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Spatial maps of hepatocellular carcinoma 
transcriptomes highlight an unexplored 
landscape of heterogeneity and a novel gene 
signature for survival
Nan Zhao1,3†, Yanhui Zhang2†, Runfen Cheng2, Danfang Zhang1,3, Fan Li1,3, Yuhong Guo2, Zhiqiang Qiu2, 
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Abstract 

Background:  Hepatocellular carcinoma (HCC) often presents with satellite nodules, rendering current curative 
treatments ineffective in many patients. The heterogeneity of HCC is a major challenge in personalized medicine. 
The emergence of spatial transcriptomics (ST) provides a powerful strategy for delineating the complex molecular 
landscapes of tumours.

Methods:  In this study, the heterogeneity of tissue-wide gene expression in tumour and adjacent nonneoplastic 
tissues using ST technology were investigated. The transcriptomes of nearly 10,820 tissue regions and identified 
the main gene expression clusters and their specific marker genes (differentially expressed genes, DEGs) in patients 
were analysed. The DEGs were analysed from two perspectives. First, two distinct gene profiles were identified to be 
associated with satellite nodules and conducted a more comprehensive analysis of both gene profiles. Their clinical 
relevance in human HCC was validated with Kaplan–Meier (KM) Plotter. Second, DEGs were screened with The Cancer 
Genome Atlas (TCGA) database to divide the HCC cohort into high- and low-risk groups according to Cox analysis. 
HCC patients from the International Cancer Genome Consortium (ICGC) cohort were used for validation. KM analysis 
was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox 
analyses were applied to determine the independent predictors for OS.

Results:  Novel markers for the prediction of satellite nodules were identified and a tumour clusters-specific marker 
gene signature model (6 genes) for HCC prognosis was constructed.

Conclusion:  The establishment of marker gene profiles may be an important step towards an unbiased view of HCC, 
and the 6-gene signature can be used for prognostic prediction in HCC. This analysis will help us to clarify one of the 
possible sources of HCC heterogeneity and uncover pathogenic mechanisms and novel antitumour drug targets.
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signature
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Introduction
Globally, the mortality rate of primary liver cancer ranks 
fourth among cancers. In many countries, its 5-year 
survival rate is less than 20%, and there have been no 
significant changes in survival rate over time [1–3]. 
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Hepatocellular carcinoma (HCC) is the most common 
histological type accounting for the highest proportion 
(75–85%) of primary liver cancers [1]. Recently, progres-
sion has been considered to be the most important rea-
son for the poor prognosis of patients with HCC, and 
identifying the possible factors affecting the progression 
of HCC and exploring potential interventional therapies 
will improve the prognosis of HCC patients [4].

HCC is an extraordinarily heterogeneous malignant 
disease considering the tumours that have thus far been 
identified. During personalized treatment of tumour 
patients, intra- and intertumour heterogeneity present a 
great challenge since they may directly change the pre-
dicted biological markers related to diagnosis, prognosis 
and therapy. Even for tumours with identical histological 
features, variation in the expression of biomarkers among 
different patients and between different tumour areas of 
the same individual sample, such as tumour and peritu-
mour areas, should be considered seriously.

In HCC, the existence of microsatellite nodules is a 
well-known risk factor. However, such nodules usually 
cannot be detected on imaging modalities [5]. These sat-
ellite nodules undetectable by imaging may be risk fac-
tors for local recurrence since they are usually ignored by 
local ablation therapy. Therefore, analysing the risk fac-
tors associated with satellite nodules is very important to 
improve the treatment strategies for patients at high risk. 
Characterization of the tumour heterogeneity of HCC 
with satellite nodules using transcriptomic analysis may 
be important to reduce the incidence of local recurrence.

In this study, clusters defined by ST-related specific 
marker genes (differentially expressed genes; DEGs) 
were analysed from two perspectives. The feasibility and 
value of using ST to dissect inter- and intratumoural het-
erogeneity across HCC patient specimens with or with-
out satellite nodules were demonstrated. In addition, a 
prognostic signature with DEGs were constructed in The 
Cancer Genome Atlas (TCGA) cohort and the stability 
and reliability of the model were validated in the Inter-
national Cancer Genome Consortium (ICGC) cohort. 
Assessing the pathogenesis of tumours by ST might pro-
vide a better view of the landscape of HCC heterogeneity 
than traditional methods to facilitate personalized man-
agement, and ST cluster-related gene signatures can pro-
vide novel antitumour drug targets for HCC.

Materials and methods
Patient samples
Tissue samples were obtained from 3 patients who 
underwent hepatectomy because of HCC in August 
2020 from the Tumour Tissue Bank of Tianjin Can-
cer Hospital. Pathologists confirmed all patients’ diag-
noses. Detailed pathologic and clinical data are listed 

in Additional file  10: Table  S1. The use of these tissue 
samples in this study was approved by the institutional 
research committee.

Slide preparation
There were six capture areas (3 tumour areas and 3 peri-
tumour areas) (6.5 × 6.5 mm) of ST slides, each with 4999 
capture spots of barcoded primers (10 × Genomics). 
The diameter of the spots was 100 μm. These spots were 
arranged in a rectangular shape. Each spot contained 
millions of oligonucleotides with the following features: a 
30-nucleotide poly (dT) sequence for the capture of poly-
adenylated mRNA molecules; a 12-nucleotide unique 
molecular identifier (UMI) for the identification of dupli-
cate molecules that arise during the library preparation 
and sequencing process; a 16-nucleotide spatial barcode, 
which was shared by all oligonucleotides within each 
individual gene expression spot; and a partial TruSeq 
Read 1 sequence for use during the library preparation 
and sequencing portions of the workflow.

Tissue preparation, fixation and staining
The 10 × Visium protocol was optimized for frozen tis-
sue. Briefly, tumours were frozen in dry ice immediately 
after harvesting. Tumours were embedded with optimal 
cutting temperature (OCT) compound and cryosec-
tioned at 10-μm thick. The sections on the capture areas 
were placed and incubated them at 37  °C for 1 min and 
then fixed them in methanol for 10 min at −  20  °C. To 
stain, sections were incubated in isopropanol (Millipore 
Sigma) for 6 min, Mayer’s haematoxylin (Dako, Agilent, 
Santa Clara, CA) for 7  min, bluing buffer (Dako) for 
1  min, and eosin (Sigma-Aldrich) diluted 1:5 in Tris-
base (0.45 M Tris, 0.5 M acetic acid, pH 6.0) for 1 min. 
The slides were washed with deionized water after each 
of the staining steps. After air-drying, the slides were 
mounted with 85% glycerol and then coverslipped them. 
Haematoxylin and eosin (H&E)-stained samples were 
photographed at 40 × magnification using a digital slice 
scanner (Hamamatsu). The coverslip was removed after 
imaging by immersing slides in RNase- and DNase-free 
water.

Tissue permeabilization, reverse transcription and spatial 
library preparation
To prepermeabilize the samples, sections were incu-
bated at 37 °C for 24 min with permeabilization enzyme. 
The wells were washed with saline sodium citrate (SSC) 
(0.1 ×) (Sigma-Aldrich). SSC was removed, and reverse 
transcription Master Mix was added to each well. 
Reverse transcription was conducted according to the 
ST recommended protocol. After RT, sections were incu-
bated in KOH (0.08  M) for 5  min at room temperature 
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and then incubated in Second Strand Mix for 15 min at 
65  °C. After the removal of Second Strand Mix, 100  μl 
Buffer EB was added, and the sections were incubated 
in KOH for 10  min at room temperature. The samples 
were transferred from every single well to a correspond-
ing tube containing Tris–HCl (1  M, pH 7.0). Next, 1  μl 
of sample was added to the qPCR plate well containing 
KAPA SYBR FAST qPCR Master Mix (KAPA Biosys-
tems). A qPCR system was used to determine the optimal 
number of cycles. After that, 65 μl cDNA Amplification 
Mix was added to the remaining sample. They were incu-
bated according to the recommended protocol.

Library preparation and RNA sequencing
After the cDNA amplification products were qualified, 
the sequencing library was constructed with Library 
Construction Kit (10 × Genomics). First, the cDNA was 
chemically digested. The cDNA was cut into 200 ~ 300-
bp fragments, and the cDNA fragments were segmented 
and subjected to terminal repair and adaptor ligation. 
The cDNA fragments were screened. The P7 adaptor was 
connected and introduced into the sample index by PCR 
amplification. Finally, the sequence library was obtained. 
Sequencing was performed on an Illumina HiSeq 
3000/4000 with a 150 bp paired-end run by Quick Biol-
ogy (Pasadena, CA). A data quality check was done on 
Illumina SAV files. Demultiplexing was performed with 
the Illumina fastq2 v 2.17 program.

RNA sequencing analysis
In this study, 10 × Genomics official software Space 
Ranger was used for data preprocessing, gene expres-
sion quantification and point identification. Sequenc-
ing data preprocessing included filtering the sequenced 
sequences, evaluating the quality of sequencing data, 
and calculating the sequence length distribution. The 
web-based ST spot detector software Space Ranger was 
used to identify the spatial barcode markers in Reads1 
and UMI markers of different transcripts. Read2 was 
aligned to the genome using the transcriptome-specific 
alignment software STAR, and sequences with unique 
alignment positions were selected for subsequent analy-
sis. The gene spot matrix was generated by using Visium 
spatial barcodes, and then point clustering and gene 
expression analysis were performed. Seurat software was 
used to analyse and cluster the samples. Low-quality data 
points were filtered out. Principal component analysis 
(PCA), including the t-distributed stochastic neighbour 
embedding (t-SNE) and uniform manifold approximation 
and projection (UMAP) algorithms, was used to reduce 
the dimensionality of the data and visualize the data.

Data quality control and normalization with Space Ranger
Sequencing data Read1 contained barcode and UMI 
markers that distinguished transcripts. The 10 × Genom-
ics official analysis software Space Ranger was used to 
statistically analyse the UMI-related quality control 
information of each sample. To understand the biologi-
cal significance of expression differences in different loca-
tions, it is necessary to classify the points according to 
the expression level. The points with similar expression 
levels may come from the same type of sample. Space 
Ranger software can be used to preliminarily classify dif-
ferent locations on the genome. First, the expression of 
all points was normalized to compare the expression. 
Then, t-SNE dimension reduction analysis based on PCA 
was carried out, and the t-SNE results were clustered.

Identification of tumour cluster‑specific marker genes 
(DEGs)
Gene sets with FDR-adjusted P-values below 0.05 were 
considered significantly enriched in the related clusters, 
and these genes were identified as DEGs. Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and gene ontology 
(GO) analyses were used to analyse the signalling path-
ways involved. Marker genes were identified based on the 
comprehensive analysis of the database and gene rank 
of the log fold change (FC) value of DEGs in the clus-
ters. Pearson correlation analysis was used to reveal the 
relationship between cluster-specific genes and marker 
genes.

Clinical significance of tumour cluster‑specific marker 
genes in HCC
The prognostic value of tumour cluster-specific marker 
genes was evaluated in the KM Plotter database. The 
genes were submitted to the website. Approximately 155 
HCC patients were split into two groups according to the 
median value of marker gene expression from the gene 
chip. These survival of the two groups of patients was 
compared with a Kaplan–Meier (KM) survival plot.

Data collection (TCGA‑LIHC cohort and ICGC (LIRI‑JP) 
cohort)
RNA sequencing data and the corresponding clini-
cal information of 376 patients with liver cancer up to 
July 13, 2021 were downloaded from the TCGA web-
site (https://​portal.​gdc.​cancer.​gov/​repos​itory). The RNA 
sequencing data and clinical information of another 260 
patients were obtained from the ICGC website (https://​
dcc.​icgc.​org/​relea​ses/​curre​nt/​Proje​cts/​LIRI-​JP). The data 
from the TCGA and ICGC databases are public. Thus, 
the present study was exempt from the requirement for 

https://portal.gdc.cancer.gov/repository
https://dcc.icgc.org/releases/current/Projects/LIRI-JP
https://dcc.icgc.org/releases/current/Projects/LIRI-JP
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the approval of local ethics committees. The current 
research follows TCGA and ICGC data access policies 
and publication guidelines.

Construction and validation of a prognostic spatial 
cluster‑related gene signature
Univariate Cox analysis of overall survival (OS) was uti-
lized to screen tumour cluster-specific marker genes with 
prognostic value. P values were adjusted by Benjamini 
& Hochberg (BH) correction. Least absolute shrinkage 
and selection operator (LASSO)-penalized Cox regres-
sion analysis was performed to construct a prognos-
tic model to minimize the risk of overfitting [6]. The 
LASSO algorithm was used for variable selection and 
shrinkage with the “glmnet” R package. The normalized 
expression matrix of candidate prognostic DEGs was the 
independent variable in regression, and the dependent 
variables were the OS and risk status of patients in the 
TCGA cohort. The risk scores of the patients were cal-
culated according to the normalized expression level of 
each gene and its corresponding regression coefficients. 
The formula was established as follows: score = esum 
(each gene’s expression × corresponding coefficient). The 
patients were stratified into high-risk and low-risk groups 
based on the median value of the risk score. Based on 
the expression of genes in the signature, PCA and t-SNE 
analysis were performed with the “Rtsne” and “ggplot2” R 
packages to explore the distribution of different groups. 
Survival analysis was implemented to analyse the OS of 
high- and low-risk groups using the “survminer” R pack-
age. The “survival ROC” R package was used to conduct 
time‐dependent receiver operating characteristic (ROC) 
curve analyses to evaluate the predictive power of the 
gene signature. The infiltration scores of 16 immune 
cells and the activities of 13 immune-related pathways 
between the high- and low-risk groups were calculated 
by single-sample gene set enrichment analysis (ssGSEA) 
with the “GSVA” R package.

Immunohistochemical staining and scoring (Additional 
file 1: Materials and methods).

Statistical analysis
The chi-squared test was used to compare the differ-
ent proportions. Student’s t test was used to compare 
the image scores. The ssGSEA scores of immune cells 
or immune pathways between the high- and low-risk 
groups were compared by the Mann–Whitney test, and 
the P value was adjusted by the Bejamini-Hochberg (BH) 
method. KM analysis was employed to compare the dif-
ferences in OS among different groups. Univariate and 
multivariate Cox analyses were performed to screen the 
independent predictors for OS. The correlation of the 

prognostic model risk score or prognostic gene expres-
sion level with the stromal score, immune score and drug 
sensitivity was tested by Spearman or Pearson correla-
tion analysis. R software (Version 4.0.5) with the pack-
ages Venn, igraph, ggplot2, pheatmap, ggpubr, corrplot 
and survminer was used to create plots. For all statistical 
results, a two-tailed P value less than 0.05 indicated sta-
tistical significance.

Results
Cluster-specific marker genes (DEGs) were analysed 
from two perspectives; therefore, the results are pre-
sented in two parts.

The establishment of marker gene profiles 
for the prediction of satellite nodules
The flow chart of first part is shown in Fig.  1. To spa-
tially analyse the gene expression of each HCC, 3 indi-
vidual patient samples (one with satellite nodules and 
two without satellite nodules) were analysed using the ST 
methodology. For each specimen, the bulk tumour were 
separated from the adjacent peritumoural tissue. ST was 
performed to detect the spatial gene expression of 6 tis-
sue sections. Figure  1 shows the gene number distribu-
tion, expression distribution, mitochondrial genes, and 
haemoglobin gene expression ratio of all the spots. This 
figure also indicates the spatial and expression distribu-
tion of genes in 6 sections. Overall, 10,820 tissue regions 
were analysed within the 6 samples.

Spatial transcriptome heterogeneity in HCC
One pair of tissue sections (tumour and peritumoural 
tissue with satellite nodules) was initially analysed. To 
analyse the different components within the cell in HCC, 
PCA was used to analyse the DEGs among all cells. 
According to the results of t-SNE and UMAP, all spots of 
2 sections were grouped into 4 main clusters (Fig. 2A–C). 
These clusters showed spatial morphological characteris-
tics that closely reflected those of histologically identifia-
ble structures, including tumours, peritumour tissue and 
stroma. Each cluster had unique differentially expressed 
genes, indicating intratumour and intertumour hetero-
geneity in HCC (Fig. 2D–F). Analysis of these 4 clusters 
showed that gene expression was similar between peritu-
mour tissues but significantly different between peritu-
mour and tumour tissues.

A weaker correlation was observed between tumour 
samples than between peritumoural tissues. This result 
suggested that intertumour heterogeneity was more pro-
nounced (Fig.  2E). Thereafter, differential gene expres-
sion analysis were performed to identify cluster-specific 
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marker genes and then defined the identity of each clus-
ter (Fig.  2F). The gene expression profiles represent the 
HCC expression phenotype while taking tissue origin or 
the functional respective tissue components into account.

ST analysis uncovered changes that could not be detected 
by single‑cell transcriptomics analysis
Interestingly, there were two tumour clusters in case 1, 
which had satellite nodules, while there was only one 

Fig. 1  Study design for ST in HCC. A Workflow for HCC ST. HCC specimens of three patients were dissected to separate bulk tumours from 
peritumour tissue. Three pairs of tumour and peritumour tissues were analysed. B The distribution of all expressed gene numbers, distribution of all 
expressed genes, distribution of mitochondrial genes and distribution of haemoglobin gene expression in three pairs of samples
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tumour cluster in the other two cases, which did not have 
satellite nodules. To understand the possible molecu-
lar mechanism of intrahepatic metastases, we sought 
to investigate functional differences in gene expres-
sion between these two tumour clusters in more detail. 
In tumour cluster A, PPIB, UGT2B15 and IFI27 were 
among the most highly expressed genes (Fig.  3A and 
C), and their functions were related to cell survival and 
apoptosis. In tumour cluster B (Fig. 3B and D), NDRG1, 
BHLHE40 and VEGFA, all of which have functions 
related to metastasis and invasion, were among the most 
highly expressed genes. In addition to our gene expres-
sion analysis, pathways in two tumour clusters were 
investigated (Fig. 3E). The pathways activated in tumour 
cluster A are mainly linked to altered cellular metabolism 
(metabolic pathways, drug metabolism, ascorbate and 

aldarate metabolism and steroid biosynthesis). Metabolic 
alteration is a hallmark of cancer [7] and a clear charac-
teristic of HCC [8]. A large number of clinical parameters 
are used to evaluate liver function, reflecting changes in 
both enzyme activity and metabolites. On the other hand, 
we found that GO categories linked to transcriptional 
misregulation in cancer and the MAPK signalling path-
way were enriched in tumour cluster B of case 1, possibly 
reflecting increased cell proliferation and malignancy.

Spatial expression patterns common to HCC samples
Next, gene expression analyses for another two cases 
were performed. The resulting gene expression profiles 
of tumour and nonneoplastic tissues were similar (Addi-
tional file  2: Fig. S1). The gene expression within each 
region (tumour, peritumour and stroma) obtained from 

Fig. 2  Spatial gene expression heterogeneity within the case 1 tissue sample. A Tissue plot with spots coloured by UMI count and t-SNE projection 
of spots coloured by UMI counts. B Tissue plot with spots coloured by clustering and t-SNE projection of spots coloured by clustering. C Sequencing 
saturation and median genes per spot. D Violin plots displaying the expression of the top 100 DEGs in the 4 main clusters. E Spearman correlation 
between tumour area versus peritumour area. F Heatmap showing the expression levels of specific markers in 4 clusters
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Fig. 3  Spatial gene expression comparison of tumour cluster A and cluster B. A Gene expression in tumour cluster A. B Gene expression in tumour 
cluster B. C and D Violin plots displaying the expression of representative marker genes identified in tumour and peritumour clusters. E Pathways 
enriched in tumour and peritumour clusters
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the previous results was used to determine region-spe-
cific markers. The expression of some specific genes was 
observed to be higher in the tumour than in the nonne-
oplastic tissues in each case. Specifically, in the tumour 
region, we observed enrichment of PPIB and UGT2B15 
and IFI27, NDRG1, BHLHE40 and VEGFA (Additional 
file 3: Fig. S2).

We then investigated more functional differences in 
pathways between the tumour and the peritumour region 
(Additional file  4: Fig. S3). Consistent with the pathway 
analysis in case 1, enrichment analysis indicated path-
ways enriched in the tumour (for example, genes involved 
in chemical carcinogenesis and metabolic pathways) ver-
sus the peritumour tissue.

In summary, the gene profiles obtained from the ST 
analyses may reflect the different statuses of HCC and 
can reveal intertumour heterogeneity between patients at 
the gene expression level.

The effect of marker gene expression in tumour clusters 
on HCC patient prognosis
To evaluate the clinical significance of marker genes of 
tumour clusters, the KM plotter website was applied. 
According to analysis of 155 HCC samples in the 
KM Plotter database, high expression levels of PPIB, 
UGT2B15, IFI27, NDRG1, BHLHE40 and VEGFA were 
associated with a poor prognosis in HCC (Fig. 4).

Construction of the prognostic gene signature
The flow chart of the second part is shown in Additional 
file 5: Fig. S4 total of 361 HCC patients from the TCGA-
LIHC cohort and 260 HCC patients from the ICGC 
(LIRI-JP) cohort were finally enrolled. The detailed clini-
cal characteristics of these patients are summarized in 
Table 1.

Identification of prognostic spatial cluster‑specific marker 
genes (DEGs) and construction of a prognostic model 
in the TCGA cohort
Spatial cluster-specific marker genes (DEGs) were dif-
ferentially expressed in tumour tissues and adjacent 

Fig. 4  KM survival plot of the top 6 marker genes of tumour clusters. A KM survival plot of PPIB. B KM survival plot of UGT2B15. C KM survival plot of 
IFI27. D KM survival plot of NDRG1. E KM survival plot of BHLHE40. F KM survival plot of VEGFA 
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nontumour tissues, and 7 of them were correlated with 
OS in the univariate Cox regression analysis (Fig.  5A). 
The expression profiles of the above 7 genes were ana-
lysed by LASSO-Cox regression analysis, and a prog-
nostic model was established. RPS7 was excluded from 
this analysis because its LASSO coefficient was unavail-
able. A 6-gene signature (ADH1A, ADH1B, CYP3A4, 
FCGBP, PABPC1, NDRG1) was identified based on the 
optimal value of λ (Additional file  6: Fig. S5). The risk 
score was calculated as follows: score = -0.0354 × expres-
sion level of ADH1A—0.0035 × expression level of 
ADH1B − 0.0100 × expression level of CYP3A4 + 0.113 
× expression level of FCGBP + 0.119 × expression level 
of PABPC1 + 0.126 × expression level of NDRG1. Fig-
ure 5B shows that the expression of these 6 genes was sig-
nificantly different in HCC tissues and adjacent normal 
tissues. The risk ratio of NDRG1, an important marker 
from tumour cluster B, was 1.309 (95% CI = 1.147–1.493, 
P < 0.001, Fig.  5C). Figure  5D shows the relationship of 
those 6 genes. The results showed that these 6 spatial 
cluster-specific marker genes can be used as prognostic 
indicators. Based on the median cut-off value, we divided 
the patients into a high-risk group (n = 182) or a low-risk 
group (n = 183) (Fig.  6A). We found that high risk was 
correlated with a higher tumour grade (Table 2). Patients 
with low risk had longer survival times than those with 

high risk according to the scatter plot (Fig.  6B). The 
patients were distributed in the two subgroups accord-
ing to whether they were in the high- or low-risk group 
through PCA and t-SNE analysis (Fig.  6E–F). On the 
other hand, the survival analysis showed that the patients 
with low risk had a better 5-year OS than those with high 
risk (Fig. 6I, P < 0.05). Time-dependent ROC curves were 
generated to display the sensitivity and specificity of the 
survival prognostic model, and the area under the curve 
(AUC) reached 0.700 at 1 year, 0.647 at 2 years, and 0.606 
at 3 years (Fig. 6J).

To explore the relationship between each prognostic 
gene and prognosis, survival analysis was performed. The 
results indicated that low expression of ADH1A, CYP3A4 
and ADH1B was significantly correlated with poor OS 
(Additional file 7: Fig. S6A–C, P < 0.01), and high expres-
sion of FCGBP, PABPC1 and NDRG1 was significantly 
correlated with poor OS (Additional file  7: Fig. S6D-E 
and Fig.  4D, P  < 0.05). The expression levels of FCGBP, 
PABPC1 and NDRG1 were higher and the expression 
levels of ADH1A, CYP3A4 and ADH1B were lower in 
tumour tissues than in adjacent nontumour tissues 
(Additional file  8: Fig. S7). Immunohistochemical stud-
ies have also been performed to validate the clinical sig-
nificance of these marker genes in HCC models (34 pairs 
of HCC and adjacent nontumour tissues) (Additional 
file 9: Fig. S8) and the statistical analysis of image scores 
showed consistent results (Additional file 11: Table S2).

Validation of the 6‑gene signature in the ICGC Cohort
To further validate the stability of the model based on 
the TCGA cohort, we performed the same analysis with 
the ICGC cohort. Referring to the median value obtained 
from the TCGA cohort, patients from the ICGC cohort 
were also divided into two groups (high or low risk). Con-
sistent with the results from the TCGA cohort, PCA and 
t-SNE analyses confirmed that patients were separated in 
two groups (Fig.  6G, H). Patients in the low-risk group 
were less likely to die earlier (Fig. 6D) and had a longer 
survival time than those in the high-risk group (Fig. 6K). 
Moreover, the AUC of the 6-gene signature was 0.819 at 
1 year, 0.764 at 2 years, and 0.759 at 3 years (Fig. 6L).

Independent prognostic value of the 6 gene signature
To validate whether the risk score was an independent 
prognostic factor for OS, we carried out univariate and 
multivariate Cox analyses. In both the TCGA and ICGC 
cohorts, the risk scores were significantly correlated with 
OS according to univariate Cox analysis (TCGA cohort: 
HR = 2.994, 95% CI = 1.892–4.736, P < 0.001; ICGC 
cohort: HR = 5.358, 95% CI = 2.818–10.188, P < 0.001) 
(Fig.  7A, C). Even after correcting for other factors, 
the risk score was still an independent predictor for 

Table 1  Clinical characteristics of the HCC patients used in this 
study

Characteristics TCGA-LIHC cohort ICGC-LIRP-JI cohort

No. of patients 371 260

Age (median, range) 61 (16–90) 69 (31–89)

Gender

 Female 120 (32.53%) 68 (26.15%)

 Male 251 (67.65%) 192 (73.85%)

Grade

 G1 55 NA

 G2 178 NA

 G3 120 NA

 G4 13 NA

 Unknown 5 NA

Stage

 Stage I 174 40

 Stage II 85 117

 Stage III 84 80

 Stage IV 4 23

 Unknown 24 NA

Survival time

 Alive 239 214

 Deceased 132 46
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OS based on multivariate Cox analysis (TCGA cohort: 
HR = 2.546, 95% CI = 1.617–4.008, P < 0.001; ICGC 
cohort: HR = 3.780, 95% CI = 1.879–7.604, P = 0.001) 
(Fig. 7B, D).

Functional analyses with the TCGA and ICGC cohorts
The association of the risk score with the clinical char-
acteristics of HCC patients was analysed. The results 
showed that the risk score was significantly higher in 
tumour stage III-IV (P < 0.001) or grade 3–4 (P < 0.001) 
than in tumour stage I-II (Fig. 7G, H) or tumour grade 
1–2. The same analysis of the ICGC dataset confirmed 
that the risk score was definitely higher in tumour 
stages III-IV than in tumour stages I-II (P < 0.001) 
(there were no data about the grade of HCC in the 
ICGC dataset) (Fig. 7K).

To detect whether the risk score was associated with 
immune components, we analysed the relationship of 
the risk score and immune infiltration.

Factors such as dendritic cells (DCs), interstitial 
dendritic cells (iDCs), antigen-presenting cell (APC) 
costimulation, human leukocyte antigen (HLA), and 
major histocompatibility complex (MHC) class 1, 
which are important for the antigen presentation pro-
cess, were significantly induced in the high-risk group 
in the TCGA cohort (all adjusted P < 0.05, Fig.  8A, B). 
In addition, the scores of macrophages or Treg cells 
were higher in the high-risk group, while the scores 
of the type II IFN response and mast cells showed the 
opposite trend (adjusted P < 0.05, Fig. 8A, B). Compari-
son between high- and low-risk groups of the ICGC 
cohort showed a similar result as that in the TCGA 
cohort analysis (adjusted P < 0.05, Fig. 8C, D).

Fig. 5  Identification of candidate spatial tumour cluster-specific genes in the TCGA cohort. A Venn diagram to identify cluster-specific marker 
genes (DEGs) correlated with OS between HCC tissues and adjacent normal tissues. B The expression of 7 spatial cluster-specific marker genes 
between HCC tissues and adjacent normal tissues. C Forest plots showing the results of the univariate Cox regression analysis between gene 
expression and OS. D The correlation network of candidate genes
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Six types of immune infiltrates were identified in 
human tumours, namely, C1 (wound healing), C2 
(INF-g dominant), C3 (inflammatory), C4 (lymphocyte 
depleted), C5 (immunologically quiet) and C6 (TGF-γ 
dominant) [9]. The C5 and C6 immune subtypes were 

not included in the study because no patient sample 
belonged to the C5 immune subtype and C6 immune 
subtype in HCC. The relationship were analysed between 
immune infiltration and the risk score. We observed 
that a high risk score was significantly associated with 

Fig. 6  Prognostic analysis of the 6-gene signature model in the TCGA cohort and ICGC cohort. TCGA cohort (A, B, E, F, I, J), ICGC cohort (C, D, G, H, 
K, L). A, C The median value and distribution of the risk scores. B, D The distribution of OS status. E, G PCA plot. F, H t-SNE analysis. I, K KM curves for 
OS of patients in the high- and low-risk groups. J, L AUC time-dependent ROC curves for OS

Table 2  Characteristics of the patients in different risk groups

Characteristics TCGA-LIHC cohort ICGC-LIRP-JI cohort

High risk Low risk P value High risk Low risk P value

Age

 ≤ 65 118 (69.01%) 101 (60.12%) 0.1102 67 (38.95%) 22 (37.29%) 0.9428

 > 65 53 (30.99%) 67 (39.88%) 105 (61.05%) 37 (62.71%)

Gender

 Female 54 (31.58%) 54 (32.14%) 1 49 (28.49%) 12 (20.34%) 0.2918

 Male 117 (68.42%) 114 (67.86%) 123 (71.51%) 47 (79.66%)

Grade

 G1 + 2 87 (50.88%) 125 (74.4%) < 0.001 NA NA NA

 G3 + 4 84 (49.12%) 43 (25.6%) NA NA NA

Stage

 Stage I–II 121 (70.76%) 134 (79.76%) 0.0729 96 (55.81%) 45 (76.27%) 0.0086

 Stage III–IV 50 (29.24%) 34 (20.24%) 76 (44.19%) 14 (23.73%)
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Fig. 7  The risk score in different groups divided by clinical characteristics and results of the univariate and multivariate Cox regression analyses. 
TCGA cohort (A–D, H, J), ICGC cohort (E–F, I, K). A, E Age. B, F Gender. C Tumour stage. D, G Tumour grade. H, I OS-related factors were screened by 
univariate Cox regression analyses. J, K OS-related factors were screened by multivariate Cox regression analysis
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C2, while a low risk score was significantly associated 
with C3 (Fig.  8E). Tumour stemness was also assessed 
according to the RNA stemness score (RNAss) based on 
mRNA expression and the DNA stemness score (DNAss) 
based on the DNA methylation pattern [10]. The tumour 
immune microenvironment was assessed with the stro-
mal score and immune score. Correlation analysis was 
also performed to explore the relationship between 
tumour stem cells and the immune environment. Based 
on the results, we can see that the risk score was posi-
tively significantly correlated with DNAss and immune 
score but significantly negatively associated with RNAss 
and stromal score (P < 0.05) (Fig. 8F).

The relationship between the expression of prognostic 
genes and drug sensitivity was also examined. The results 
showed that all prognostic genes were correlated with 
the sensitivity to some chemotherapies (P < 0.01) (Fig. 9). 
For example, NDRG1 expression was increased with JNJ-
42756493, simvastatin and cabozantinib.

Discussion
HCC treatment outcomes are still not promising because 
of the high recurrence rate even after complete surgi-
cal excision. The presence of satellite lesions missed by 
imaging because of their small size may be one of the key 
factors leading to high recurrence. The purpose of the 
present study was to perform a full analysis of the spatial 
transcriptome of HCC with satellite nodules. Tissue-wide 
gene expression heterogeneity was investigated using 
ST technology, which quantifies transcriptome arrays of 
whole tissue sections.

Recently, a study including multiple histological types 
of cancer suggested that adjacent tumour tissue may be 
an intermediate state between normal and tumour tis-
sue [11]. However, no evaluation of tumour and peritu-
mour tissue with spatial resolution has been conducted 
until now. Therefore, we identified differences between 
the tumour and peritumour specimens. The results 
showed that the gene expression and pathway enrich-
ment were different in tumour and peritumour clusters. 
For example, known HCC-related genes (NDRG1 [12, 13] 
and VEGFA [14]) are among the most highly expressed 
genes in the “tumour” clusters. These highly expressed 
gene profiles may become gene markers of HCC, suggest-
ing poor prognosis. The present study also offers a new 
perspective into gene expression differences between 
tumours with and without satellite nodules, prompt-
ing key questions with important implications for the 

metastasis of HCC. The results revealed two tumour 
clusters in the case with satellite nodules. We identified 
marker genes corresponding to the different clusters of 
tumour cells. The gene expression profiles obtained from 
the ST analysis may be used to predict additional regions 
with satellite nodules. PPIB, UGT2B15 and IFI27, which 
were found in tumour cluster A, were mainly associ-
ated with cell survival and apoptosis. PPIB (cyclophilin 
B, CypB) is a member of the PPIase family. It has been 
reported to play an important role in protein folding. 
Recent studies have shown that HCC cell survival can be 
stimulated by PPIB through a positive feedback loop with 
hypoxia-inducible factor-1a (HIF-1a) [15]. PPIB is asso-
ciated with malignant progression, and gene regulation 
has been noted by some researchers [16]. Overexpression 
of miR-206 promotes apoptosis and inhibits the metas-
tasis of HCC cells by targeting PPIB [17]. UGT2B15 is a 
functional member of the UGT2B subfamily. The expres-
sion of UGT2B15 is mainly observed in liver, prostate 
and breast cancer. It has been found to contribute to glu-
curonidation of androgenic steroids [18–20]. The role 
of UGT2B15 in inducing tumour progression and drug 
resistance has been reported in some studies [20]. Bio-
informatic analysis suggests that UGT2B15 activates the 
Hippo‑YAP signalling pathway, leading to the pathogene-
sis of gastric cancer [20]. Interferon alpha-inducible pro-
tein 27 (IFI27) consists of 122 amino acids. It belongs to 
a hydrophobic mitochondrial protein family [21]. IFI27 
maintains a low level of expression in multiple mamma-
lian cells and is involved in a wide range of biological pro-
cesses, such as apoptosis and innate immunity [22, 23]. 
The development of tumours can be affected by IFI27 
downregulation in many cancers. TRAIL-induced apop-
tosis in animal and cellular models of HCC and gastric 
cancer can be induced when IFI27 is downregulated. This 
result suggests that IFI27 may play a critical important 
role in tumour development [24]. IFI27 downregulation 
results in a decrease in the formation of the cyclin A/
CDK1 complex, inducing epithelial cell arrest in S phase, 
and cell proliferation is therefore inhibited [25]. Hong W 
reported that IFI27 upregulation promotes cell prolifera-
tion and invasion and reduces apoptosis [26]. NDRG1, 
BHLHE40 and VEGFA, which were found in tumour clus-
ter B, mainly affect tumour proliferation, metastasis and 
invasion. N-Myc downstream-regulated gene 1 (NDRG1) 
is a crucial cytosolic ubiquitously expressed protein. 
NDRG1 is an important molecule in controlling HCC 
metastasis and is thus suggested as a novel biomarker 

Fig. 8  Immune status between different risk groups and the association between the risk score and tumour microenvironment scores. TCGA 
cohort (A, C), ICGC cohort (B, D). A, B The scores of 16 immune cells and C, D 13 immune-related functions are shown in boxplots. E Comparison of 
the risk score in different immune infiltration subtypes. D The relationship between risk score and RNAss, DNAss, stromal score and immune score. P 
values are shown as ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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for predicting HCC recurrence after liver transplanta-
tion [13]. NDRG1 is a significant marker for metastasis, 
recurrence and poor prognosis in HCC [13]. Yan et  al. 
[27] found that NDRG1 expression is generally upregu-
lated in HCC tissues compared with normal samples, 
particularly in recurrent and metastatic HCC. BHLHE40 
(also known as DEC1/BHLHB2/SHARP2/STRA13) 
belongs to the basic helix-loop-helix (bHLH) protein 
family, which is a large superfamily of transcriptional 
regulators expressed in many organisms. High expression 
of BHLHE40 is significantly correlated with the activa-
tion of a hypoxia-response pathway, elevated metastatic 
potential, and a poor prognosis in many tumours, such 
as HCC, pancreatic cancer, and invasive breast cancer 
[28–30]. BHLHE40 is activated under hypoxic conditions 
by HIF-1α in HCC, stimulating tumour progression [31]. 
Vascular endothelial growth factor (VEGF) is an essential 
angiogenic growth factor in physiological and pathologi-
cal states. High expression of VEGFA has been detected 
in a large number of solid tumours, including HCC [32, 
33]. It is involved in the regulation of the metastasis of 
many solid tumours and their neovasculature [14, 34]. In 

HCC, VEGF is an extremely important angiogenic factor. 
VEGFA secreted by tumour cells promotes an epithelial-
to-mesenchymal transition phenotype, consequently 
inducing tumour invasion [35]. In our study, spatial gene 
expression was measured in HCC tissues for the first 
time.

Spatially mapping gene expression in one case uncov-
ered a new landscape [36], and another two cases were 
used to validate the results. The results showed that 
these marker genes in tumour clusters were also highly 
expressed in the tumour area. We also detected the clini-
cal significance of marker genes through the database 
and found that these genes can be used to predict prog-
nosis and survival in patients with HCC. In the future, 
relevant panels can be detected, and molecules in dif-
ferent regions can help improve the accuracy of clinical 
predictions, of which cases of HCC may be at a higher 
risk of metastasis. High expression of the markers in both 
clusters may suggest that there are satellite nodules in 
tumours.

To further explore the role of spatial cluster-specific 
marker genes (DEGs), we screened the DEGs in the 

Fig. 9  Scatter plot of the relationship between the expression of prognostic genes and drug sensitivity
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TCGA and ICGC cohorts. The expression of tumour 
cluster marker genes was significantly different between 
tumour and adjacent nontumour tissues, and many of 
them were associated with OS according to univariate 
Cox regression analysis. These results suggested that we 
could construct a prognostic model using cluster-spe-
cific marker genes. Patients were divided into high- and 
low-risk groups according to the median risk score. The 
results showed that high risk was significantly corre-
lated with higher tumour grade, advanced tumour-node-
metastasis (TNM) stage and shorter OS. Risk score was 
an independent predictor for OS according to independ-
ent prognostic analysis.

We constructed a prognostic model with 6 cluster-
specific marker genes (ADH1A, ADH1B, CYP3A4, 
FCGBP, PABPC1, NDRG1) in the present study. Some 
researchers have reported that a variation in alcohol 
dehydrogenase 1A (ADH1A) may contribute to slow 
alcohol metabolism, which induces increased blood 
acetaldehyde levels in Korean subjects [37]. In HCC 
patients, a high expression of ADH1A was associated 
with good survival and a less aggressive disease state 
[38]. Alcohol dehydrogenase 1B (ADH1B) is mainly 
known for its involvement in the major human ethanol 
metabolic pathway [39]. As a multifunctional enzyme, 
human hepatic cytochrome P-450 3A4 (CYP3A4) has 
a wide range of substrates, including commonly used 
drugs [40]. The expression of the Fc fragment of IgG-
binding protein (FCGBP) is low in some tumours and 
high in others [41]. Low expression of FCGBP could be 
used as a crucial regulator of tumour growth factor 1 
(TGF-1)-induced epithelial-mesenchymal transition in 
gallbladder cancer [42]. In contrast, high expression 
of FCGBP significantly decreases the OS of colorec-
tal cancer patients [43]. High expression of PABPC1 is 
associated with worse OS for HCC and may contribute 
to the progression of HCC [44]. As discussed above, 
NDRG1 is a biomarker for metastasis, recurrence and a 
poor prognosis in HCC.

The results showed higher fractions of macrophages 
in the high-risk groups of the TCGA and ICGC cohorts. 
It has been demonstrated that increased infiltration 
of tumour-associated macrophages is associated with 
a poor prognosis in HCC patients due to their role in 
immune invasion [45, 46]. In addition, a high risk score 
was associated with impaired antitumour immunity, as 
indicated by the activity of the type II IFN response and 
type I IFN response as well as the fractions of NK cells. 
Therefore, it is reasonable to assume that the antitumour 
immunity of the high-risk group is attenuated, which 
may be an important reason for their poor prognosis. 
According to the ESTIMATE algorithm, the expression 
of prognostic genes was also significantly correlated with 

the stromal score and immune score (P < 0.05), indicating 
that the tumour tissue in the high-risk group was highly 
infiltrated by immune cells. The analysis of the expression 
of prognostic genes and drug sensitivity showed that all 
prognostic genes were correlated with the sensitivity to 
some chemotherapy drugs. These data demonstrated that 
some prognostic genes can be used as therapeutic targets 
to overcome drug resistance or adjuvant drug sensitivity.

In conclusion, the results of this study have demon-
strated that the analysis of tumour gene expression com-
bined with ST remarkably increases granularity when 
compared to bulk analysis. Tumours with negligible 
histological differences and various regions of the same 
tumour showed significant differences in the transcrip-
tion profiles of tumour cells at each site. High expres-
sion of PPIB, UGT2B15, IFI27, NDRG1, BHLHE40 and 
VEGFA may suggest the formation of satellite nodules 
that cannot be detected by imaging.

The study also defined a new prognostic signature con-
sisting of six cluster-specific marker genes. We proved 
that the gene profile is independently associated with 
OS in the TCGA cohort and ICGC validation cohort and 
confirmed its value in the analysis of function, tumour 
microenvironment and drug sensitivity, providing insight 
for predicting the prognosis of HCC. The specific poten-
tial mechanism linking cluster-specific marker genes and 
tumour immunity in HCC remains unclear and is worthy 
of further study.

In summary, we propose that expression profiles based 
on spatial analysis can serve as new markers for the pre-
diction of HCC prognosis.
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