeCa tissue microarray (TMA, Cat. HUteS168Su01) 
was obtained from Outdo BioTech (Shanghai, China). 
The TMA contained 126 CeCa tissues and 42 paired adja-
cent tissues. Detailed clinico-pathological characteristics 
follow-up data of the cohorts were provided by Outdo 
BioTech as well and shown in original data. Besides, we 
also 30 CeCa tissues submitted for multiplexed quanti-
tative immunofluorescence (QIF) in this research and 
all the patients were recruited by the Wuxi Maternal 

and Child Health Hospital Affiliated to Nanjing Medi-
cal University. Ethical approval for the use of the TMA 
was granted by the Clinical Research Ethics Committee 
in Wuxi Maternal and Child Health Hospital Affiliated to 
Nanjing Medical University.

IHC and semi‑quantitative evaluation
Immunohistochemistry (IHC) staining was conducted on 
the TMA. The primary antibodies used were as follows: 
anti-B7H4 (1:100 dilution, Cat. ab252438, Abcam, Cam-
bridge, UK), anti-PD-L1 (Ready-to-use, Cat. GT2280, 
GeneTech, Shanghai, China), anti-KI67 (Ready-to-use, 
Cat. GT2101, GeneTech, Shanghai, China) and anti-
EGFR (Ready-to-use, Cat. PA192, Abcarta, Suzhou, 
China). Antibody staining was visualized with DAB and 
hematoxylin counterstain, and stained sections were 
scanned using Aperio Digital Pathology Slide Scanners. A 
total of 118 TMA points were retained for further analy-
sis after the exfoliated points were removed. All stained 
sections were independently evaluated by two independ-
ent pathologists using the immunoreactivity score (IRS) 
criterion [15].

Definition of the positive rates of B7H4 and PDL1 in CeCa
To identify the immune subtypes in CeCa based on the 
B7H4-PDL1 classifier, we first defined the positive stain-
ing with the threshold of IRS ≥ 3 in the IHC cohort. Thus, 
PDL1 was 36.44% positive in the cohort and B7H4 was 
19.49%. For the patients in the TCGA dataset, we defined 
PDL1 as positive expression with the threshold of top 
35% and B7H4 as positive expression with the threshold 
of top 20% by referring to positive rate in the IHC cohort.

Multiplexed quantitative immunofluorescence
To measure the levels of PD-L1, B7-H4 and CD8 in the 
CeCa samples, the multiplexed QIF was directly per-
formed on the tissue section using a previously described 
protocol with simultaneous detection of DAPI [16]. The 
primary antibodies were as follows: anti-B7H4 (1:100 
dilution, Cat. ab252438, Abcam, Cambridge, UK), anti-
PDL1 (1:500 dilution, Cat. ab237726, Abcam, Cam-
bridge, UK) and anti-CD8 (1:200 dilution, Cat. ab101500, 
Abcam, Cambridge, UK). The expression levels of B7H4 
and PDL1 were evaluated according to the previous 
method. For CD8 staining, infiltration level was assessed 
by estimating the percentage of cells with strong intensity 
of membrane staining in the stroma cells. For stratifica-
tion, the B7H4 and PDL1 levels were classified as high/
low using the top 50-percentile of the cohort scores as 
stratification cut-point.

https://xenabrowser.net/datapages/
http://www.cgga.org.cn/index.jsp
http://www.cgga.org.cn/index.jsp
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Statistical analysis
All statistical analyses were applied by R version 4.0.0. 
Wilcoxon rank-sum test was used to measure the dif-
ference between groups with continuous values, while 
Fisher exact method for evaluating the difference 
among grouping variables. For all analyses, a two-paired 
P-value < 0.05 was regarded as statistical significance if 
not noted.

Results
The prognostic value of the B7H4‑PDL1 classifier in glioma
According to the report of Chen et al., the positive rates 
of B7H4 and PDL1 were approximately 20% revealed 
by IHC analysis [13]. We defined the positive B7H4 and 
PDL1 expression as the top 20% expression, and then 
divide glioma patients into three major subgroups in both 
TCGA and CGGA datasets. Similarly, the co-high expres-
sion of B7H4 and PDL1 was rare (Fig.  1A, B). Besides, 
Chen et al. declared that the B7H4-PDL1 classifier distin-
guished different immunogenicity in glioma [13]. Based 
on molecular characteristics, B7H4-high tumors could be 
defined as “cold” tumors, PDL1-high tumors were “hot” 
tumors, and co-low tumors were somewhere in between. 
Generally, patients with “hot” tumors exhibited a bet-
ter prognosis and higher therapeutic response [17–19]. 

However, this assumption was not supported by survival 
analysis. As shown in Additional file 2: Figure S1, patients 
with high PDL1 expression exhibited the shortest over-
all survival (OS) (Fig. 1C, D). What’s more, in the CGGA 
dataset, patients with high B7H4 expression exhibited 
the longest OS, but whose gliomas should be defined as 
“cold” tumors (Fig. 1D). Overall, these data uncover the 
B7H4-PDL1 classifier maybe not a better choice in gli-
oma, especially among the Chinese population.

Pan‑cancer immunological correlation of B7H4
To explore the appropriate cancer types in which the 
B7H4-PDL1 classifier could be applied, we analyzed the 
immunological correlation of B7H4 in different types of 
cancers using RNA-seq datasets from the TCGA project. 
We found that B7H4 expression was negatively corre-
lated with immunomodulators, immune checkpoints and 
TIICs infiltration in testicular germ cell tumor and CeCa 
(Fig.  2A–C). Thus, we chose CeCa for further analysis 
due to its relatively high incidence.

B7H4 and PDL1 are mutually exclusive expression in CeCa
Next, IHC analysis was performed on the CeCa TMA 
using the antibodies against B7H4 and PDL1. The results 
showed that B7H4 and PDL1 were highly expressed in 
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Fig. 1  The prognostic value of the B7H4-PDL1 classifier in glioma. A, B The proportion of B7H4-high, PDL1-high, co-low and co-high subgroups in 
glioma in TCGA and CGGA dataset. C, D The prognostic value of the B7H4-PDL1 classifier in glioma in TCGA and CGGA datasets
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the tumor tissues compared with adjacent tumors, and 
the positive rates for B7H4 and PDL1 were 19.49% and 
36.44%, respectively (Fig.  3A). Besides, similar to the 
bioinformatics analysis, B7H4 expression was negatively 
correlated with PDL1 (Fig.  3B). T cell inflamed score is 
developed using IFN-γ-related mRNA profiles to predict 

clinical response to PD-1 blockade [20]. In the TCGA 
dataset, B7H4 expression was negatively while PDL1 
expression positively correlated with T cell inflamed 
score (Additional file 2: Figure S1A, S1B). Besides, B7H4 
was also negatively correlated with most immune check-
points in addition to PDL1 and CTLA4 (Additional file 2: 
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Figure S1C). We subsequently divide CeCa patients into 
three major subgroups based on B7H4 and PDL1 expres-
sion namely B7H4-high, PDL1-high and co-low groups, 
and the co-high group was excluded from the current 
analysis due to the limited proportion (Fig.  3C, D). The 
survival analysis was performed, and the results showed 
that patients with high B7H4 exhibited the shortest OS 
and relapse-free survival (RFS) while those with high 
PDL1 exhibited a better prognosis (Fig.  3E, F). Taken 
together, these data support that the B7H4-PDL1 classi-
fier may be suitable in CeCa.

B7H4‑high identifies immuno‑cold tumors in CeCa
We next evaluated whether the B7H4-PDL1 classifier 
was correlated with tumor immunogenicity in CeCa. For 
the patients in the TCGA dataset, we defined PDL1 as 
a positive expression with the threshold of top 35% and 
B7H4 as a positive expression with the threshold of top 
20% by referring to a positive rate in the IHC cohort. 
Then, three major subgroups based on B7H4 and PDL1 
expression were divided (Additional file  3: Figure S2A). 
As expected, according to the ESTIMATE algorithm, 
the B7H4-high group exhibited the lowest stromal score, 
immune score and ESTIMATE score, but highest tumor 
purity (Fig. 4A). In addition, most immune cell markers 
were lowly expressed in the B7H4-high group (Additional 
file  3: Figure S2B). We also estimated the infiltrating 
abundance of TIICs using three independent algorithms, 
and the results also supported that B7H4-high identi-
fies immuno-cold tumors with the lowest TIICs infil-
tration (Fig.  4B). Besides, activities of most steps in the 
cycle were revealed to be lowest in the B7H4-high group 
(Fig. 4C). Moreover, T cell inflamed score was also lowest 
in the B7H4-high group (Additional file  2: Figure S2C). 
We also performed multiplexed QIF using the antibodies 
against B7H4, PDL1 and CD8 (Fig. 4D). As expected, the 
B7H4-high group exhibited the lowest CD8 + T cell levels 
and the PDL1-high group exhibited the highest CD8 + T 
cell levels (Fig. 4E). Collectively, these data support that 
B7H4-high identifies immuno-cold tumors in CeCa.

B7H4‑high identifies highly proliferative tumors 
and predicts limited therapeutic potions in CeCa
Subsequently, we evaluated whether the B7H4-PDL1 
classifier was correlated with anti-tumor thera-
pies in CeCa. As shown in Fig.  5A, several positively 

immune-related gene signatures exhibited the lowest 
scores in the B7H4-high group, the scores of PPARG 
and Wnt/β-catenin networks were highest in the B7H4-
high group. In addition to negatively regulating anti-
tumor immunity, these pathways were also correlated 
with high proliferation [21, 22]. Thus, Ki67 was stained 
by IHC analysis to compare the proliferation of tumors. 
We found that Ki67 was highest expressed in the B7H4-
high group (Fig. 5B). Moreover, findings from the Drug-
bank database revealed a remarkably lowest response to 
chemotherapy, anti-ERBB (excluding anti-ERBB2 and 
anti-ERBB4) therapy, antiangiogenic therapy and immu-
notherapy in the B7H4-high group (Fig.  5C). Besides, 
IHC analysis validated that EGFR, the main target for 
anti-ERBB therapy, was lowest expressed in the B7H4-
high group (Fig.  5D). Moreover, IC50 of anti-cancer 
drugs in patients from the TCGA database according 
to the pRRophetic algorithm was estimated. The results 
showed patients with high B7H4 expression were more 
sensitive to common anti-cancer drugs (Fig. 5E). To sum 
up, B7H4 is an indicator for highly proliferative subtype 
and limited therapeutic options.

Discussion
Solid tumors are made up not only of tumor cells, but 
also of a large number of stromal cells, including immune 
cells, fibroblasts, etc.[23]. In principle, tumors could 
be divided into “cold” or “hot” depending on the char-
acteristics of TME. “Cold” tumors are featured with 
immunosuppressive TME and resistance to either immu-
notherapy or chemotherapy, but “hot” tumors exhibit 
higher response rates to these therapies, which are char-
acterized by T cell infiltration, increased interferon-γ 
(IFN-γ) signaling, activation of inhibitory checkpoints 
(CTLA4, PDL1, etc.), genomic instability and the activa-
tion of major histocompatibility complex class I (MHC-
I) [19, 24]. Driving the formation of “hot” tumors is a 
gradual and complicated process. Extensive efforts have 
been made to convert cold tumors to hot tumors, but the 
clinical applications are limited [25]. However, using reli-
able biomarkers to distinguish “hot” and “cold” tumors is 
a convenient and feasible strategy.

PDL1 has been identified as an immunosuppressive mol-
ecule that negatively regulates cytotoxic immune cells [26]. 
However, the correlation between PDL1 expression and 
anti-tumor immunity remains of considerable controversy 

Fig. 4  Correlations between the B7H4-PDL1 classifier and immunological features in CeCa. A Differences in Tumor Purity, ESTIMATE Score, Immune 
Score, and Stromal Score estimating by ESTIMATE algorithm in B7H4-high, PDL1-high and co-low subgroups. *P < 0.05; ***P < 0.001; ****P < 0.0001. 
B Differences in the levels of TIICs calculated using three algorithms in B7H4-high, PDL1-high and co-low subgroups. C Differences in the various 
steps of the cancer immunity cycle in B7H4-high, PDL1-high and co-low subgroups. Ns: no significant difference; *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001. D Representative images revealing B7H4, PDL1 and CD8 expression in different subtypes revealed by multiplexed QIF. Magnification, 
×200, Bar = 100 μm. E Differences in CD8 + T cell infiltration in B7H4-high, PDL1-high and co-low subgroups

(See figure on next page.)
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in human cancers. High PDL1 expression is a striking fea-
ture of “hot” tumors and predicts actionable immune acti-
vation [27]. Some scholars believe that it is necessary to 
distinguish constitutive and adaptive PDL1 expression. 
Constitutive PDL1 has been traditionally considered as a 
negative co-stimulatory molecule promoted by oncogenic 
driver mutations [28]. In some cases, PDL1 expression is 
primarily induced by activated CD8 + T cells via IFN-γ sign-
aling and predicts pre-existing adaptive immune response 
[29]. Thus, the expression of adaptive PDL1 indicates higher 
response rates to both immunotherapy and chemotherapy.

B7H4 is another negative co-stimulatory molecule and 
negatively regulates T cell activation by inhibiting its activ-
ity [9, 10]. Increasing numbers of research have uncovered 
that B7H4 was highly expressed in tumor cells and the 
increased expression predicted poor prognosis in multi-
ple cancers [30–32]. According to the report presented by 
Chen et al., B7H4 is negatively correlated with PDL1 and 
identifies immuno-cold tumors in glioma [13]. However, 
considering that the brain is traditionally an immune-
exempt organ as well as the inconsistency between the 
subtypes demarcated the B7H4-PDL1 classifier and prog-
nosis [14], the application of the B7H4-PDL1 classifier 
is not a good option in glioma. In this research, we first 
conducted a pan-cancer analysis of immunological corre-
lation of B7H4, we found that B7H4 negatively correlated 
with immunomodulators, immune checkpoints and TIICs 
infiltration in CeCa. Further validation suggested B7H4 
and PDL1 were mutually exclusive expression in CeCa. 
In-depth analysis revealed that the levels of immune infil-
tration and activation were various in these three groups, 
and the B7H4-high group exhibited low immune infiltra-
tion and activation. In other words, B7H4-high identifies 
immuno-cold tumors in CeCa. Moreover, the prognosis 
of these subgroups was consistent with immunogenicity, 
namely the B7H4-high group exhibited the shortest OS 
and PFS, which was defined as “cold” tumors.

There is increasing evidence exhibiting that the acti-
vation of several oncogenic pathways contributes to 
the non-inflamed T-cell phenotype and is responsible 
for the resistance to immunotherapy. Knockdown and 
pharmacological inhibition of PPARG could notably 
increase cytokine expression promote the sensitivity 

to immunotherapy [21]. In Wnt/β-catenin-positive 
melanoma tumors, decreased production of chemokine 
CCL4 leads to reduced recruitment of BATF3 DCs to 
the TME [22]. Besides, loss of PTEN activates the PI3K/
AKT pathway, which is associated with an immuno-
cold phenotype in melanoma [33]. In addition, the acti-
vation of oncogenic pathways also indicates the highly 
proliferative capacity of tumor cells. In this research, 
we found that B7H4 was positively correlated with the 
activities of PPARG and Wnt/β-catenin pathways and 
identifies highly proliferative subtypes. Moreover, con-
sistent with the phenotype of “cold” tumors, B7H4-high 
predicts limited therapeutic potions in CeCa.

In recent years, potential biomarkers to distinguish 
“hot” and “cold” tumors have been studied extensively. 
Cai et  al. reported that IFITM3 was upregulated in 
inflamed tumors and could be used as a feasible bio-
marker [19]. Hu et al. uncovered that SIGLEC15 shaped 
a non-inflamed tumor microenvironment in bladder 
cancer [34]. There is no doubt that these studies pro-
vide new perspectives to this field. In our research, 
we revealed the B7H4-PDL1 classifier was essential 
for clinical assessment to demarcate “hot” and “cold” 
in CeCa, which may be a useful biomarker for immu-
notherapy. However, the feasibility of these biomark-
ers was not tested using large-scale immunotherapy 
cohorts, which was the main shortcomings in our 
research and these studies. Thus, we believe that the 
B7H4-PDL1 classifier should undergo large-scale clini-
cal assessment in immunotherapy cohorts before clini-
cal application. Once its reliability could be confirmed, 
it will contribute to identifying the advantaged popula-
tion who may benefit from immunotherapy.

Conclusions
To sum up, we report that B7H4 is negatively correlated 
with PDL1 expression and immune cell infiltration. 
Besides, B7H4-high identifies immuno-cold tumors, 
highly proliferative tumors and predicts limited thera-
peutic potions in CeCa. Overall, the B7H4-PDL1 clas-
sifier is a convenient and feasible biomarker for the 
demarcation of tumor immunogenicity in CeCa.

(See figure on next page.)
Fig. 5  B7H4-high predicts proliferative subtype and limited therapeutic options in CeCa. A Differences in enrichment scores of several therapeutic 
signatures in B7H4-high, PDL1-high and co-low subgroups. B Differences in Ki67 expression B7H4-high, PDL1-high and co-low subgroups. C 
Differences in the drug-target genes expression in B7H4-high, PDL1-high and co-low subgroups. D Differences in EGFR expression in B7H4-high, 
PDL1-high and co-low subgroups. E Differences in IC50 of common anti-cancer drugs in B7H4-high, PDL1-high and co-low subgroups. *P < 0.05; 
***P < 0.001; ****P < 0.0001
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